SC Cavities R&D for LHeC and HE-LHC

Erk Jensen, BE-RF

Many thanks to O. Brunner, E. Ciapala, R. Calaga, S. Calatroni, T. Junginger, D. Schulte, E. Shaposhnikova, J. Tückmantel, W. Venturini, W. Weingarten

and all those I forgot to mention

SRF Landscape of Challenges

SRF Landscape of Challenges

High Gradient

- ILC requires maximum gradient design 35 MV/m
- X-FEL (@DESY) same technology, reduced gradient ()
- huge R&D effort over the last 20 years gigantic progress
- Highly sophisticated technology developed:
 - CP(1991), EP, HPWR*(1995), large-grain Nb, optimized shape (2005)
 - new technologies: megasonic rinsing, steam cleaning, horn ultrasonic rinsing

*) initially for LEP2, D. Bloess

A. Yamamoto: IEEE Trans. AS19#3, 2009

High gradient & reproducibility, industrialisation

ILC goal (>90% at 35 MV/m)

B. Barish: LCWS11, Granada, 2011

10-Feb-2012, Chamonix

RF-Losses, Q-slope, Q-drop

- It is generally observed that the Q decreases with increasing field.
- Sketch of a possible explanation (W. Weingarten, T. Junginger):
 - Material imperfections lead to nucleation centres, where unpaired (normal-conducting) electrons exist;
 - with increasing field, more and more of these normal-conducting electrons contribute to the current and losses increase

New SC Materials

V. Palmieri: Applied Superconductivity, CERN Academic Training Lecture Regular Programme, 2007

Sputtering Nb on Cu

S. Calatroni: Niobium Coating Techniques, Journal of Physics: Conference Series 114 (2008)

- Advantages:
 - Due to the high cost of Nb, this can reduce cost!
 - The Cu substrate increases the mechanical & thermal stability (quench resistance).
- Technology initially developed at CERN (Benvenuti, LEP, 1980); experts today at JLAB, Legnaro, Saclay, Sheffield & CERN
- Technique used today for ALPI (LNL), Soleil, LHC & HIE-Isolde
- Today, the max. fields are still smaller than for bulk Nb is this an intrinsic limitation? An interesting field of R&D!
 - Can this technique be extended to new materials? (NbTiN, V₃Si, Nb₃Sn, HTS?)
 - Very interesting, promising R&D large potential!

SRF specific technology & infrastructures

10-Feb-2012, Chamonix

Crab Cavities for HL-LHC (EuCARD, US-LARP, ...)

High Luminos	ity			
	Very non-standard shapes!			
Val 3 <i>N</i>	ues for 400 MHz, V integrated kick	Double ridge (ODU/SLAC)	LHC-4R (ULANC)	¹ /4 Wave (BNL)
Ca	vity radius [mm]	147.5	143/118	142/122
Ca	vity length [mm]	597	500	380
Bec [mr	am Pipe radius n]	42	42	42
Peo	ak E-field [MV/m]	33	32	47
Peo	ak B-Field [mT]	56	60.5	71
RT/	Q [Ω]	287	915	318
Neo	arest OOM [MHz]	584	371-378	575

LHeC

MOST EXCITING!

10-Feb-2012, Chamonix

LHeC Options: Ring-ring and Linac-ring

LHeC Options

Electron beam: 60 GeV, 100 mA

Ring-Ring option

- SR power loss: 44 MW
- f = 721.42 MHz, h = 64152,
- total RF voltage: 560 MV
- 56 x 1 MW klystrons
- 14 x 8-cavity cryostats •
- Gradient 11.9 MV/m
- Power consumption: 79 MW
- RF in bypasses near ATLAS & CMS

Linac-Ring option (I will concentrate on this)

- 2 x 10 GeV linacs
- f (n x 20.04 MHz): 721.42 MHz (SPL type) or 1322.6 MHz (ILC type)
- total RF voltage: 2 x 10 GV
- 721 MHz: 960 x 21 kW amplifiers (e.g. IOT), 1323 MHz: approx. 120 x 180 kW klystrons (e.g.)
- Gradient 20 MV/m
- Power consumption (rough estimate): 79 MW (721 MHz) or 91 MW (1323 MHz)peds x-check!

10-Feb-2012, Chamonix

LHeC parameters

	Units	Protons	RR e-	LR e-
energy	[GeV]	7000	60	60
frequency	[MHz]	400.79	721.42	721.42
norm. ɛ	[mm]	3.75	50	50
l _{beam}	[mA]	>500	100	6.6
Spacing	[ns]	25, 50	50	50
bunch population		1.7 · 1011	3.1 · 10 ¹⁰	2.1 · 10 ⁹
bunch length	[mm]	75.5	0.3	0.3

Energy Recovery Linac – ERL

10-Feb-2012, Chamonix

Potential Options

1.3 GHz

ILC Collaboration

Standard ILC cryomodule

704 MHz

10-Feb-2012, Chamonix

Cryo-module layout

Approx cavity length is similar if not same

ILC type cryomodule can be utilized for both frequencies

Loss factors

Longitudinal modes:

$$P_{ave} = (k_{loss}Q)I_{beam}$$

$$k_{(loss)} \propto \frac{1}{R_{(iris)}} \sqrt{\left(\frac{d}{\sigma_z}\right)} \sqrt{\left(N_c\right)}$$

Transverse modes:

10-Feb-2012, Chamonix

19

Which frequency?

J. Tückmantel: SPS RF Choice, SPL-f-review 2008

10-Feb-2012, Chamonix

Dynamic wall losses

R. Calaga

For small R_{res} , this clearly favours smaller f.

10-Feb-2012, Chamonix

Cavity performance today

ILC Cavities 1.3 GHz, BCP + EP (R. Geng SRF2009)

HOM Power

• For $\sigma_z = 2 \text{ mm}$, one gets:

Frequency	k _L (V/pC)	$k_{_{T}}$ (V/pC/m)
700 MHz	2.64	2.46
1300 MHz	8.19	28.1

• For 6.6 mA, the total current is 40 mA (6 passages), resulting in an average HOM power $k_{\rm L} \cdot Q \cdot I_{\rm beam}$ of:

For 1300 MHz \rightarrow 105 W per cavity

For 700 MHz \rightarrow 33 W per cavity

The bunch length is much smaller – so expect even more HOM power!

Power consumption estimates (rough)

	Units	721.4 MHz	1322.6 MHz	
Main linacs (no beam	n loading)			
R/Q	[Ω]	500	1036	
Q ₀ @2K		2.4 x 10 ¹⁰	1 x 10 ¹⁰	
V/cavity	[MV]	20.8	20.8	
P _{RF} /cavity	[kW]	43.4	20.9	Assuming $Q_{ext} = 10^7$
n _{cav}		960	960	
total RF power	[MW]	41.7	20.1	Can this be recovered?
P _{AC}	[MW]	59.6	36.5	
Synchrotron radiation	compensatio	on		
total RF power	[MW]	12.4		
P _{AC}	[MW]	20.7		η = 60% assumed
Heat load (assuming	Q ₀ @ 2 K, con	version factor 600))	
P _{AC} /cav	[kW]	21.25	24.2	
P _{cryo' AC}	[MW]	20.4	23.2	
HOM's	[MW]	0.75	2.34	
Static, coupler, interconnects	[MW]	3	3	needs x-chec
0.3 GeV injector			prelim	indry - 11
P _{AC}	[MW]		5	*) 78 6 with adapted (

ERL Choice of frequency

- The frequency has to be a harmonic of 20.04 MHz!
- LHeC baseline: 721.42 MHz, alternative 1322.6 MHz.
- Advantages of lower frequency:
 - Less cryo-power
 - High-power couplers easier
 - Less cells per cavity less trapped modes
 - Less beam loading and transverse wake better beam stability
 - Less HOM power
 - Synergy with SPL, e-RHIC and ESS.
- Advantages of higher frequency:
 - Larger $R/Q \rightarrow$ with same Q_{ext} less RF power (but Q_{ext} must be reduced!)
 - Synergy with ILC/X-FEL

LHeC: Some references

- 1. LHeC Draft CDR: http://cdsweb.cern.ch/record/1373421
- 2. F. Zimmermann LHeC LR option, UPHUK-4
- 3. ILC RDR: <u>http://www.linearcollider.org/about/Publications/Reference-Design-Report</u>
- 4. I. Ben-Zvi et al.: BNL ERL project
- 5. G. Hofstaetter et al., Cornell ERL project
- 6. M. Liepe, ERL 2009
- 7. D. Schulte: TTC meeting Beijing, Dec. 2011
- 8. cern.ch/lhec

HE-LHC

... NOT MUCH REALLY

References: EuCARD – HE-LHC'10 AccNet mini-workshop, Malta, 2010: https://indico.cern.ch/conferenceTimeTable.py?confld=97971#all.detailed HE-LHC parameters: http://cdsweb.cern.ch/record/1373967 (2011) Landau system: T. Linnecar and E. Shaposhnikova: LHC Project-note-394, 2007

HE-LHC: Longitudinal beam parameters &RF system

HE-LHC: LHC at higher energy: (7 TeV \rightarrow 16.5 TeV)

- For constant RF voltage bucket area is increasing with beam energy as $E^{1/2} \Rightarrow |ess|$ voltage is required at higher energy.
- To have the same Landau damping at 16.5 TeV as at 7 TeV longitudinal emittance should be also increased as E^{1/2} (from 2.5 eVs to 3.8 eVs). For the same voltage (16 MV) this gives the same bunch length: 1.08 ns. No need for more voltage.
- Continuous longitudinal emittance blow-up with band limited noise can be applied in coast to avoid emittance decrease due to relatively fast SR damping.
- Higher harmonic RF system (800 MHz) can be considered for much shorter (smaller) bunches (< 2 eVs) or for different butor HHC! shapes ("flat", ...). Impact on LLRF complexity!

E. Shaposhnikova

HE-LHC: Beam and RF parameters

E. Shaposhnikova

		nominal LHC	HE-LHC
Energy	TeV	7.0	16.5
Bunch spacing	ns	25	50
Bunch population	1011	1.15	1.3
Beam current	А	0.584	0.328
RF voltage/beam @400.8 MHz	MV	16.0	16.0
Bunch length (4 sigma)	ns	1.08	1.08
Longitudinal emittance (2 sigma)	eVs	2.5	4.0
Longitudinal emittance damping time	h	13.0	1.0
SR energy loss per turn	keV	6.7	202
Bucket area	eVs	7.9	12.2
Synchrotron frequency	Hz	23.0	14.9

10-Feb-2012, Chamonix

Some initial design thoughts

L. Ficcadenti, J. Tückmantel, R. Calaga

Fundamental Mode:

Optimize cell geometry, length & aperture (Surface fields, R/Q etc..) Close attention to <u>wall angle</u> (α) to avoid very stiff cavity for freq tuning (800 MHz cavity is twice smaller)

Power coupler:

LHC like coupler, but preferably non-variable Approx 100-200 kW (SPL like design) needs verification

HOMs:

Mode separation of the first 2 dipole modes (w.r.t to 800 MHz) (TE₁₁₁ ~ 1 GHz & TM₁₁₀ ~1.1 GHz) Scale 400 MHz HOM couplers from LHC (narrow-band & broadband)

E. Montesinos

30

800 MHz LHC (or HE-LHC) Landau Cavity

f	400 MHz	800 MHz
L _{CELL}	320	~160
Ap	300	150
α	110	< 110
R ₁	104	52
R ₂	25	12.5

f	[MHz]	400	800
V	[MV]	2.0	2.0
R/Q	[Ω]	44	45.5
E_{pk}	[MV/m]	11.8	29.2
B_{pk}	[mT]	27.3	56.4

L. Ficcadenti, J. Tückmantel, R. Calaga

10-Feb-2012, Chamonix

Summary

- There are challenging subjects ahead to be studied to progress in Superconducting RF!
- LHeC has a substantial RF system for both RR and LR Options; the most interesting and challenging is the high current, high energy Energy Recovery Linac.
- A number of issues (in particular the limits for beam stability) seem to favour 700 over 1300 MHz.
- The HE-LHC RF system is not any harder than the present LHC RF system.
 - An initial study on a new RF system for 800 MHz (both for LHC or HE-LHC) has started.

Spare slides

10-Feb-2012, Chamonix

LHeC Frequency choice

- For 6 equally spaced bunches in 50 ns, the bunch spacing should be 8.316 ns (120.237 MHz)⁻¹.
- To have every other bunch in a decelerating phase, this bunch spacing must correspond to (n+1/2) RF periods; this results in possible frequencies $f = (n+1/2) \cdot 120.237$ MHz, e.g.:

661.3 MHz, 781.54 MHz, 901. 78 MHz, 1.022 GHz, 1.262 GHz, 1.383 GHz

- For SR loss compensation, all 6 bunches should be in a accelerating phase, i.e. *f* = *n* · 120.237 MHz, e.g.:
 721.42 MHz, 841.66 MHz, 961.9 MHz, 1.082 GHz, 1.202 GHz, 1.322 GHz
- It should be possible to adjust the arc lengths to use an RF at any harmonic of 20.0395 MHz, including e.g. 701.38 MHz and 1.302 GHz.