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Summary 
 
In the context of the LHC, an asynchronous beam dump could be destructive. In order to ensure 
the safety of the machine and its surroundings a model of the TCDQ dump has been designed. 
The length of the TCDQ dump is increased by 50% and its material distribution along its length 
is changed from graphite to a carbon composite that clearly withstands higher stresses then its 
counterpart. There are two different density composites used along the dump‘s length in a similar 
distribution than that of the TCDS, varying from high density to low then back to high. The 
power deposition within the duration of a pulse is given by FLUKA simulations and is used to 
predict temperature and stress distributions in space and time. The results are compared with 
previous studies in which graphite material was used. The difference in the thermal expansion 
coefficient of the two materials explains the reduced stresses in the newer design. 
Due to the high cost of carbon composites an alternative solution is thought without jeopardizing 
the new design. 
The TCDQ diluter design represents one of the main protection elements for the LHC beam 
dumping system (Weterings, et al., 2012).  

 

1 Introduction to the TCDQ 

1.1 Beam characteristics 
 

The TCDQ dump receives an LHC beam of the following characteristics: 
• Beam energy: 3.5 -7 TeV 
• Beam size:  𝜎𝐻 𝜎𝑉 = 0.7 ⋅ 0.4 = 0.28 𝑚𝑚2 ( 0.28 ⋅ 0.34 = 0.0952 𝑚𝑚2 for the TCDS 

beam) 
• Number of Bunches: 35 
• Bunch to bunch time  spacing: 25 ns 
• Number of Protons:  1.15 ⋅ 1011 p+/bunch (Nominal LHC) and 2.5 ⋅ 1011 p+/bunch 

(Ultimate LHC) 
• Beam is swept across the cross-section of the dump in the positive 𝑥 direction (see 

schematic below ). 



 
Figure 1: Beam sweeping schematic 

 
A previous study on the TCDS dump has shown some potentially critical situations1. 

Although the beam size and sweep distance is quite different in a positive way (as we will see 
from the analytical results) there is still need to compute the dynamics of the thermoelastic 
waves that will emanate from the heat source. 
 

1.2 Bunch locations 
 
Every bunch is injected at a different location on the cross-sectional face of the dump. Let 

us define the following orientation system as in Figure 1. The origin is at the entrance of the 
sweep. The (Ox) axis is the sweep axis and the y axis is orthogonal to (Ox) and belongs to the 
plane orthogonal the sweep plane. Finally the axis (Oz), that we shall refer to as the longitudinal 
axis is orthogonal to the plane (Oxy). 

In the following figures are presented the inter bunch distance spacing for the bunches that 
intercept the material, i.e. the location of the injection of every bunch on the TCDQ and TCDS. 
They are uniquely defined by their  𝑥 coordinate since they are all located on the (Ox) axis.  

                                                
1 (Massidda, 2006) 



 
Figure 2: x-coordinate of bunch impact location vs. Bunch number 

 

 
Figure 3: Distance between consecutive bunch impact locations vs. Bunch number 

 
Note the larger spacing for the TCDQ bunches. The combination of different beam sizes 

and bunch spacings between the TCDQ and the TCDS will have an impact on their respective 
temperature fields. We assume that only 33 bunches impact the TCDQ so the energy is deposited 
within 825𝑛𝑠. 



1.3 Material properties discussion and previous TCDQ analysis 
 
Thermally induced stress wave propagation is very sensitive to material parameters2. 

Hence one needs to be very cautious when modelling the properties of a material.  Graphite can 
be modelled as a porous material, hence inserting compacted material properties and porosity 
ratios, or one could model Graphite as an averaged homogeneous material. It is obvious that the 
porous material model is more realistic but finding exact compacted graphite properties is 
tedious3. One way is to model compacted properties as Pyrolytic Graphite properties4 , but that 
remains very approximate. Modelling porosity matters if the stresses raise enough to result in 
partial compaction. Simulation results are very sensitive to these choices of material modelling. 

In addition to that, one has to choose a Hugoniot shock relation that relates shock wave 
velocity with material particle velocity5. Weak shock relations have an analytical formulation 
that depends on the Gruneisen coefficient, density and bulk speed of sound6. Strong shock 
relations use experimental constants that yield much stronger stress waves.  

Some analytical formulations of the Hugoniot shock relations and the Gruneisen 
coefficient can be found in7. 

The previous TCDQ design was 6𝑚 long and its blocks where made of graphite.  Previous 
simulations at nominal LHC intensities combined weak and strong shock Hugoniot relations both 
within a P-alpha material model, i.e. a porous material model. The results reached Stassi failure 
limits (150𝑀𝑃𝑎) respectively within 12𝜇𝑠 and1.2𝜇𝑠, for a total time of power deposition of 
0.825𝜇𝑠.  

The results for the TCDQ were at critical levels and we suggested a change of material and 
dimensioning of the TCDQ dump, in order to withstand highest LHC beam intensities in the 
future. The results from the TCDS report8 were used as a benchmark to change the material, 
density distribution and length of the TCDQ dump. 

1.4 TCDQ: New design 
 
The new length of the beam dump is 9𝑚. The respective dimensions in each direction 

𝑥, 𝑦 𝑎𝑛𝑑 𝑧  depicted in Figure 1 are, 𝑙𝑥 = 45− 70𝑚𝑚 , 𝑙𝑦 = 70𝑚𝑚  and 𝑙𝑧 = 250𝑚𝑚 . 
The material used is Carbon-Carbon purchased from CVT GmbH & Co. KG.9, the same material 
is used in the TCDS dump. CfC is an orthotropic material made of carbon fibres and a graphite 
matrix. The fibres are in the (𝑂𝑦) and (𝑂𝑧) axes. 

The following figure shows the density outline of the whole dump. 
 

                                                
2 (Davison, 2008) 
3 (Bonnissel M., 2001) (Wen-Shyong Kuo, 2010) (Wang L.W., 2010) 
4 (Coleburn, 1963) (Entwisle, 1962) (Stepovik, 2005) 
5 (Boogerd P., 1995) 
6 (Slater, 1939) 
7 (Brugger K., 1967) (Simons Girard A., 1982) (Boogerd P., 1995) (Doran, 1963) 
8 (Massidda, 2006) 
9 http://www.cv-technology.com/ 

http://www.cv-technology.com/


 
Figure 4: Density outline 

 
The following table provides with a set of material properties used in the simulations10. 

 
Table 1: Carbon composite material properties 

 
Poisson ratios for each direction are deduced from the respective Poisson ratios of the 

fibres and the matrix in Appendix A. 
 
Poisson ratio direction 𝜈𝑥𝑦 = 𝜈𝑥𝑧  𝜈𝑧𝑥 = 𝜈𝑦𝑥 𝜈𝑦𝑧 
Values 0.0378 0.135 0 

Table 2: Poisson ratios for Carbon composites 
 

Specific heat is taken at an average value of 1000 𝐽 ⋅ 𝑘𝑔−1 ⋅ 𝐾−1 and the thermal expansion 
coefficient is taken as the maximum of the three directions as 10−6. Finally to close the 
orthotropic model we need the shear modulii. Those are not provided by the constructor hence 
they are determined from similar materials in the literature11. The respective in-plane and 
interlaminar shear modulii are, 𝐺𝑦𝑧 = 6.4 𝐺𝑃𝑎 and𝐺𝑥𝑦 = 𝐺𝑥𝑧 = 1.4 𝐺𝑃𝑎. 

2 Theory 

2.1 Notions of thermoelasticity12 
 
The underlying equations of thermoelasticity are dependent upon the temperature field as 

well as the displacement field. Temperature terms appear in the wave equation and displacement 

                                                
10 (Massidda, 2006) 
11 (Bradley, et al., 2007) 
12 (Nowacki, 1975) 



appears in the diffusion equation. Assuming that the displacement gradients yield a negligible 
heat source compared to the heat source caused by the beam, one can uncouple the equations of 
thermoelasticity. The uncoupled thermoelasticity problem reads13, 

(𝜆 + 𝜇)∇(∇ ⋅ 𝒖) + 𝜇∇2𝒖 − 𝛼(3𝜆 + 2𝜇)∇θ = 𝜌 𝜕2𝒖
𝜕𝑡2

, 

𝑘∇2𝜃 = 𝜌𝑐𝑣
𝜕𝜃
𝜕𝑡
− 𝑔, 

where the constants 𝜆,𝜇,𝜌,𝛼, 𝑐𝑣 𝑘 are respectively, the first and second lame parameters in 𝑃𝑎, 
density in 𝑘𝑔 ⋅ 𝑚−3, coefficient of thermal expansion in 𝐾−1, specific heat in 𝐽 ⋅ 𝑘𝑔−1 ⋅ 𝐾−1 and 
coefficient of thermal conductivity in 𝑊 ⋅𝑚−1 ⋅ 𝐾−1. All material parameters are constant in, 
space and temperature variations. The vector 𝒖 and the scalar 𝜃 = 𝑇 − 𝑇𝑜 are respectively the 
displacement field and the temperature difference with respect to the initial temperature 𝑇𝑜 
assumed to be homogeneous throughout space. Finally g represents a heat source term. Only 𝜃, 
𝒖 and 𝑔 are dependant on space and time. 

2.2 Temperature field 
 
The temperature field solution can be separated in two. In the first time interval the 

temperature raises rapidly due to the existence of the heat source. In following time interval 
𝑔 = 0 therefore homogeneous heat diffusion applies.  We expect the temperature field at the end 
of the energy deposition to be similar to the energy deposition field due to the very short time of 
the power deposition in which heat diffusion is negligible.  During the second time interval 
elastic waves propagate due to the high temperature gradients present while heat diffusion is 
more apparent. 

2.3 Elastic Waves14 
 
We now turn to the wave equation that holds the following initial conditions (material is at 

rest), 
𝒖|𝑡=0 = 0  and  𝜕

2𝒖 
𝜕𝑡2

|𝑡=0 = 0 
By taking the divergence and the curl of the equation for displacement we obtain two 

equations for potentials that yield for the divergence, 

(𝜆 + 2𝜇)∇2(∇ ⋅ 𝒖) = 𝜌
𝜕2∇ ⋅ 𝒖
𝜕𝑡2 + 𝛼(3𝜆 + 2𝜇)∇2𝜃 

And for the curl, 

𝜇∇2(∇ ∧ 𝒖) = 𝜌
𝜕2∇ ∧ 𝒖
𝜕𝑡2  

Now set 𝒖 = ∇ϕ + ∇ ∧𝛙 with ∇ ⋅ 𝝍 = 0 then replace in the above equations to obtain 
the two potential equations, one for the longitudinal wave and the other one for the shear waves. 

(𝜆 + 2𝜇)∇2𝜙 = 𝜌
𝜕2ϕ
𝜕𝑡2 + 𝛼(3𝜆 + 2𝜇)𝜃 

𝜇∇2𝝍 = 𝜌
𝜕2𝛙
𝜕𝑡2  

                                                
13 (Nowacki, 1975) 
14 (Nowacki, 1975) 



Both potential functions have homogeneous initial conditions as a consequence of the initial 
conditions of 𝒖. The boundary conditions for 𝒖 are free surface ones which in turn couples the 
boundary conditions for the two potentials since 𝜕𝒖

𝜕𝑛
= 0, where 𝑛 is the boundary surface normal 

vector. The temperature acts as a source only for the longitudinal waves as can be seen in the 
above equation for Φ hence before any reflections we expect to only have longitudinal waves. 
When the waves reach the boundaries we will have reflected longitudinal waves as well as 
generation of shear waves that originate from the Neumann type boundary conditions that couple 
fields Φ and 𝚿. Nevertheless the main threat lays in the compression waves, hence the need to 
analyze their source. Let us analyze the different aspects of the source term in the longitudinal 
wave equation. Before any wave reaches the boundary 𝝍 = 0which means that no shear waves 
are present, so that 𝒖 = ∇𝜙. The link between the temperature difference 𝜃 and the strain 
invariant ∇ ⋅ 𝒖 is linear as predicted from the theory of static thermoelasticity. From the transient 
term in the displacement equation one can see how the displacement field is dynamically 
affected. The displacement acceleration is linearly related to the temperature gradients.  

 
3 Simulation setup 
 

Numerical simulations are conducted using AUTODYN software on the block with the 
highest energy deposition (block 8). Recall that the temperature gradients are responsible for the 
dynamic behavior of the stresses. For the rest of the blocks we compute numerically the non-
diffusive temperature gradients and compare them with block 8. The following results represent 
the temperature and stress fields for a nominal LHC beam intensity, unless stated otherwise. 

3.1 Material model and Equation of State15 
 
We chose an orthotropic material model since the carbon-carbon composite chosen for the 

new TCDQ design is orthotropic. The equation of state’s parameters is calculated in the 
following way: 

• Gruneisen Coefficient:  Γ = 𝛼𝑣𝐾
𝜌𝑐𝑣

 

• 𝐶1 and 𝑆1coefficients in the linear shock Hugoniot relation:  𝑈𝑠 = 𝑆1𝑢𝑝 + 𝐶1, where 

𝑆1 = 0.5(1 + Γ), 𝐶1 = �𝐾
𝜌
 , 𝑢𝑝 is the particle velocity (in the context of the material’s 

composition) and 𝑈𝑠 is the shock velocity. 
• Specific heat 
• Thermal conductivity 
Where 𝛼𝑣 ,𝐾,𝜌, 𝑐𝑣 are respectively the volumetric thermal expansion coefficient, Bulk 

modulus of elasticity, density and specific heat of the material. 
Note that there is no orthotropic option for the equation of state so that geometric 

averaging of the properties in (Table 1: Carbon composite material properties) is used to 
calculated the necessary parameters used in the above coefficients. Principal stresses are used to 
identify failure. 

                                                
15 (Boogerd P., 1995) (Brugger K., 1967) 



3.2 Mesh, time step and CFL condition 
 
Peak temperatures at the end of the pulselength are used to identify each given mesh. 

Starting from a coarse mesh where the elements are of the order of 2.5𝑚𝑚, peak temperature 
rises as we refine the mesh. The peak temperature asymptotic limit is near the non-diffusive 
temperature. When the peak temperature between two consecutive mesh trials does not rise by 
more than the desired precision the mesh does not need any further refinement. The final mesh 
element size in the directions (𝑂𝑥) and (𝑂𝑦) is of the order of 1.3𝑚𝑚. Note that the smaller 
element size plays a major role in the wave length spectrum that needs to be captured and sets an 
upper bound for the time step as a consequence of the CFL condition16. Assuming that the 
medium is non-dispersive, and since the element size is chosen to be  1.3𝑚𝑚 so that the smallest 
wavelengths captured are of the order of the element size, the highest frequency captured is of 
the order of 106 Hz. AUTODYN applies automatically the CFL condition with respect to the 
smallest element of the model. The frequency cut for a simulation of 100𝜇𝑠 is at 107𝐻𝑧 and for 
a simulation of a single pulselength (825𝑛𝑠) is at 108𝐻𝑧. Wavelengths of the order of the 
mesh’s elements reflect frequencies of the order of 106𝐻𝑧 which will not be cutoff in result of 
the chosen timestep. 

4 Results 

4.1 Higher peak energy deposition: Block 8 
 
The peak of energy deposited in the whole TCDQ is found to be in the 8th block17. The 

maximum temperature rise is approximately ~454 𝐾 where the non-diffusive temperature rise 
would be ~461 𝐾. The following figure shows the temperature field at the end of the energy 
deposition. 

                                                
16 (Laurence, et al., 1998) 
17 (Versaci, 2012) 



 
Figure 5: Temperature field 

 
The maximum temperature is reached just a few millimeters inside the block. Figure 6 

shows plots for the temperature on a pathline going from point 𝐴(65,0,1805) to point 
𝐵(65,0,2049), coordinates being in 𝑚𝑚, for various times during the energy deposition. This 
pathline is perpendicular to (𝑂𝑧) and passes near the beam point on plane (𝑂𝑥𝑦). 



 
Figure 6: Temperature vs. Pathlength for various times during the energy deposition 

The peak temperature is much below the fusion temperature of CfC materials (of the order 
of 2000𝐾) so that their crystal properties remain invariant. Let us now turn to the dynamic 
aspect of this study. 

4.2 Stress waves for the homogeneous CfC block 
 
Tensile and compressive 𝑌𝑌 principal stresses were well below the yield limits (~80 𝑀𝑃𝑎) 

with respective values of 13.94 𝑀𝑃𝑎 and 5.62 𝑀𝑃𝑎. The highest tensile stress state happens at a 
time of 19.5𝜇𝑠 and the highest compressive stress state at a time of 875𝑛𝑠 i.e. right after the end 
of the pulse. The following two figures illustrate respectively these tensile and compressive 
stress states. 



 
Figure 7: Tensile principal stress YY 

 

Figure 8: Compressive principal stress YY 
 



The following figures show the time history of principal stresses in the 𝑦𝑦 direction at 
different locations in space and these values stay at desired levels.  

 
Figure 9: Position of gauge point 

 

 
Figure 10: YY principal stresses at various locations in space Vs. Time 

4.3 Stress waves for the two material (CfC & graphite) block 
 
Due to high price differences between the CfC and the graphite, it was suggested if a two 

material block could be used. The homogeneous CfC block is cut at the plane of 𝑥 = 40𝑚𝑚, and 
the space from 𝑥 = 40𝑚𝑚 to 𝑥 = 75𝑚𝑚 is filled with the previous graphite material. The 
thermal shock occurring on the graphite part is negligible hence we are only interested in the 
reflection/refraction, of the stress wave emerging from the beam location, on the material 
interface.  The condition between the two is assumed as bonded so that there should be 
continuity in all displacements at the material interface. The stress wave propagation direction is 



mostly (𝑂𝑦) parallel to the material interface which yields similar stress fields in the CfC part as 
in the homogeneous model. Stresses arising in the graphite part are under 3𝑀𝑃𝑎 in compression 
which is negligible with respect to the graphite’s limit of 125MPa. 

4.4 Stress waves for a CfC block shortened in the (𝑶𝒙) direction 
 
In paragraph 5.3 the boundary conditions at the interface are considered to be of bounded 

nature. It implies that the waves refracted from the CfC part into the graphite part are of 
maximum amplitude compared with a more realistic condition where the bond is somewhat loose 
and more reflection back into the CfC part is expected. Hence the need to test for the other 
extreme where all waves would be reflected at the material interface back into the CfC part. For 
that reason a simulation is conducted using only the CfC part with its shortened (𝑂𝑥) dimension 
of 40𝑚𝑚. The stresses do not rise more than in the full (𝑂𝑥) dimension block. In reality waves 
propagating in the (𝑂𝑥) direction will tend to be damped out by a greater amount in the full 
width block, nonetheless all simulations conducted herein assume a perfectly elastic material 
with no energy losses which represents the highest possible stress state. 

4.5 Non-diffusive temperature gradients for all blocks 
 
The Fluka energy deposition data is directly imported into MATLAB and directly 

converted to non-diffusive temperature data by the relation, 𝐸 = 𝜌𝑐𝑣Δ𝑇, where 𝐸, 𝜌, 𝑐𝑣 and Δ𝑇 
are in SI units and respectively represent the energy deposited, density, specific heat and 
temperature rise. A central finite difference scheme is used to compute the spatial temperature 
gradients at the end of the pulselength.  

The maximum temperature gradient out of each block is recorded and each is compared 
with block 8. Maximum temperature gradients out of all blocks are recorded in block 4, but the 
ratio of the maximum gradient of block 4 to the one of block 8 is just above 1.08 which cannot 
increase dynamic stresses significantly with respect to block 8, and definitely not above the 
material’s limits. 

4.6 Stress waves for ultimate LCH beam intensity 
 
In the case of an LHC beam intensity of 2.5 ⋅ 1011 p+/bunch (Ultimate LHC) the 

temperature and stress fields are expected to be more threatening. The maximum temperature 
rise is of ~994 𝐾 and is still below the temperature limits of the material18. Highest compression 
and tensile stress states reach respectively ~10 𝑀𝑃𝑎 at the end of the pulselength, and ~24𝑀𝑃𝑎 
after approximately 20𝜇𝑠. Both stress states remain under the material limits stated in paragraph 
2.3. 
  

                                                
18 (Manocha, 2003) 



5 Conclusions 
 

In the case of a nominal intensity beam intercepted by the TCDQ dump, the maximum 
temperatures reached within the new TCDQ are much below the material’s limits. For an 
ultimate intensity beam temperatures rise to ~1270 𝐾 which is still an acceptable value. 
CfC being an orthotropic material we chose to analyze the resulting stresses from the thermal 
shock in each of the principle directions. For the ultimate beam intensity stresses reached their 
highest values in the vertical direction (𝑂𝑦), and remain below 11 𝑀𝑃𝑎 and 25 𝑀𝑃𝑎 
respectively for the compressive and tensile states. These values are lower than the limits stated 
in Table 1.  

For nominal beam intensity more cost effective design was proposed. It consists of 
splitting the CfC block in two at the plane of 𝑥 = 40𝑚𝑚 and replacing the CfC material from 
𝑥 = 40𝑚𝑚 to 𝑥 = 75𝑚𝑚 with the previous graphite material. This design introduces an 
interface at the cutting plane which needs to be taken into account. Computations representing 
worst case scenarios for the CfC and the graphite part were conducted and the results remained 
similar to the ones where a homogeneous CfC material part was considered. 

 
A. Appendix 

Let 𝜈𝑓  and 𝜈𝑚 be respectively the fiber and matrix Poisson ratio – the matrix being 
graphite, an isotropic material. Also let 𝑉𝑓   and 𝑉𝑚be the respective phase volume fractions. The 
composite material density is: 

𝜌𝑐 = 𝜌𝑚 ⋅ 𝑉𝑚 + 𝜌𝑓𝑉𝑓  
Then we can obtain the directional Poisson ratios by the following formula given in 

tensor notation, 
𝜈𝑖𝑗 = 𝜈𝑓𝑖𝑗 ⋅ 𝑉𝑓 + 𝜈𝑚 ⋅ 𝑉𝑚  

The fibre mesh is position in the (𝑂𝑦𝑧) plane. Let the major Poisson ration of the fibre be 
𝜈𝑓𝑦𝑖 = 𝜈𝑓𝑧𝑖 = 0.2 where 𝑖  index can designate any of the three coordinate directions. This only 
means that the only non zero Poisson ration for a fibre is obtained by applying a force along the 
fibre’s direction and noticing a contraction of its radius. It is assumed that applying radial stress 
on the fibre does not provoke and longitudinal strain so that, 𝜈𝑓𝑥𝑦 = 𝜈𝑓𝑥𝑧 = 0.  

In the composites used the following volumetric ratios have been given by the provider, 
𝑉𝑓 = 0.3, hence 𝑉𝑚 = 0.7 . Using the above formulation and the isotropic Poisson ratio for the 
graphite matrix, 𝜈𝑚 = 0.15  we can compute the composite’s Poisson ratios in all directions. 
They are presented in the following table. First we calculate 𝜈𝑧𝑥 = 𝜈𝑦𝑥  then we can deduce 𝜈𝑥𝑦  
and 𝜈𝑥𝑧  from the symmetry of the strain tensor in the following way19, 

𝜈𝑥𝑦
𝐸𝑥

= 𝜈𝑦𝑥
𝐸𝑦

, 𝜈𝑥𝑧
𝐸𝑥

= 𝜈𝑧𝑥
𝐸𝑧

 and 𝜈𝑦𝑧
𝐸𝑦

= 𝜈𝑧𝑦
𝐸𝑧

 

Finally for 𝜈𝑦𝑧 = 𝜈𝑧𝑦 = 0 since any deformation in either 𝑦 or 𝑧 directions will only yield 
a resultant deformation in 𝑥 (since the other direction is reinforced). Note that when we calculate 
the Poisson ratios for each 𝜈𝑧𝑥 , 𝜈𝑦𝑥 we only take a volumetric ratio of 0.15  since we take into 
account only the fibres along the direction of applied load. 

                                                
19 (Boresi, et al., 1993) 
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