

European Coordination for Accelerator Research and Development

PUBLICATION

LEP3 and TLEP

Zimmermann, F (CERN, Geneva, Switzerland)

07 December 2012

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.

This work is part of EuCARD Work Package 4: AccNet: Accelerator Science Networks.

The electronic version of this EuCARD Publication is available via the EuCARD web site <http://cern.ch/eucard> or on the CERN Document Server at the following URL: <http://cds.cern.ch/record/1498125

– EuCARD-PRE-2012-007 —

EP3 and TLEF

Frank Zimmermann HF2012, FNAL, 15 November 2012

CMS

Thanks to R. Assmann, P. Azzi, M. Bai, A. Blondel, H. Burkhardt, A. Butterworth,
Y. Cai, A. Chao, W. Chou, P. Collier, J. Ellis, M. Fitterer, P. Janot, M. Jimenez, M. Klute,
M. Koratzinos, A. Milanese, M. Modena, S. Myers, K. Ohmi, K. Oide, J. Osborne,
H. Piekarz, L. Rivkin, G. Roy, D. Schulte, J. Seeman, V. Shiltsev, M. Silari, D. Summers,
V. Telnov, R. Tomas, J. Wenninger, U. Wienands, K. Yokoya, M. Zanetti, ...

work supported by the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579

circular Higgs factories at CERN & beyond

also: *e*[±] (200 GeV) – *p* (7 & 50 TeV) collisions

a long-term strategy for HEP!

two options

- installation in the LHC tunnel "LEP3"
 - + inexpensive (<0.1xLC)
 - + tunnel exists
 - + reusing ATLAS and CMS detectors
 - + reusing LHC cryoplants
 - interference with LHC and HL-LHC
- new larger tunnel "TLEP"
 - + higher energy reach, 5-10x higher luminosity
 - + decoupled from LHC/HL-LHC operation & construction
 - + tunnel can later serve for HE-LHC (factor 3 in energy from tunnel alone) with LHC remaining as injector
 - 4-5x more expensive (new tunnel, cryoplants, detectors)

LEP3, TLEP

 $(e^+e^- \rightarrow ZH, e^+e^- \rightarrow W^+W^-, e^+e^- \rightarrow Z, [e^+e^- \rightarrow t\bar{t}])$

key parameters

	LEP3	TLEP
circumference	26.7 km	80 km
max beam energy	120 GeV	175 GeV
max no. of IPs	4	4
luminosity at 350 GeV c.m.	-	$0.7 x 10^{34} cm^{-2} s^{-1}$
luminosity at 240 GeV c.m.	10 ³⁴ cm ⁻² s ⁻¹	$5x10^{34}$ cm ⁻² s ⁻¹
luminosity at 160 GeV c.m.	$5x10^{34}$ cm ⁻² s ⁻¹	$2.5 x 10^{35} cm^{-2} s^{-1}$
luminosity at 90 GeV c.m.	$2x10^{35}$ cm ⁻² s ⁻¹	$10^{36} cm^{-2} s^{-1}$

at the Z pole repeating LEP physics programme in a few minutes...

other LEP3 parameters

arc optics

- same as for LHeC: $\varepsilon_{x,LHeC} < 1/3 \varepsilon_{x,LEP1.5}$ at equal beam energy,
- optical structure compatible with present LHC machine (not optimum!)
- small momentum compaction (short bunch length)
- assume $\varepsilon_y/\varepsilon_x \sim 5x10^{-3}$ similar to LEP (ultimate limit $\varepsilon_y \sim 1$ fm from opening angle)

RF

- RF frequency 1.3 GHz or 700 MHz
- ILC/ESS-type RF cavities high gradient (20 MV/m assumed, 2.5 times LEP gradient)
- total RF length for LEP3 at 120 GeV similar to LEP at 104.5 GeV
- short bunch length (small β_y^*)
- cryo power ≤LHC

synchrotron radiation

- energy loss / turn: E_{loss} [GeV]=88.5×10⁻⁶ (E_b [GeV])⁴/ ρ [m].
- higher energy loss than necessary
- arc dipole field = 0.153 T
- compact magnet
- critical photon energy = 1.4 MeV
- 50 MW per beam (total wall plug power ~200 MW ~ LHC complex) \rightarrow 4x10¹² e[±]/beam

putting LEP3 into the LHC tunnel?

LHC tunnel cross section with space reserved for a future lepton machine like LEP3 [blue box above the LHC magnet] and with the presently proposed location of the LHeC ring [red]

integrating LEP3 IR in CMS detector?

Azzi, et al..

QUADS insertions in the CMS detector

A. Blondel, ATLAS Meeting 4 Oct. 2012

activation of LHC tunnel after (HL-) LHC operation

nominal

0.1

Activation of Arcs

Assumption:

 2.4×10^4 protons/m/s (both beams), 7TeV, lost for 180 days continuously (corresponds to an H₂-equivalent beam gas density of 4.5×10^{14} /m³)

"Operation of HE-LHC will not increase the radiological risk to workers and public when compared to LHCultimate and HL-LHC (based on best present knowledge)"

D. Forkel-Wirth et al, "Radioprotection issues after 20 years of LHC operation," Proc. EuCARD-AccNet mini-workshop on a Higher-Energy LHC "HE-LHC'10," 14-16 Oct. 2010, Malta, CERN Report CERN-2011-003 a new tunnel for TLEP in the Geneva area?

Pre-feasibility study of an 80km tunnel project at CERN

GEOTECI NIQUE APPLIQUEE DERIAZ S.A.

TLEP tunnel in the Geneva area – "best" option

«Pre-Feasibility Study for an 80-km tunnel at CERN» John Osborne and Caroline Waaijer, CERN, ARUP & GADZ, submitted to ESPG

HE_LHC 80km option potential shaft location

Cr2012 Google Image 5 2012 Gookye Image 0 2012 IGN France

Geneva

saleve

Lake Geneva

SuperTRISTAN 40

屈括机

ni wire

KEK

八郷植物センター

富士山

県立中

12 (III) III (III

小町ふれあ

石岡市

筑波山顶宫 国女体山

つつじケ丘

小田城の

筑波高原 Fャンプ#

▲ 薬王院

TLEP tunnel in the KEK area?

氟磷钠

つくばねオ

沼体育菌

SuperTRISTAN in Tsukuba: 40 km ring Proposal by K. Oide, 13 February 2012

HILF IN CO.

105 km tunnel near FNAL

(+ FNAL plan B from R. Talman)

H. Piekarz, "... and ... path to the future of high energy particle physics," JINST 4, P08007 (2009)

luminosity formulae & constraints

LEP3/TLEP parameters -1 $\frac{\text{soon at SuperKEKB:}}{\beta_x^*=0.03 \text{ m, }\beta_Y^*=0.03 \text{ cm}}$

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t
beam energy Eb [GeV]	104.5	60	120	45.5	120	175
circumference [km]	26.7	26.7	26.7	80	80	80
beam current [mA]	4	100	7.2	1180	24.3	5.4
#bunches/beam	4	2808	4	2625	80	12
#e-/beam [10 ¹²]	2.3	56	4.0	2000	40.5	9.0
horizontal emittance [nm]	48	5	25	30.8	9.4	20
vertical emittance [nm]	0.25	2.5	0.10	0.15	0.05	0.1
bending radius [km]	3.1	2.6	2.6	9.0	9.0	9.0
partition number J_{ϵ}	1.1	1.5	1.5	1.0	1.0	1.0
momentum comp. α_{c} [10 ⁻⁵]	18.5	8.1	8.1	9.0	1.0	1.0
SR power/beam [MW]	11	44	50	50	50	50
β* _x [m]	1.5	0.18	0.2	0.2	0.2	0.2
β* _v [cm]	5	10	0.1	0.1	0.1	0.1
σ* _x [μm]	270	30	71	78	43	63
σ* _v [μm]	3.5	16	0.32	0.39	0.22	0.32
hourglass F _{hg}	0.98	0.99	0.59	0.71	0.75	0.65
ΔE ^{SR} loss/turn [GeV]	3.41	0.44	6.99	0.04	2.1	9.3
SuperKEKB: $\epsilon_v / \epsilon_x = 0.25\%$						

LEP2 was not beam-

			LED2	TIED 7		TIED +
	LEPZ	LHEC	LEPS	ILEP-Z	ПСР-П	ILEP-L
V _{RF,tot} [GV]	3.64	0.5	12.0	2.0	6.0	12.0
δ _{max,RF} [%]	0.77	0.66	5.7	4.0	9.4	4.9
ξ _x /IP	0.025	N/A	0.09	0.12	0.10	0.05
ξ _v /IP	0.065	N/A	0.08	0.12	0.10	0.05
f _s [kHz]	1.6	0.65	2.19	1.29	0.44	0.43
E _{acc} [MV/m]	7.5	11.9	20	20	20	20
eff. RF length [m]	485	42	600	100	300	600
f _{RF} [MHz]	352	721	700	700	700	700
δ ^{SR} _{rms} [%]	0.22	0.12	0.23	0.06	0.15	0.22
σ ^{SR} _{z.rms} [cm]	1.61	0.69	0.31	0.19	0.17	0.25
$L/IP[10^{32} \text{cm}^{-2} \text{s}^{-1}]$	1.25	N/A	94	10335	490	65
number of IPs	4		/	/	/	/
Rad.Bhabha b.lifetime [min]	360	N/A	18	74	32	54
Υ _{BS} [10 ⁻⁴]	0.2	0.05	9	4	15	15
n _v /collision	0.08	0.16	0.60	0.41	0.50	0.51
$\Delta \delta^{BS}$ /collision [MeV]	0.1	0.02	31	3.6	42	61
$\Delta \delta^{\text{BS}}_{\text{rms}}$ /collision [MeV]	0.3	0.07	44	6.2	65	95

LEP data for 94.5 - 101 GeV consistently suggest a beam-beam limit of ~0.115 (R.Assmann, K. C.)

Stuart's Livingston Chart: Luminosity

Stuart Henderson, Higgs Factory Workshop, Nov. 14, 2012

beam lifetime

LEP2:

- beam lifetime ~ 6 h
- dominated by radiative Bhahba scattering with cross section $\sigma^{\sim}0.215$ barn

LEP3:

 with L~10³⁴ cm⁻²s⁻¹ at each of two IPs: τ_{beam,LEP3}~18 minutes from rad. Bhabha
 additional beam lifetime limit due to beamstrahlung requires: (1) large momentum acceptance (δ_{max,RF} ≥ 3%), and/or (2) flat(ter) beams and/or (3) fast replenishing (Valery Telnov, Kaoru Yokoya, Marco Zanetti)

energy spectrum after 1 collision

- GUINEA-PIG simulation with 360M macroparticles
- lifetime depends exponentially on energy acceptance η

- as for LEP3, TLEP BS lifetime well above required threshold
- in particular there is some margin for TLEP-H

note: beamstrahlung effect at LEP3 much smaller than for ILC, ~monochromatic luminosity profile

LEP3/TLEP: double ring w. top-up injection supports short lifetime & high luminosity

A. Blondel

a first ring accelerates electrons and positrons up to operating energy (120 GeV) and injects them at a few minutes interval into the low-emittance collider ring, which includes high luminosity $\geq 10^{34}$ cm⁻² s⁻¹ interaction points

top-up injection: e⁺ production

top-up interval << beam lifetime

- \rightarrow average luminosity \approx peak luminosity!
- LEP3 needs about 4×10¹² e⁺ every few minutes, or of order 2×10¹⁰ e⁺ per second

for comparison:

LEP injector complex delivered ~10¹¹ e⁺ per second (5x more than needed for LEP3!)

top-up injection: magnet ramp

SPS as LEP injector accelerated e^{\pm} from 3.5 to 20 GeV (later 22 GeV) on a very short cycle:

acceleration time = 265 ms or about 62.26 GeV/s

Ref. K. Cornelis, W. Herr, R. Schmidt, "<u>Multicycling of the CERN SPS:</u> <u>Supercycle Generation & First Experience with this mode of</u>

Operation," Proc. EPAC 1988

LEP3/TLEP: with injection from SPS into top-up accelerator at 20 GeV and final energy of 120 GeV \rightarrow acceleration time = 1.6 seconds

total cycle time = 10 s looks conservative (\rightarrow refilling ~1% of the LEP3 beam, for τ_{beam} ~18 min) Ghislain Roy & Paul Collier

top-up injection: schematic cycle

almost constant current

beam current in collider (15 min. beam lifetime)

energy of accelerator ring

不

100%

99%

two schematic time schedules for LEP3

of course TLEP would be constructed independently and could pave a direct path to VHE-LHC

LEP3/TLEP R&D items

- choice of RF frequency: 1.3 GHz (ILC) or 700 MHz (ESS)? & RF coupler
- SR handling and radiation shielding (LEP experience)
- beam-beam interaction for large Q_s
 and significant hourglass effect
- IR design with large momentum acceptance
- integration in LHC tunnel (LEP3)
- Pretzel scheme for TERA-Z operation

West Coast design, 2012

FNAL site filler, 2012 O LEP3 on LI, 2012

LEP3 in Texas, 2012

) UNK Higgs Factory, 2012

> Chinese Higgs Factory, 2012

SuperTristan 2012

circular e⁺e⁻ Higgs factories become popular around the world

LEP3/TLEP baseline w established technology

I had thought (and still think) that the possible use of cheap, robust, established technology is a great asset for LEP3/TLEP

However, in Cracow and here at FNAL the **argument** has been put forward **that any future collider should be a** *Hi-Tech facility*

(i.e. 18 GV SRF not enough, 350 GeV SRF being much better! - In other words a reasoning that we should fill a large tunnel with expensive objects instead of with cheap magnets as for LEP/LEP2)

by the way, LEP2 technology worked well

Parameter	Design	Achieved
	LEP1 / LEP2	LEP1 / LEP2
Bunch current	0.75 mA	1.00 mA
Total beam current	6.0 mA	8.4 / 6.2 mA
Vertical beam-	0.03	0.045 / 0.083
beam parameter		
Emittance ratio	4.0 %	0.4 %
Maximum lumi-	16 / 27	34 / 100
nosity	$10^{30} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$10^{30} \text{ cm}^{-2} \text{s}^{-1}$
IP beta function β_x	1.75 m	1.25 m
IP beta function β_v	7.0 cm	4.0 cm
Max. beam energy	95 GeV	104.5 GeV
Av. RF gradient	6.0 MV/m	7.2 MV/m

A. Blondel, P. Janot

LEP3/TLEP(/VHE-LHC) "Hi-Tech options"

examples:

novel SC cavities for LEP3/TLEP collider

fast ramping HTS magnets for LEP3/TLEP double ring

VHE-LHC 20-T high-field magnets

SC cavities based on material other than bulk Nb: thin Nb films, Nb₃Sn, HTS E. Jensen, LHeC 2012;

- extensive studies at CERN (T. Junginger) and JLAB
- CERN/Legnaro/Sheffield cavities first prototypes tested at Legnaro in 2012! HiPIMS* technique SIS** concept,...
- sputtered Nb will reduce cost & and may show better performance; even more HVS SIS** cavities
- Nb_3Sn could be stabled at CERN (quad resonator) in collaboratio with other labs

*High-power impulse magnetron sputtering, **Superconductor-Insulator-Superconductor

micrographs of sample surface of a micrometer thin niobium film sputtered on top of a copper substrate (left) and a bulk niobium sample (right) T. Junginger et al, IPAC2011

JLAB, IPAC12

H. Piekarz, transmission-line HTS/LTS magnets 1st EuCARD LEP3 Day

SC magnets require typically 10 x less space than NC magnet of the same field and gap; the magnet weight is very significantly reduce

HTS prototype dipole at FNAL Test: $B_{max} = 0.5 T$, $I_{max} = 27 kA$, $dB/dt_{max} = 10 T/s$, $T_{max} \sim 25 K$

acceleration time ~0.1 s, total cycle ~1 s; fast SC magnets might support 1 minute lifetime in collider ring!

schematic HTS/LTS LEP3 magnet

(V)HE-LHC 20-T hybrid magnet

block layout of *Nb-Ti* & *Nb₃Sn* & *HTS* (*Bi*-2212) 20-T dipolemagnet coil. Only one quarter of one aperture is shown.

vertical rms IP spot sizes in nm

in regular font: achieved

in italics: design values

LEP2	3500	
KEKB	940	
SLC	500	
LEP3	320	
TLEP-H	220	
ATF2, FFTB	150? (<i>35</i>), 65	LEP3/TLEP will learn
SuperKEKB	50	a lot from SuperKEKB
SAPPHiRE	18	and ATF2!
ILC	5	
CLIC	1	

LEP3/TLEP punchline

- a ring e⁺e⁻ collider LEP3 or TLEP appears to provide an economical & robust solution with very high statistics at several IPs for studying the X(125) with excellent precision & for performing many high-resolution measurements on H, W, Z (+top quark) within our lifetimes [A. Blondel];
- **LEP3/TLEP** would be THE choice for e^+e^- collision energies up to 400 GeV;
- **TLEP** could be part of a long-term HEP strategy aiming for 100 TeV pp CoM energy

having the tunnel is everything!

Conclusions:

LEP3 may be the cheapest possible option to study the Higgs (cost ~1BEuro scale), feasible, "off the shelf", but perhaps not easy

TLEP is more expensive (~5 BEuro?), but clearly superior in terms of energy & luminosity, and extendable towards VHE-LHC, preparing \geq 50 years of exciting e^+e^- , pp, ep/A physics at highest energies

LEP3 and TLEP offer interesting energy-frontier physics at moderate cost and/or with long-term perspective, using robust technology

LEP3 and TLEP deserve a detailed design study

(incidentally, the only appearance of a Roman in the history of mathematics)

"NOLI TURBARE CIRCULOS MEOS!" Archimedes of Syracuse, 287 – 212 BC

thank you for listening!

References for LEP3/TLEP:

- [1] A. Blondel, F. Zimmermann, 'A High Luminosity e+e- Collider in the LHC tunnel to study the Higgs Boson,' V2.1-V2.7, arXiv:1112.2518v1, 24.12.2011
- [2] C. Adolphsen et al, 'LHeC, A Large Hadron Electron Collider at CERN,' LHeC working group, LHeC-Note-2011-001 GEN.
- [3] H. Schopper, The Lord of the Collider Rings at CERN 1980- 2000, Springer-Verlag Berlin Heidelberg 2009
- [4] K. Oide, 'SuperTRISTAN A possibility of ring collider for Higgs factory,' KEK Seminar, 13 February 2012
- [5] R.W. Assmann, 'LEP Operation and Performance with Electron-Positron Collisions at 209 GeV,' presented at 11th Workshop of the LHC, Chamonix, France, 15 - 19 January 2001
- [6] A. Butterworth et al, 'The LEP2 superconducting RF system,' NIMA Vol. 587, Issues 2-3, 2008, pp. 151
- [7] K. Yokoya, P. Chen, CERN US PAS 1990, Lect.Notes Phys. 400 (1992) 415-445
- [8] K. Yokoya, Nucl.Instrum.Meth. A251 (1986) 1
- [9] K. Yokoya, 'Scaling of High-Energy e⁺e⁻ Ring Colliders,' KEK Accelerator Seminar, 15.03.2012
- [10] V. Telnov, 'Restriction on the energy and luminosity of e⁺e⁻ storage rings due to beamstrahlung,' arXiv:1203.6563v, 29 March 2012
- [11] H. Burkhardt, 'Beam Lifetime and Beam Tails in LEP,' CERN-SL-99-061-AP (1999)
- [12] R. Bossart et al, 'The LEP Injector Linac,' CERN-PS-90-56-LP (1990)
- [13] P. Collier and G. Roy, `Removal of the LEP Ramp Rate Limitation,' SL-MD Note 195 (1995).
- [14] A. Blondel et al, "LEP3: A High Luminosity e+e- Collider to study the Higgs Boson", CERN-ATS-Note-2012-062 TECH
- [15] P. Azzi et al, "Prospective Studies for LEP3 with the CMS Detector," arXiv:1208.1662 (2012)
- [16] 1st EuCARD AccNet LEP3 Day, 18 June 2012, <u>http://indico.cern.ch/conferenceDisplay.py?confld=193791</u>
- [17] 2nd EuCARD AccNet LEP3 Day, 23 Oct. 2012, <u>http://indico.cern.ch/conferenceDisplay.py?confId=211018</u>
- [18] D. Forkel-Wirth et al, "Radioprotection issues after 20 years of LHC operation," Proc. EuCARD-AccNet mini-workshop on a Higher-Energy LHC "HE-LHC'10," 14-16 Oct. 2010, Malta, CERN-2011-003
- [19] H. Piekarz, "Dual fast-cycling superconducting synchrotron at Fermilab and a possible path to the future of high energy particle physics," JINST 4, P08007 (2009)