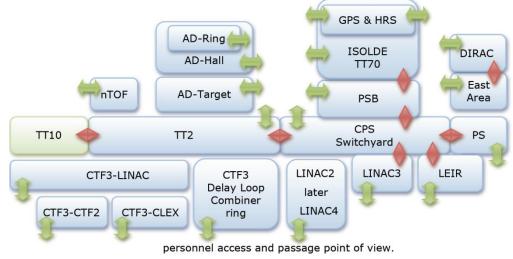
Access strategy in the accelerator complex and experimental areas

Rui Nunes GS-ASE For the Access Team

thanks to P. Ninin, E. Sanchez-Corral, T. Ladzinski

Overview

• PS

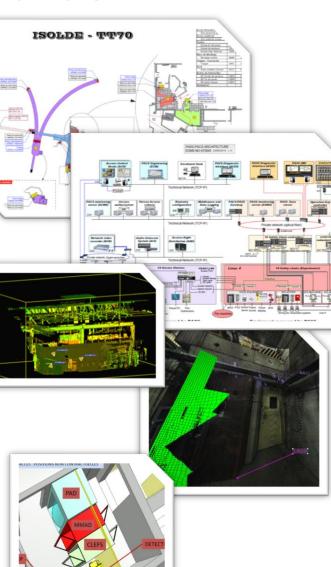

- PS Primary Areas Project (PS PSS)
 - PSPSS Main features
 - PSPSS Installation planning
- PS Secondary Areas news
- SPS
 - SPS Primary Access Control Project
 - SPS Secondary Areas news
- LHC
 - LACS/LASS Main updates
 - LHC Access Improvement Programme

PS PSS – PS Personnel Safety System

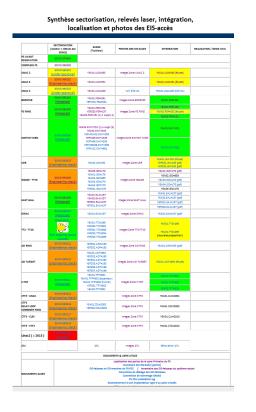
- Main difference from LHC is the different layout of the machines involved
- LHC has 5 chains & 12 EIS-f/m
- PS has 17 chains & ~100 EIS-f/m

	LHC	PS
Access Points	36	28
Doors	265	~ 100
Patrol Boxes	330	~ 110
EIS-f/m/ext	13	~ 100
Interlock "Chains"	5	17

Figure 4-1: Schematic overview of the PS Complex zones and their relationship from


R. Nunes GS/ASE from Functional Specification for PACS (901505) 3

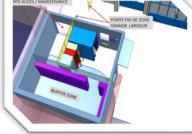
PS PSS Main Features


- Main differences wrt LHC Access System
 - Although Radiological risks covered, some other risks considered
 - External interlocks in special cases (ventilation, laser, etc...)
 - New Modes
 - Special permit mode Magnet testing for specialists only
 - *Test EIS-f* mode Testing of all EIS of a Zone by interlocking the upstream chain
 - Public Address
 - *Mini-MAD* "drawer" in Access Point for small material
 - Maintenance doors
- Main similarities
 - Biometrics (2 eyes)
 - MAD / PAD (improved unicity check)
 - Keys (trapped keys & improved key-taking sequence)

PS PSS Design Status

- Functional Specification & Sectorisation
 - Sectorisation documents under final approval
- Risk analysis
 - Safety functions defined
- Technical Specification done
- System design completed
 - Architecture design
 - Equipment selected & validated
- Test platform
 - Factory Acceptance tests completed
 - System validation on CERN platform 2012 Q2
 - PS0 test platform in building 271
- Integration studies ongoing
 - Area 3D scans done
 - Integration Studies
 - Difficulties due to lack of space for cables and access points

PS PSS Work in Progress

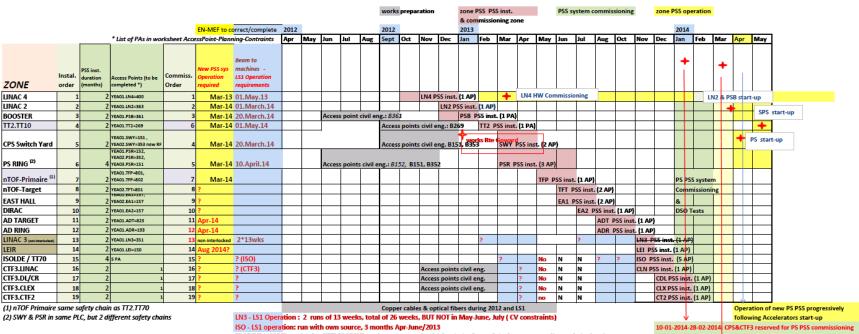


PS PSS Sectorization and integration webpage Credits S. Di Luca

- Installation of Rack Control Room
 - Building 271
- First functional tests on test platform
- Civil engineering preparations for LS1
 - New Buffer Zones
 - integrated with access points
 - DGS/RP & EN/MME collaboration
 - Optimize installation works
 - Preparation of technical infrastructure for Installation
 - Support from EN/MEF
 - Optical fiber network
 - Cabling for Power, Controls and I/Os
 - With EN/EL & IT/CS
 - Cabling galleries
 - Cable tranches or new galleries have to be made with EN/EL, GS/SE
 - Major effort to clean existing cable trays and install new cables

PS PSS Installation planning

• **Constraints** for planning during LS1

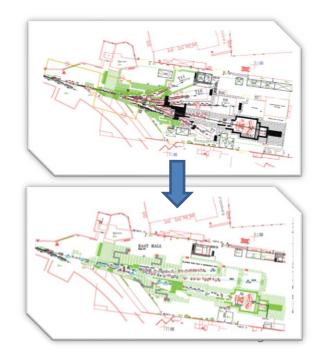

- Requirements for Machine run
 - Linac3, CTF, ISOLDE ? Operation dates still to be confirmed
 - Current system must be kept fully operational for these zones, including interlocks
- Requirements to give Access
 - Current system must provide full access control functionality (but not interlock)
- RP Constraints
 - ALARA working conditions, decay time for some areas
 - DIMR Procedure
- Coactivity Management
 - Coordinated via EN-MEF (e.g. route Goward shielding)
- Objective
 - Installations starting in 2012 Q4
 - Install all zones during LS1 starting with zones in the LHC injector chain
 - 2-4 months per zone 2 zones installed in paralel
 - System Commissioning & Testing (BE DSO & OP) 2 months Jan&Feb 2014
 - LHC injectors operational by April 2014
 - Linac4 must be ready for HwC in 2013 Q1

PS PSS Installation Schedule

EDMS 1164433 v3

PS PSS I&C Stategy:

<u>PSS inst. planning</u>: RP & LS1 works constraints & PSS system (current, new) operation requirements <u>PSS Commissioning planning</u>: safety chains and PSS system (new) operation requirements PS PSS Safety & Access system - Installation & commissioning planning during LS1 Last update: LS1 preparation meeting 25/11/2011

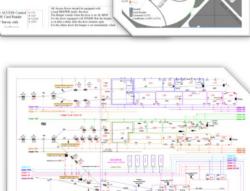

ISOLDE is NOT running but HIE-ISOLDE work continues or has high priority for work in that area according to their planning CTF3 - LS1 operation: Unkown! Outside CV works in bld 378 (so NOT in MAY, June, July)

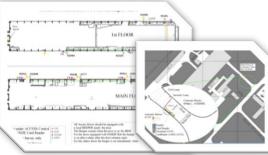
PS PSS commissioned, ready for OPERATION

PS Secondary Areas

- Works during LS1 (AD & East Hall)
 - Add dosimeter badge readers & access control to restrict patrol mode to "trained" users
 - Similar to new North Area system
 - New Layout to include ELENA in AD
- Depending on the East Area Renovation project (cf. East Area Day Workshop)
 - Change Secondary Access System Layout
 - Spin-off command of EIS-f to "CESAR-type" control
 - Install building access control to the Hall 157
 - Like 193 (AD) and EHN1 (North Area)

SPS Primary Access


- 2011-2012
 - Upgrade of SCADA supervision
 - Non-supported FactoryLink \rightarrow WinCC
 - "Usual" modifications
 - HiRadMat & other resectorisations
- During LS1
 - No special actions are foreseen
 - IMPACT tool can be used if needed
- New System Deployment during LS2 (when?)
 - Complete rebuilding is necessary
 - Obsolete safety & control architecture
 - Rapidly diminishing support for PLCs (S5)
 - Risk analysis phase started
 - Similarities with PS&LHC shall be explored
 - Development to start back-to-back with PS PSS project



SPS Secondary Access

- 2011-2012
 - Access control completely rebuilt in 2011
 - Aligned with PS AD and East Hall Secondary systems
 - Good performance
 - Access control to the NORTH Hall (EHN1) in 2012 Q2
 - Enforce use of dosimeter
 - Reduce vehicle parking on "Salève side"
- During LS1
 - Project for High Intensity Proton Beam
 - LOKN refurbishing
 - Safety Study ongoing
 - Additional access points for EHN1 galleries
 - tbconfirmed

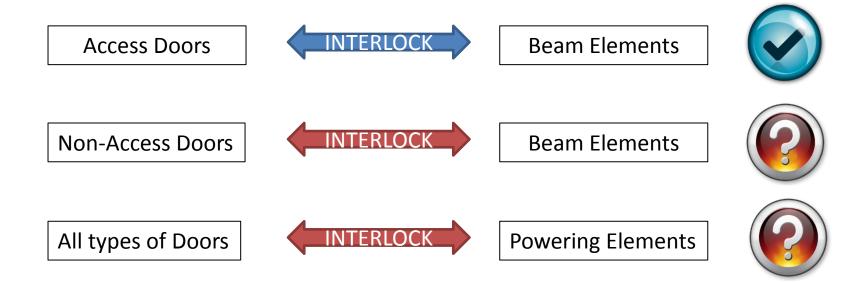
LHC Access Main Updates 2011

- Updates done in 2011-2012
 - Integration of access with Impact
 - Automatic Key Distribution New sub-mode
 - <u>ECR LHC-Y-EC-0006</u>
 - Deployed, useful during Xmas Break
 - 11 new key distributors
 - For some UJ areas
 - 2 new PADs in PM54 (CMS) installed
 - Biometry upgrade (2 eyes)
 - 9 oo 36 access points installed

LHC Access Improvement Programme

"Improve availability but don't compromise on safety"

consultation with main stakeholders in BE-OP & EN-MEF

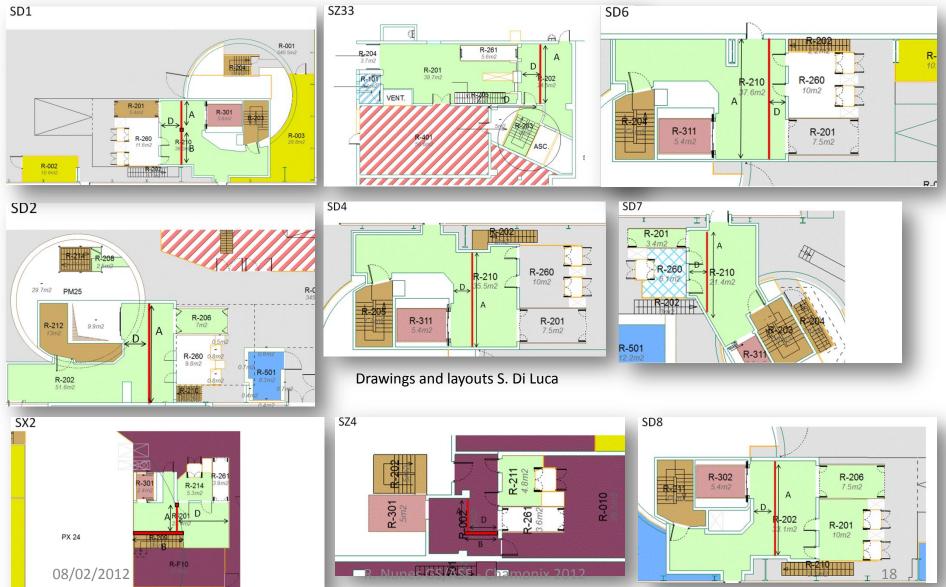

LHC Access Improvement Programme

- 1. Interlock more than just Beam \leftrightarrow Access
 - He₂ / Air-tightness / Cryo / Powering
- 2. Performance Improvements
 - Access point improvements
 - Sectorization improvements
 - Maintenance improvement
 - CCC improvements
- 3. R2E-motivated relocations

Interlock more than just Beam ↔ Access

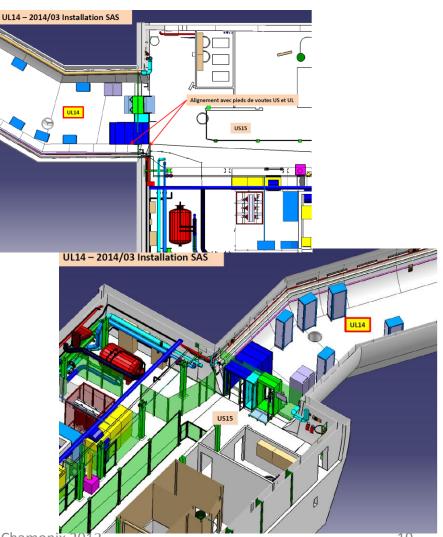
- Access doors interlock the beam
- Other types of doors <u>do not</u> interlock the beam... should they ?
 - e.g. Ventilation & Overpressure doors
 - i.e : Should a LASS-type system contribute to the risk reduction of personnel exposure to Cryo risk, ODH risk or activated air ?
 - Acceptable impact on machine availability?
 - Should the beam/powering be stopped immediately ?
 - Should the patrols be lost if external envelope is not breached?
- Should a LASS-type system also interlock the power converters ?
 - e.g. using any type of available doors
 - i.e.: Should a LASS-type system interlock the PIC to reduce the risk of exposure to a He2 discharge during powering tests?
 - A safety HW interlock to be deployed in LS1, replacing current SW interlocks
 - Technical solution is available and agreed with PIC
 - Acceptable impact on the machine availability?
 - Increased number of elements that firmly interlock the powering.
 - Impact of safety constraints on availability for powering tests ?
 - Impact on maintenance of the power converters ? (bypass for tests?)

Interlock more than just Beam ↔ Access


INTERLOCK = HW Safety-type interlock

LHC Access Improvement Programme

- Access point improvements
 - PAD : Avoid spurious patrol losses
 - MAD : Improve performance by alternative solutions
 - Human supervision in case of difficulty
 - Improve exit procedure
 - No green button
 - Improve information to users on refusal reasons
 - No biometry underground ?
 - if same access right
- Sectorization improvements
 - Improve sectorization (ALARA) of LHC3 and LHC7
 - New Zone/sectors for TZ32 prealignment tests for CLIC
 - Provide RP veto for TI2, TI8 and Dumps


- Maintenance improvement
 - Bypass of the ToP access points
 - Allow maintenance during beam
 - ECR in draft
- CCC improvements
 - Upgrade LASS servers
 - Closely integrate ADaMS and IMPACT
 - Improve monitoring of "really closed" doors in CCC

Curtain @ ToPit for Access Maintenance

R2E-related Relocations

- Complete Access Point
 - UJ14 \rightarrow UL14
 - UJ16 \rightarrow UL16
- Controls racks relocation
 UJ56 → USC55
 - UJ76 \rightarrow TZ76

Thank you for your attention