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Abstract

Angular correlations between charged trigger and associated particles are measured by the
ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV10

for transverse momentum ranges within 0.5< pT,assoc < pT,trig < 4 GeV/c. The correlations
are measured over two units of pseudorapidity and full azimuthal angle in different intervals
of event multiplicity, and expressed as associated yield per trigger particle. Two long-range
ridge-like structures, one on the near side and one on the away side, are observed when
the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-15

multiplicity events. The excess on the near-side is qualitatively similar to the one recently
reported by the CMS collaboration, while the excess on the away-side is observed for the
first time. The two-ridge structure projected onto azimuthal angle is quantified with the sec-
ond and third Fourier coefficients as well as by near-side and away-side yields and widths.
The yields on the near side and on the away side are equal within the uncertainties for all20

studied event multiplicity and pT bins, and the widths show no significant evolution with
event multiplicity or pT. These findings suggest that the near-side ridge is accompanied by
an essentially identical away-side ridge.
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1 Introduction
Two-particle correlations are a powerful tool to explore the mechanism of particle production25

in collisions of hadrons and nuclei at high energy. Such studies involve measuring the distribu-
tions of relative angles ∆ϕ and ∆η between pairs of particles: a “trigger” particle in a certain
transverse momentum pT,trig interval and an “associated” particle in a pT,assoc interval, where
∆ϕ and ∆η are the differences in azimuthal angle ϕ and pseudorapidity η between the two
particles.30

In proton–proton (pp) collisions, the correlation at (∆ϕ ≈ 0, ∆η ≈ 0) for pT,trig > 2 GeV/c is
dominated by the “near-side” jet peak, where trigger and associated particles originate from a
fragmenting parton, and at ∆ϕ ≈ π by the recoil or “away-side” jet [1]. The away-side structure
is elongated along ∆η due to the longitudinal momentum distribution of partons in the colliding
protons. In nucleus–nucleus collisions, the jet-related correlations are modified and additional35

structures emerge, which persist over a long range in ∆η on the near side and on the away
side [2–14]. The shape of these distributions when decomposed into a Fourier series defined
by vn coefficients [15] is found to be dominated by contributions from terms with n = 2 and
n = 3 [6, 7, 9–14]. The vn coefficients are sensitive to the geometry of the initial state of the
colliding nuclei [16, 17] and can be related to the transport properties of the strongly-interacting40

de-confined matter via hydrodynamic models [18–20].

Recently, measurements in pp collisions at a centre-of-mass energy
√

s = 7 TeV [21] and in
proton–lead (p–Pb) collisions at a nucleon–nucleon centre-of-mass energy

√
sNN = 5.02 TeV [22]

have revealed long-range (2 < |∆η |< 4) near-side (∆ϕ ≈ 0) correlations in events with signifi-
cantly higher-than-average particle multiplicity. Various mechanisms have been proposed to ex-45

plain the origin of these ridge-like correlations in high-multiplicity pp and p–Pb events. These
mechanisms include colour connections forming along the longitudinal direction [23–25], jet-
medium induced [26] and multi-parton [27, 28] interactions, and collective effects arising in the
high-density system possibly formed in these collisions [29–34].

Preliminary results from two-particle correlations in
√

sNN = 0.2 GeV d–Au collisions [35]50

show a strong suppression of the away-side yield at forward rapidity in central collisions. This
modification has been interpreted in the framework of “Colour Glass Condensate” models [36]
as a saturation effect caused by nonlinear gluon interactions in the high-density regime at small
longitudinal parton momentum fraction x. Similar effects may arise at midrapidity in p–Pb
collisions at

√
sNN = 5.02 TeV, where the parton distributions are probed down to x < 10−3,55

which is comparable to the relevant range of x at forward rapidity (y∼ 3) at
√

sNN = 0.2 TeV.

This letter presents results extracted from two-particle correlation measurements in p–Pb col-
lisions at

√
sNN = 5.02 TeV, recorded with the ALICE detector [37] at the Large Hadron Col-

lider (LHC). The correlations are measured over two units of pseudorapidity and full azimuthal
angle as a function of charged-particle multiplicity, and expressed as associated yield per trigger60

particle. Sections 2 and 3 describe the experimental setup, and the event and track selection,
respectively. Details on the definition of the correlation and the per-trigger-particle associated
yield are given in Sect. 4. The results of the analysis are discussed in Sect. 5 and a summary is
given in Sect. 6.
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2 Experimental setup65

Collisions of proton and lead beams were provided by the LHC during a short pilot run per-
formed in September 2012. The beam energies were 4 TeV for the proton beam and 1.58 TeV
per nucleon for the lead beam, resulting in collisions at

√
sNN = 5.02 TeV. The nucleon–nucleon

centre-of-mass system moved with respect to the ALICE laboratory system with a rapidity of
−0.465, i.e., in the direction of the proton beam. The pseudorapidity in the laboratory system70

is denoted with η throughout this letter. Results from pp collisions at
√

s = 2.76 and 7 TeV are
shown in comparison to the p–Pb results.

A detailed description of the ALICE detector can be found in Ref. [37]. The main subsystems
used in the present analysis are the Inner Tracking System (ITS) and the Time Projection Cham-
ber (TPC), which are operated inside a solenoidal magnetic field of 0.5 T. The ITS consists of75

six layers of silicon detectors: from the innermost to the outermost, two layers of Silicon Pixel
Detector (SPD) with an acceptance of |η |< 1.4, two layers of Silicon Drift Detector (SDD) with
|η | < 0.9 and two layers of Silicon Strip Detector with |η | < 0.97. The TPC provides an ac-
ceptance of |η |< 0.9 for tracks which reach the outer radius of the TPC and up to |η |< 1.5 for
tracks with reduced track length. The VZERO detector, two arrays of 32 scintillator tiles each,80

covering the full azimuth within 2.8 < η < 5.1 (VZERO-A) and −3.7 < η < −1.7 (VZERO-
C), was used for triggering, event selection and event characterization, namely the definition of
event classes corresponding to different particle-multiplicity ranges. In p–Pb collisions, the trig-
ger required a signal in either VZERO-A or VZERO-C. In addition, two neutron Zero Degree
Calorimeters (ZDCs) located at +112.5 m (ZNA) and −112.5 m (ZNC) from the interaction85

point are used in the event selection. The energy deposited in the ZNA, which for the beam
setup of the pilot run originates from neutrons of the Pb nucleus, served as an alternative ap-
proach in defining the event-multiplicity classes. In pp collisions, the trigger required a signal
in either SPD, VZERO-A or VZERO-C [38].

3 Event and track selection90

The present analysis of the p–Pb data is based on the event selection described in Ref. [39].
The events are selected by requiring a signal in both VZERO-A and VZERO-C. From the data
collected, 1.7×106 events pass the event selection criteria and are used for this analysis. For the
analysis of the pp collisions, the event selection described in Ref. [38] has been used, yielding
31×106 and 85×106 events at

√
s = 2.76 and 7 TeV, respectively.95

The primary-vertex position is determined with tracks reconstructed in the ITS and TPC as
described in Ref. [40]. The vertex reconstruction algorithm is fully efficient for events with at
least one reconstructed track within |η | < 1.4. An event is accepted if the coordinate of the
reconstructed vertex along the beam direction (zvtx) is within ±10 cm from the detector centre.

The analysis uses tracks reconstructed in the ITS and TPC with 0.5 < pT < 4 GeV/c and in a100

fiducial region |η |< 1.2. As a first step in the track selection, cuts on the number of space points
and the quality of the track fit in the TPC are applied. Tracks are further required to have a dis-
tance of closest approach to the reconstructed vertex smaller than 2.4 cm and 3.2 cm in the trans-
verse and the longitudinal direction, respectively. In order to avoid an azimuthally-dependent
tracking efficiency due to inactive SPD modules, two classes of tracks are combined [41]. The105

first class consists of tracks, which have at least one hit in the SPD. The tracks from the second
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class do not have any SPD hit associated, but the position of the reconstructed primary vertex
is used in the fit of the tracks. In the study of systematic uncertainties an alternative track se-
lection [42] is used, where a tighter pT-dependent cut on the distance of closest approach to
the reconstructed vertex is applied. Further, the selection for the tracks in the second class is110

changed to tracks, which have a hit in the first layer of the SDD. This modified selection has a
less uniform azimuthal acceptance, but includes a smaller number of secondary particles from
interactions in the detector material or weak decays.

The efficiency and purity of the primary charged-particle selection are estimated from a Monte
Carlo (MC) simulation using the DPMJET event generator [43] (for p–Pb) and the PYTHIA 6.4115

event generator [44] with the tune Perugia-0 [45] (for pp) with particle transport through the
detector using GEANT3 [46]. In p–Pb collisions, the combined efficiency and acceptance for
the track reconstruction in |η |< 0.9 is about 82% at pT = 0.5–1 GeV/c, and decreases to about
79% at pT = 4 GeV/c. It reduces to about 50% at |η | ≈ 1.2 and is independent of the event
multiplicity. The remaining contamination from secondary particles due to interactions in the120

detector material or weak decays decreases from about 2% to 1% in the pT range from 0.5 to
4 GeV/c. The contribution from fake tracks is negligible. These fractions are similar in the
analysis of pp collisions.

In order to study the multiplicity dependence of the two-particle correlations the selected event
sample is divided into four event classes. These classes are defined fractions of the analyzed125

event sample, based on cuts on the total charge deposited in the VZERO detector (V0M), and
denoted “60–100%", “40–60%", “20–40%", “0–20%" from the lowest to the highest multiplic-
ity in the following. Table 1 shows the event-classes definitions and the corresponding mean
charged-particle multiplicity densities (〈dNch/dη〉) within |η |< 0.5. These are obtained using
the method presented in Ref. [39], and are corrected for vertex reconstruction efficiency, accep-130

tance and tracking efficiency as well as contamination by secondary particles. Also shown are
the mean numbers of primary charged particles with pT > 0.5 GeV/c within the pseudorapidity
range |η | < 1.2. These are measured by applying the track selection described above and are
corrected for the detector acceptance, track-reconstruction efficiency and contamination.

Event V0M range 〈dNch/dη〉 ||η |<0.5 〈Ntrk〉 ||η |<1.2
class (a.u.) pT > 0 GeV/c pT > 0.5 GeV/c

60–100% < 138 6.7±0.2 6.4±0.2
40–60% 138–216 16.2±0.4 16.9±0.6
20–40% 216–318 23.7±0.5 26.1±0.9
0–20% > 318 34.9±0.5 42.5±1.5

Table 1: Definition of the event classes as fractions of the analyzed event sample and their corre-
sponding 〈dNch/dη〉 within |η | < 0.5 and the mean numbers of charged particles within |η | < 1.2 and
pT > 0.5 GeV/c. The given uncertainties are systematic while the statistical uncertainties are negligible.

4 Analysis135

For a given event class, the two-particle correlation between pairs of trigger and associated
charged particles is measured as a function of the azimuthal difference ∆ϕ (defined within
−π/2 and 3π/2) and pseudorapidity difference ∆η . The correlation is expressed in terms of the
associated yield per trigger particle for different intervals of trigger and associated transverse
momentum, pT,trig and pT,assoc, respectively, and pT,assoc < pT,trig. The associated yield per140
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trigger particle is defined as
1

Ntrig

d2Nassoc

d∆ηd∆ϕ
=

S(∆η ,∆ϕ)

B(∆η ,∆ϕ)
(1)

where Ntrig is the total number of trigger particles in the event class and pT,trig interval. The
signal distribution S(∆η ,∆ϕ) = 1/Ntrigd2Nsame/d∆ηd∆ϕ is the associated yield per trigger par-
ticle for particle pairs from the same event. In a given event class and pT interval, the sum over
the events is performed separately for Ntrig and d2Nsame/d∆ηd∆ϕ before their ratio is com-145

puted. Note, that this definition is different from the one used in Ref. [22], where S(∆η ,∆ϕ) is
calculated per event and then averaged. The method used in this letter does not induce an in-
herent multiplicity dependence in the pair yields, which is important for the subtraction method
discussed in the next Section. The background distribution B(∆η ,∆ϕ) = α d2Nmixed/d∆ηd∆ϕ

corrects for pair acceptance and pair efficiency. It is constructed by correlating the trigger par-150

ticles in one event with the associated particles from other events in the same event class and
within the same 2 cm wide zvtx interval (each event is mixed with 5–20 events). The factor α

is chosen to normalize the background distribution such that it is unity for pairs where both
particles are going into approximately the same direction (i.e. ∆ϕ ≈ 0,∆η ≈ 0). To account
for different pair acceptance and pair efficiency as a function of zvtx, the yield defined by Eq. 1155

is constructed for each zvtx interval. The final per-trigger yield is obtained by calculating the
weighted average of the zvtx intervals.

When constructing the signal and background distributions, the trigger and associated particles
are required to be separated by |∆ϕ∗min| > 0.02 and |∆η | > 0.02, where ∆ϕ∗min is the minimal
azimuthal distance at the same radius between the two tracks within the active detector volume160

after accounting for the bending due to the magnetic field. This procedure is applied to avoid a
bias due to the reduced efficiency for pairs with small opening angles and leads to an increase
in the associated near-side peak yield of 0.4–0.8% depending on pT. Further, particle pairs are
removed which are likely to stem from a γ-conversion, or a K0

s or Λ decay, by a cut on the
invariant mass of the pair (the electron, pion, or pion/proton mass is assumed, respectively).165

The effect on the peak yields is less than 2%.

In the signal as well as in the background distribution, each trigger and each associated par-
ticle is weighted with a correction factor accounting for detector acceptance, reconstruction
efficiency and contamination by secondary particles. These corrections are applied as a func-
tion of η , pT and zvtx. Applying the correction factors extracted from DPMJET simulations to170

events simulated with HIJING [47] leads to associated peak yields that agree within 4% with
the MC truth. This difference between the two-dimensional corrected per-trigger yield and in-
put per-trigger yield is used in the estimate of the systematic uncertainties. Uncertainties due to
track-quality cuts are evaluated by comparing the results of two different track selections, see
Sect. 3. The associated yields are found to be insensitive to these track selections within 5%.175

Further systematic uncertainties related to specific observables are mentioned below.

5 Results
The associated yield per trigger particle in ∆ϕ and ∆η is shown in Fig. 1 for pairs of charged par-
ticles with 2< pT,trig < 4 GeV/c and 1< pT,assoc < 2 GeV/c in p–Pb collisions at

√
sNN = 5.02 TeV

in the 60–100% (left) and 0–20% (right) event classes. In the 60–100% class, the visible fea-180

tures are the correlation peak near (∆ϕ ≈ 0,∆η ≈ 0) for pairs of particles originating from the
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Fig. 1: The associated yield per trigger particle in ∆ϕ and ∆η for pairs of charged particles with 2 <

pT,trig < 4 GeV/c and 1 < pT,assoc < 2 GeV/c in p–Pb collisions at
√

sNN = 5.02 TeV for the 60–100%
(left) and 0–20% (right) event classes.

same jet, and the elongated structure at ∆ϕ ≈ π for pairs of particles from jets back-to-back
in azimuth. These are very similar to those observed in pp collisions at

√
s = 2.76 and 7 TeV.

The same features are visible in the 0–20% class. However, both the yields on the near side
(|∆ϕ| < π/2) and the away side (π/2 < ∆ϕ < 3π/2) are higher. 1 This is illustrated in Fig. 2,185

where the projections on ∆ϕ averaged over |∆η |< 1.8 are compared for different event classes
and to pp collisions at 2.76 and 7 TeV. In order to facilitate the comparison, the yield at ∆ϕ = 1.3
has been simply subtracted for each distribution. It is seen that the per-trigger yields in ∆ϕ on
the near side and on the away side are similar for low-multiplicity p–Pb collisions and for pp
collisions at

√
s = 7 TeV, and increases with increasing multiplicity in p–Pb collisions.190

To quantify the change from low to high multiplicity event classes, we subtract the per-trigger
yield of the lowest (60–100%) from that of the higher multiplicity classes. The resulting dis-
tribution in ∆ϕ and ∆η for the 0–20% event class is shown in Fig. 3 left. A distinct excess
structure in the correlation is observed, which forms two ridges, one on the near side and one
on the away side. The ridge on the near-side is qualitatively similar to the one recently re-195

ported by the CMS collaboration [22]. Note, however that a quantitative comparison would not
be meaningful due to the different definition of the per-trigger yield and the different detector
acceptance and event-class definition.

On the near side, there is a peak around (∆ϕ ≈ 0, ∆η ≈ 0) indicating a small change of the
near-side jet yield as a function of multiplicity. The integral of this peak above the ridge within200

|∆η | < 0.5 corresponds to about 5–25% of the unsubtracted near-side peak yield, depending
on pT. In order to avoid a bias on the associated yields due to the multiplicity selection and
to prevent that this remaining peak contributes to the ridge yields calculated below, the region
|∆η | < 0.8 on the near side is excluded when performing projections onto ∆ϕ . The effect of
this incomplete subtraction, which if jet-related might also be present on the away side, on the205

extracted observables is discussed further below.
1These definitions of near-side (|∆ϕ|< π/2) and away-side (π/2 < ∆ϕ < 3π/2) are used throughout the letter.
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Fig. 2: Associated yield per trigger particle as a function of ∆ϕ averaged over |∆η | < 1.8 for pairs of
charged particles with 2< pT,trig < 4 GeV/c and 1< pT,assoc < 2 GeV/c in p–Pb collisions at

√
sNN = 5.02

TeV for different event classes, compared to pp collisions at 2.76 and 7 TeV. The yield between the peaks
(determined at ∆ϕ ≈ 1.3) has been subtracted in each case. Only statistical uncertainties are shown;
systematic uncertainties are less than 0.01 (absolute) per bin.

The top right panel in Fig. 3 shows the projection of Fig. 3 left to ∆η averaged over different
∆ϕ intervals. The near-side and away-side distributions are flat apart from the discussed small
peak around ∆η = 0. The bottom right panel shows the projection to ∆ϕ , where a modulation is
observed. For comparison, the subtracted associated yield for HIJING simulated events shifted210

to the baseline of the data is also shown, where no significant modulation remains. To quantify
the near-side and away-side excess structures, the following functional form

1/NtrigdNassoc/d∆ϕ = a0 +2a2 cos(2∆ϕ)+2a3 cos(3∆ϕ) (2)

is fit to the data in multiplicity and pT intervals. The fit has a χ2/ndf of 1–1.5 in the different pT
and multiplicity intervals, indicating that the data are well described by the fits. An example for
the fit with and without the a3 cos(3∆ϕ) term is shown in the bottom right panel of Fig. 3. The fit215

parameters a2 and a3 are a measure of the absolute modulation in the subtracted per-trigger yield
and characterize a modulation relative to the baseline b in the higher multiplicity class assuming
that such a modulation is not present in the 60–100% event class. This assumption has been
checked by subtracting the yields obtained in

√
s = 2.76 and 7 TeV pp collisions from the yields

obtained for the 60–100% p–Pb event class and verifying that in both cases no significant signal220

remains. Therefore, the Fourier coefficients vn of the corresponding single-particle distribution,
commonly used in the analysis of particle correlations in nucleus–nucleus collisions [15], can
be obtained in bins where the pT,trig and pT,assoc intervals are identical using

vn =
√

an/b. (3)

The baseline b is evaluated in the higher-multiplicity class in the region |∆ϕ − π/2| < 0.2,
corrected for the fact that it is obtained in the minimum of Eq. 2. A potential bias due to225

the above-mentioned incomplete near-side peak subtraction on v2 and v3 is evaluated in the
following way: a) the size of the near-side exclusion region is changed from |∆η | < 0.8 to
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Fig. 3: Left: Associated yield per trigger particle in ∆ϕ and ∆η for pairs of charged particles with
2 < pT,trig < 4 GeV/c and 1 < pT,assoc < 2 GeV/c in p–Pb collisions at

√
sNN = 5.02 TeV for the 0–20%

multiplicity class, after subtraction of the associated yield obtained in the 60–100% event class. Top
right: The associated per-trigger yield after subtraction (as shown on the left) projected onto ∆η averaged
over |∆ϕ| < π/3 (black circles), |∆ϕ −π| < π/3 (red squares), and the remaining area (blue triangles,
∆ϕ <−π/3, π/3<∆ϕ < 2π/3 and ∆ϕ > 4π/3). Bottom right: as above but projected onto ∆ϕ averaged
over 0.8 < |∆η |< 1.8 on the near side and |∆η |< 1.8 on the away side. Superimposed are fits containing
a cos(2∆ϕ) shape alone (black dashed line) and a combination of cos(2∆ϕ) and cos(3∆ϕ) shapes (red
solid line). The blue horizontal line shows the baseline obtained from the latter fit which is used for
the yield calculation. For comparison, the subtracted associated yield applying the same procedure on
HIJING shifted to the same baseline is also shown. The figure shows only statistical uncertainties.
Systematic uncertainties are mostly correlated and affect the baseline. Uncorrelated uncertainties are
less than 1%.

|∆η | < 1.2; b) the residual near-side peak above the ridge is also removed from the away side
accounting for the general pT -dependent difference of near-side and away-side jet yields due
to the kinematic contraints and the detector acceptance, which is evaluated using the lowest230

multiplicity class; and c) the lower multiplicity class is scaled before the subtraction such that no
residual near-side peak above the ridge remains. The resulting differences in v2 (up to 15%) and
v3 coefficients (up to 40%) when applying these approaches have been added to the systematic
uncertainties.

The coefficients v2 and v3 are shown in the left panel of Fig. 4 for different event classes. The235

coefficient v2 increases with increasing pT, and shows only a small dependence on multiplicity.
In the 0–20% event class, v2 increases from 0.06±0.01 for 0.5 < pT < 1 GeV/c to 0.12±0.02
for 2 < pT < 4 GeV/c, while v3 is about 0.03 and shows, within large errors, an increasing trend
with pT. Reference [33] gives predictions for two-particle correlations arising from collective
flow in p–Pb collisions at the LHC in the framework of a hydrodynamical model. The values240

for v2 and v3 coefficients, as well as the pT and the multiplicity dependences, are in qualitative
agreement with the presented results.
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Fig. 4: Left: v2 (black closed symbols) and v3 (red open symbols) for different multiplicity classes
and overlapping pT,assoc and pT,trig intervals. Right: Near-side (black closed symbols) and away-side
(red open symbols) ridge yields per unit of ∆η for different pT,trig and pT,assoc bins as a function of the
multiplicity class. The error bars show statistical and systematic uncertainties added in quadrature. In
both panels the points are slightly displaced horizontally for visibility.

To extract information on the yields and widths of the excess distributions in Fig. 3 (bottom
right), a constant baseline assuming zero yield at the minimum of the fit function (Eq. 2) is sub-
tracted. The remaining yield is integrated on the near side and on the away side. Alternatively,245

a baseline evaluated from the minimum of a parabolic function fitted within |∆ϕ−π/2|< 1 is
used; the difference on the extracted yields is added to the systematic uncertainties. The uncer-
tainty imposed by the residual near-side jet peak on the yield is evaluated in the same way as
for the vn coefficients. The near-side and away-side ridge yields are shown in the right panel of
Fig. 4 for different event classes and for different combinations of pT,trig and pT,assoc intervals.250

The near-side and away-side yields range from 0 to 0.08 per unit of ∆η depending on multiplic-
ity class and pT interval. It is remarkable that the near-side and away-side yields always agree
within uncertainties for a given sample despite the fact that the absolute values change substan-
tially with event class and pT interval. Such a tight correlation between the yields is non-trivial
and suggests a common underlying physical origin for the near-side and the away-side ridges.255

From the baseline-subtracted per-trigger yields the square root of the variance, σ , within |∆ϕ|<
π/2 and π/2 < ∆ϕ < 3π/2 for the near-side and away-side region, respectively, is calculated.
The extracted widths on the near side and the away side agree with each other within 20% and
vary between 0.5 and 0.7. There is no significant pT dependence suggesting that the observed
ridge is not of jet origin.260

The analysis has been repeated using the forward ZNA detector instead of the VZERO for the
definition of the event classes. Unlike in nucleus–nucleus collisions, the correlation between
forward energy measured in the ZNA and particle density at central rapidities is very weak in
proton–nucleus collisions. Therefore, event classes defined as fixed fractions of the signal dis-
tribution in the ZNA select different events, with different mean particle multiplicity at midra-265

pidity, than the samples selected with the same fractions in the VZERO detector. While the
event classes selected with the ZNA span a much smaller range in central multiplicity density,
they also minimize any autocorrelation between multiplicity selections and, for example, jet ac-
tivity. With the ZNA selection, we find qualitatively consistent results compared to the VZERO
selection, in particular an essentially symmetric excess correlation structure in the difference270

between low-multiplicity and high-multiplicity ZNA selected events, but also vn coefficients
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Fig. 5: Associated yield per trigger particle as a function of ∆ϕ averaged over |∆η | < 1.8 for pairs of
charged particles with 2< pT,trig < 4 GeV/c and 1< pT,assoc < 2 GeV/c in p–Pb collisions at

√
sNN = 5.02

TeV for different event classes, compared to pp collisions at
√

s= 2.76 and 7 TeV. For the event classes 0–
20%, 20–40% and 40–60% the long-range contribution on the near-side 1.2< |∆η |< 1.8 and |∆ϕ|< π/2
has been subtracted from both the near side and the away side as described in the text. Subsequently,
the yield between the peaks (determined at ∆ϕ ≈ 1.3) has been subtracted in each case. Only statistical
uncertainties are shown; systematic uncertainties are less than 0.01 (absolute) per bin.

and σ widths which are similar within uncertainties. However, both the ridge yields and mean
charged-particle multiplicity density at midrapidity are different between the VZERO and ZNA
event classes. Nevertheless, within the uncertainties, both follow a common linear trend as a
function of 〈dNch/dη〉 ||η |<0.5.275

So far it has been seen that the assumption of an unmodified jet shape in different multiplic-
ity classes in p–Pb collisions resulted in the emergence of almost identical ridge-like excess
structures on the near side and away side, most pronounced in high-multiplicity events. An
alternative way is to start with the assumption that there are identical ridge structures on the
near side and away side, and to study whether this assumption leaves any room for multiplic-280

ity dependent modifications of the jet shape, in particular on the away side. To this end, a
symmetric ridge structure is subtracted on near side and away side from the ∆ϕ projection of
the associated yield per trigger averaged over |∆η | < 1.8. The near-side ridge structure is de-
termined in the same event class within 1.2 < |∆η | < 1.8, while the ridge on the away side
is constructed by mirroring this near-side structure at ∆ϕ = π/2. The ridge-subtracted results285

in the interval 2 < pT,trig < 4 GeV/c and 1 < pT,assoc < 2 GeV/c for the 0–20%, 20–40% and
40–60% event classes are shown in Fig. 5 compared to the unsubtracted 60–100% event class
and to pp collisions. The remaining yields in all event classes are in agreement with each other
and with pp collisions, indicating that the observed correlations are indeed consistent with a
symmetric ridge and with no further significant modification of the jet structure at midrapidity290

in high-multiplicity p–Pb collisions at the LHC, in contrast to what was seen at forward rapidity
in
√

sNN = 0.2 TeV d–Au collisions at RHIC [35].
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6 Summary
Results from angular correlations between charged trigger and associated particles in p–Pb
collisions at

√
sNN = 5.02 TeV are presented for transverse momentum ranges within 0.5 <295

pT,assoc < pT,trig < 4 GeV/c. Associated yields per trigger particle are measured over two units
of pseudorapidity and full azimuthal angle in different multiplicity classes. The yields projected
onto ∆ϕ are increasing with event multiplicity and rise to values higher than those observed
in pp collisions at § = 2.76 and 7 TeV. The difference between the yields per trigger parti-
cle in high-multiplicity and low-multiplicity events exhibits two long-range (up to |∆η | ∼ 2)300

ridge-like, nearly identical excess structures on the near-side (∆ϕ ≈ 0) and away-side (∆ϕ ≈ π)
quantified by their yields and widths. The excess on the near side is ualitatively similar to
the one recently reported by the CMS collaboration in 2 < |∆η | < 4 [22]. The excess on the
away side is reported here for the first time. The event multiplicity and pT dependences of
the near-side and away-side ridge yields are in good agreement, while their width shows no305

significant dependence on multiplicity or pT. The extracted v2 and v3 coefficients are in quali-
tative agreement with a hydrodynamical model calculation [34]. After subtracting the near-side
ridge from the near side and away side symmetrically, the correlation shape in ∆ϕ becomes
independent of multiplicity and similar to those of pp collisions at 7 TeV. There is no evidence
for further significant structures in two-particle correlations at midrapidity in p–Pb collisions at310 √

sNN = 5.02TeV.
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D.I. Patalakha47 , V. Paticchio104 , B. Paul95 , A. Pavlinov125 , T. Pawlak124 , T. Peitzmann49 ,
H. Pereira Da Costa14 , E. Pereira De Oliveira Filho113 , D. Peresunko94 , C.E. Pérez Lara77 ,
D. Perini33 , D. Perrino31 , W. Peryt124 , A. Pesci98 , V. Peskov33 ,59 , Y. Pestov5 , V. Petráček37 ,
M. Petran37 , M. Petris74 , P. Petrov96 , M. Petrovici74 , C. Petta26 , S. Piano103 , M. Pikna36 , P. Pillot107 ,595

O. Pinazza33 , L. Pinsky116 , N. Pitz56 , D.B. Piyarathna116 , M. Planinic92 , M. Płoskoń70 , J. Pluta124 ,
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