CERN Accelerating science

001495633 001__ 1495633
001495633 003__ SzGeCERN
001495633 005__ 20180315154555.0
001495633 0247_ $$2DOI$$a10.1103/PhysRevD.81.052003
001495633 0248_ $$aoai:cds.cern.ch:1495633$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
001495633 035__ $$9Inspire$$a850376
001495633 041__ $$aeng
001495633 100__ $$aThomsen, H D$$uAarhus, U.
001495633 245__ $$aDistorted Coulomb field of the scattered electron
001495633 260__ $$c2010
001495633 520__ $$aExperimental results for the radiation emission from ultrarelativistic electrons in targets of 0.03%–5% radiation length is presented. For the thinnest targets, the radiation emission is in accordance with the Bethe-Heitler formulation of bremsstrahlung, the target acting as a single scatterer. In this regime, the radiation intensity is proportional to the thickness. As the thickness increases, the distorted Coulomb field of the electron that is the result of the first scattering events, leads to a suppressed radiation emission per interaction, upon subsequent scattering events. In that case, the radiation intensity becomes proportional to a logarithmic function of the thickness, due to the suppression. Eventually, once the target becomes sufficiently thick, the entire radiation process becomes influenced by multiple scattering and the radiation intensity is again proportional to the thickness, but with a different constant of proportionality. The observed logarithmic thickness dependence of radiation intensity at intermediate values of the thickness can be directly interpreted as a manifestation of the distortion of the electron Coulomb field resulting from a scattering event. The Landau-Pomeranchuk-Migdal effect is explored with high primary energy using materials with low nuclear charge (Z). Also, targets that should give rise to the claimed interference effect in high-energy radiation emission from a structured target of thin foils are investigated.
001495633 65017 $$2SzGeCERN$$aParticle Physics - Experiment
001495633 693__ $$aCERN SPS$$eNA63
001495633 690C_ $$aARTICLE
001495633 690C_ $$aCERN
001495633 700__ $$aEsberg, J$$uAarhus U.
001495633 700__ $$aAndersen, K K$$uAarhus U.
001495633 700__ $$aLund, M D$$uAarhus U.
001495633 700__ $$aKnudsen, H$$uAarhus U.
001495633 700__ $$aUggerhøj, E$$uAarhus U.
001495633 700__ $$aUggerhøj1, U I$$uAarhus U.
001495633 700__ $$aSona, P$$uFlorence U.
001495633 700__ $$aMangiarotti, A$$uCoimbra U.
001495633 700__ $$aKetel, T J$$uVrije U., Amsterdam
001495633 700__ $$aDizdar, A$$uIstanbul U.
001495633 700__ $$aBallestrero, S$$uJohannesburg U.
001495633 700__ $$aConnell, S H$$uJohannesburg U.
001495633 710__ $$gCERN NA63 Collaboration
001495633 773__ $$c052003$$pPhys. Rev. D$$v81$$y2010
001495633 8564_ $$uhttps://cds.cern.ch/record/1495633/files/PhysRevD.81.052003.pdf$$yAPS published version, local copy
001495633 916__ $$sh$$w201247
001495633 960__ $$a13
001495633 980__ $$aARTICLE