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Abstract

We present an antenna shower formalism including contributions from initial-state partons and correspond-
ing backwards evolution. We give a set of phase-space maps and antenna functions for massless partons
which define a complete shower formalism suitable for computing observables with hadronic initial states.
We focus on the initial-state components: initial–initial and initial–final antenna configurations. The formal-
ism includes comprehensive possibilities for uncertainty estimates. We report on some preliminary results
obtained with an implementation in the Vincia antenna-shower framework.
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1. Introduction

Parton-shower algorithms offer a universal and
fully exclusive perturbative resummation frame-
work for high-energy processes. In the context of
Monte Carlo event generators [1], they also pro-
vide the perturbative input for hadronization mod-
els. As such, they are complementary to more
inclusive techniques, such as fixed-order calcula-
tions (limited to small numbers of hard and well-
separated partons) and more inclusive resumma-
tion approaches (limited to a fixed set of observ-
ables).

Sjöstrand derived the first consistent parton-
shower algorithm [2] for so-called “backwards
evolution” of initial-state partons a quarter-century
ago. The central point is that an initial-state par-
ton defined at a high factorization scale, QF , can
be evolved “backwards”, towards earlier times, to
find the parton from which it originated at some
low scale, Q0 ∼ 1 GeV. During this evolution,
which is governed by the Altarelli-Parisi splitting
kernels [3] supplemented by PDF ratios (a point
which is crucial to the backwards-evolution for-
malism), initial-state radiation is emitted, which in
turn gives rise to its own final-state radiation, and

the character of the evolving parton changes, mi-
grating towards successively higher x values and
towards the more valence-dominated flavor content
at low Q.

As an alternative to Altarelli-Parisi evolution,
Gustafson and Pettersson proposed a final-state al-
gorithm based on QCD dipoles [4], which has
been implemented in Ariadne [5]. There, how-
ever, initial-state radiation does not rely on back-
wards evolution. Instead, it is treated essentially as
final-state radiation off dipoles stretched between
the hard process and the beam remnants, and thus
depends on the non-perturbative makeup of the
remnants. Winter and Krauss took a first step to-
wards combining the dipole formalism with back-
wards evolution (and thus also eliminating the de-
pendence on the remnants) in ref. [6]. Our con-
struction differs in the antenna functions, evolution
variables, and recoil strategy. In particular, it dif-
fers in the treatment of collinear singularities in
initial–final antennæ. We have checked that our an-
tennæ properly reproduce all QCD singularities.

A complementary approach which merges the
Lund dipole language with that of fixed-order an-
tenna factorization [7, 8, 9, 10], is that of Vin-
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→

a(xa)

B(xB)

j(pj)

k(pk)

Figure 1: Illustration of initial–initial and initial-final branch-
ings: AB→ a jb and AK → a jk, respectively. For the II case,
the recoil of the hard system is illustrated by the change in
orientation of the three outgoing lines representing the origi-
nal final-state system.

cia [11, 12, 13]. (Note: we henceforth use the
term “antenna” rather than “dipole” to avoid am-
biguities of historical origins, see e.g., ref. [14]).
So far, however, the Vincia formalism has been ap-
plied only to final-state showers. In this paper, we
present all the ingredients necessary to construct a
consistent initial-state shower based on QCD an-
tennæ. A further important ingredient is compre-
hensive possibilities for uncertainty estimates, in
line with the framework for automated theory un-
certainties proposed in ref. [15].

2. Antennæ and Antenna Showers

Throughout this Letter, we use the following no-
tation convention: capital letters for pre-branching
(parent) partons and lower-case letters for post-
branching (daughter) ones. Also, we use the first
letters of the alphabet, a, b, c, ..., for incoming par-
tons and letters starting from i, j, k, ... for outgoing
ones. Fig. 1 illustrates these choices for the two
basic types of configurations we consider. We will
also mark incoming particles with a minus sign
in front in antenna functions. We adopt the con-
vention that particle energies are always positive,
whether the particle is in the initial or the final state.
As a result, si j = (ki + k j)2 is always positive.

The key building block for parton showers is the
Sudakov factor, which represents the non-emission

probability between two values of the evolution
scale, see [1, 16] for reviews. In the context of an
antenna shower, the Sudakov factor for the branch-
ing of one antenna is

∆
(
Q2

start,Q
2
emit

)
= exp

[
−A(Q2

start,Q
2
emit)

]
, (1)

with

A(Q2
start,Q

2
emit) =∫ Q2

emit

Q2
start

ac
fa(xa,Q2)
fA(xA,Q2)

fb(xb,Q2)
fB(xB,Q2)

dΦant . (2)

In this equation, dΦant represents the antenna
phase-space factorization, which provides an ex-
act Lorentz-invariant mapping from 2 to 3 on-shell
partons, that conserves global energy and momen-
tum. Specific forms appropriate to initial–final and
initial–initial antenna configurations are defined in
sections 3 and 4, respectively.

The evolution variable Q2 is a function of the
phase-space point and must vanish in the unre-
solved limits [17]. The general formalism permits
us to study different evolution variables [11, 15],
though in this Letter we will restrict ourselves to
a transverse-momentum type variable, defined in
section 5. As in all parton showers, the descrip-
tion is expected to be accurate only in the strongly-
ordered limit for the Q2 of successive emissions.

The dressed or colored antenna function ac is de-
fined as1

ac = 4παS (Q2)Cā , (3)

where C is a color factor (we recall that we use nor-
malization conventions such that gluon and quark
emission antennæ have C = CA and C = 2CF , re-
spectively, and gluon-splitting ones have C = 1),
and ā is a color-ordered antenna function, which
embodies the factorization of QCD matrix ele-
ments in all single-unresolved soft and collinear
limits. We don’t take the functions ā to be fixed;
instead we use different antenna functions with the
same singular limits as one estimate of the shower
uncertainty.

1 Note that in [15] the normalization was ac = αS /(4π)Cā
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We use so-called global antenna functions [4]
(called sub-antenna functions with uniquely identi-
fied radiators in ref. [9]) which are active over all of
phase space. A backwards-evolution shower based
on sector antennæ in analogy to refs. [18, 13] is
left for future work. Some, but not all, antennæ
needed for initial-state radiation can be chosen to
be the crossings of their final–final counterparts.
An incoming particle is necessarily a hard radiator
in an antenna. Therefore, a gluon emission antenna
function with an incoming gluon has to reproduce
the AP splitting function on its own, e. g.

ā
(
−ag, jg, kx

) p j→zpa
−−−−−−→

1
sa j

1
1 − z

Pgg→G(1 − z) (4)

whereas if both gluons are in the final state, the
collinear singularity is reproduced by the sum of
two antenna functions

ā
(
hx, ig, jg

)
+ ā

(
ig, jg, kx

) p j→zpi
−−−−−→

1
si j

Pgg→G(z)

(5)
where the first antenna function is singular for i be-
coming soft, the second for j.

In pure final-state showers, the x values of the
incoming partons are not modified by the phase-
space factorization, hence the PDF ratios in eq. (2)
drop out, yielding the ordinary form of the final–
final Sudakov form factor [11, 15].

For initial–final antennæ, only one of the PDF
x values changes, and a Sudakov factor very
similar to that of conventional AP showers re-
sults, with a single PDF ratio in the kernel,
fa(xa,Q2)/ fA(xA,Q2). Unlike conventional show-
ers, however, we must also consider the back-
wards evolution of two initial-state partons simul-
taneously, generally requiring two separate parton-
density factors in initial–initial antennæ.

The consideration of initial–initial and initial–
final antennæ gives rise to one more subtlety. The
basic antenna functions are color-ordered, so that
in a final–final gluon-emission antenna, for exam-
ple, the emitted gluon is color adjacent to both
other (hard) daughter partons. That is, it is the
middle parton of the color trio which is emitted.
The leading-color approximation inherent in par-
ton showers along with the symmetry of final-state

phase space allows us only antennæ with this order-
ing. When considering initial-state antennæ, how-
ever, the emitted parton need not be color-adjacent
to both other daughter partons; the middle parton,
adjacent to both, may end up in the initial instead
of the final state. We will call antennæ in which
the middle parton is emitted into the final state,
‘emission’ antennæ; and those in which the mid-
dle parton ends up in the initial state, ‘conversion’
antennæ.

For those antennæ in which the type (spin) of the
initial-state partons does not change after branch-
ing, we can redistribute collinear singularities to
neighboring antennæ so as to replace ‘conversion’
antennæ by ‘emission’ antennæ. For those an-
tennæ in which the type of the initial-state par-
tons changes during branching — in which a quark
backwards-evolves into a gluon or vice versa — we
cannot avoid a consideration of both types of an-
tenna function and non-emission probability.

3. Initial–Final Configurations

The pre- and post-branching partons for initial–
final configurations are labeled by AK → a jk, with
the other incoming parton, B, acting as a passive
spectator, see the illustration in fig. 1.

In general, the incoming momentum after
branching will no longer be parallel to the beam di-
rection. We could boost it back to the beam direc-
tion; this will transfer some of the transverse mo-
mentum generated in the emission to the rest of the
event. This is the antenna analog of the recoil con-
sidered in ref. [19]. In the present Letter, we will
instead restrict the branching so that the incoming
momentum remains parallel to the beam axis after
branching.

With this restriction, the phase-space factoriza-
tion reads [20],∫

dxa

xa
dΦ3 (−a,−c; j, k,R) =∫

dxA

xA
dΦ2 (−A,−c; K,R)

dΦ
i f
ant (−A; K → −a; j, k) (6)

3



with xA/xa = sAK/(sAK +s jk) and where the initial–
final antenna phase space is

dΦ
i f
ant (−A; K → −a; j, k) =

1
16π2

sAK

(sAK + s jk)2 ds jkdsa j (7)

with the boundaries 0 ≤ s jk ≤ sAK(1 − xA)/xA, 0 ≤
sa j ≤ sAK + s jk. We have suppressed the integration
over the third coordinate of the initial–final phase
space on which the emission probability does not
depend.

The gluon-emission antennæ can be chosen as

ā(−aq, jg, kq) =
1

sAK

(
2saksAK

sa js jk
+

s jk

sa j
+

sa j

s jk

)
(8)

ā(−aq, jg, kg) =

1
sAK

(
2saksAK

sa js jk
+

s jk

sa j
+

sa j

s jk

sak

sAK

)
(9)

ā(−ag, jg, kg) =
1

sAK

(
2saksAK

sa js jk
+

2s jksAK

sa j(sak + sa j)

+
2s jk

sa j

sak

sAK
+

sa j

s jk

sak

sAK

)
(10)

ā(−ag, jg, bq) =
1

sAK

(
2saksAK

sa js jk
+

2s jksAK

sa j(sak + sa j)

+
2s jk

sa j

sak

sAK
+

sa j

s jk

)
(11)

where it is apparent that the antennæ with an
incoming quark are crossings of their final-state
counterparts whereas the ones with incoming glu-
ons have additional terms compared to their final-
state counterparts to ensure the collinear singular-
ity a ‖ j is taken into account properly.

The antenna for the splitting of a final-state
gluon into a quark-antiquark pair is chosen as

ā(−ax, jq, kq̄) =
1
2

1
s jk

s2
a j + s2

ak

s2
AK

(12)

where the factor 1/2 originates from the fact that
the gluon is part of two antennæ.

The antenna governing the backwards-evolution
of a gluon into a quark is

ā(−aq, jq, kx) =
1
2

1
sa j

s2
ak + s2

jk

s2
AK

(13)

For the reverse process of a sea quark
backwards-evolving into a gluon, we use

āconv( jq,−ag, kx) =
1

sAK

(
−2s jk(sAK − sa j)

sa j(sa j + sak)
+

sak

sa j

)
(14)

with a color connection j − a − k at variance with
the other antennæ.

4. Initial–Initial Configurations

For initial–initial antennæ, we label the pre- and
post-branching partons by AB → a jb, see fig. 1.
In the initial–initial case, we must necessarily have
transverse momentum generated, which must be
absorbed by the rest of the event. There are two
ways of proceeding. One can allow the incom-
ing partons to be shifted away from the beam di-
rection after branching, and then boost back to a
frame in which they are again parallel to the beam
direction. Alternatively, one can fix the incoming
partons to be parallel to the beam direction, and
balance the new transverse momentum by boosting
the rest of the event appropriately. In both cases,
there is a freedom in how the longitudinal part of
the emission momentum is absorbed into the ini-
tial state. This corresponds to a freedom in relat-
ing the post-branching momentum fractions xa,b to
the pre-branching momentum fractions xA,B. In the
first case, this freedom is parametrized by the recoil
or reconstruction function r in combination with
the Lorentz transformation boosting back to the lab
frame. In the second case, it is parametrized by the
functional form of xa,b.

It turns out that these two approaches are equiva-
lent, unlike the initial–final case. We define our re-
coil strategy in terms of xa,b here. The phase-space
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factorization reads [21],∫
dxa

xa

dxb

xb
dΦ2 (−a,−b; j,R)

=

∫
dxA

xA

dxB

xB
dΦ1

(
−A′,−B′; R′

)
dΦii

ant (15)

with the initial–initial antenna phase space

dΦii
ant

(
−A′,−B′ → −a,−b; j

)
=

1
16π2

sAB

s2
ab

θ (1 − xa) θ (1 − xb) dsa jds jb (16)

where we have suppressed the integration over the
angle φ parametrizing rotations around the beam.
The pre- and post-branching momenta are related
by a Lorentz transform:

Λ
µ
ν

(
pR, p′R

)
= gµν +

2
m2

R

(p′R)µ(pR)ν

−
2

(pR + p′R)2 (pR + p′R)µ(pR + p′R)ν . (17)

The phase space boundary depends directly on
the definition of the post-branching momentum
fractions, which is not fixed completely by the re-
quirements of xaxbsAB = xAxBsab and the behavior
in the soft and collinear limits.

For gluon emission, we use

xA

xa
=

(
sab − s jb

sab − sa j

sAB

sab

)1/2

, (18)

whereas for conversion, we keep one incoming mo-
mentum fixed, i.e. xA/xa = sAB/sab, xb = xB, giv-
ing the phase space boundaries sa j + s jb ≤ sAB(1 −
xA)/xA. This corresponds to the use of a one-sided
factorization, which is possible because only one
collinear limit is singular, whereas the behavior of
the phase space factorization in the other collinear
limit is not constrained.

We use the emission antennæ

ā
(
−aq, jg,−bq̄

)
=

1
sAB

(
2sabsAB

sa js jb
+

sa j

s jb
+

s jb

sa j

)
(19)

ā
(
−aq, jg,−bg

)
=

1
sAB

(
2sabsAB

sa js jb
+

2sa jsAB

s jb(sab + s jb)

+
2sa j

s jb

sab

sAB
+

s jb

sa j

)
(20)

ā
(
−ag, jg,−bg

)
=

1
sAB

(
2sabsAB

sa js jb
+

2sa jsAB

s jb(sab + s jb)

+
2s jbsAB

sa j(sab + sa j)
+

2sa j

s jb

sab

sAB
+

2s jb

sa j

sab

sAB

)
(21)

For a quark backwards-evolving into a gluon, we
use

ā
(

jq,−ag,−bx
)

=
1

sAB

(
−

2s jbsAB

sa j(sab − sa j)
+

sab

sa j

)
(22)

The antenna for a gluon backwards-evolving
into a quark is the crossing of the initial–final coun-
terpart:

ā
(
−ax, jq,−bq

)
=

1
2

1
s jb

s2
a j + s2

ab

s2
AB

(23)

5. Implementation and Preliminary Results

In the antenna shower, as in a conventional
shower, we start the evolution at high Q2, and gen-
erate a series of branchings at successively lower
Q2, stopping when we reach a shower cut-off, typ-
ically around 1 GeV. Each branching is generated
according to the non-emission probability (1), and
in this Letter we shall restrict ourselves to strict
strong ordering, postponing a discussion of smooth
ordering [15] and/or power showers [22] to a sub-
sequent study.

In order to generate a branching, we must in-
vert the function specified by the integral (2). This
is in general a difficult task even if the integral
is doable analytically, because the result involves
dilogarithms. In some cases, the boundaries even
make it unreasonable to perform the integral ana-
lytically. A direct inversion would in either case
be quite slow. Instead, we proceed as follows.
We pick a simple function — a trial antenna func-
tion atrial

c and trial ratios of parton-density func-
tions Rtrial

pdf — which overestimates the integrand,
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and veto the excess emissions generated accord-
ing to the non-emission probability computed us-
ing the trial function. The trial function is cho-
sen to capture the leading logarithmic singularities
of the antenna function, and to allow the phase-
space integral to be factorized into a product of
one-dimensional integrals. Where possible, it is
also chosen to produce an analytically invertible in-
tegral. In the final–final case, the latter requirement
can always be satisfied; in initial–initial and initial–
final cases, it can be satisfied for most trial an-
tennæ. In the exceptional cases, we employ a two-
stage veto. In these cases, the first-level trial func-
tion still serves to simplify the inversion of the non-
emission probability by ensuring the factorization
of the integral into a product of one-dimensional
integrals. The veto probability is given by,

Paccept =
ac

atrial
c

Rpdf

Rtrial
pdf

, (24)

evaluated at the post-branching kinematic point. In
this equation,

Rpdf =
fa(xa,Q2)
fA(xA,Q2)

fb(xb,Q2)
fB(xB,Q2)

(25)

is the ratio of parton densities that appears in
eq. (2).

When approaching a heavy flavor threshold, Rpdf
diverges. As is standard in backwards-evolution
codes, we absorb the leading divergent behavior of
Rpdf into the trial integration to maintain a reason-
able efficiency [23]. Analogous issues may arise
at large x and low Q2 in light-quark parton densi-
ties due to numerical instabilities. We defer their
treatment to future work.

To define a concrete shower algorithm based on
the above antennæ and phase-space factorizations,
we have chosen to use two different evolution vari-
ables, depending on the type of antenna. For gluon
emission, we use a transverse momentum,

Q2
⊥ =

2si js jk

si j + s jk + sik
. (26)

For final-state branchings, Q2
⊥ is equal to 2p2

⊥A, the
evolution measure used in Ariadne [5] (note: pre-

vious Vincia publications used 4p2
⊥A). The max-

imal value of Q2
⊥ in the final-state case is si jk/2.

For conversion and gluon splitting antennæ, we in-
stead use the virtuality of the only potentially sin-
gular propagator as the evolution variable. As in
the final-state shower [11, 12, 15], other choices
are possible within the Vincia formalism. We de-
fer an exploration of more general possibilities to
future work.

We now turn to a few basic tests of each com-
ponent of the shower algorithm. In all cases, we
consider pp collisions at 8 TeV CM energy, use
the MSTW 2008 LO PDF set [24], with a one-
loop running αS , normalized to αS (mZ) = 0.13939.
In all calculations performed here, we turn off

hadronization and primordial kT, as well as the un-
derlying event, both in the Vincia calculation and
in the Pythia 8 [25] calculations to which we com-
pare. While the evolution variables in Vincia and
Pythia are different, we have tried to match the
shower cut-offs in calculations with the latter to
that we use in Vincia. This includes accounting
for the difference in normalization between lim-
iting definitions of transverse momentum. Note
that while Vincia uses a zero-mass variable flavor
number scheme, Pythia 8 uses the physical quark
masses everywhere. For the observables we dis-
cuss here, the effect is negligible.

In fig. 2, we show the pT spectrum of the Z
boson in Drell-Yan production, which is sensitive
to radiation in initial–initial configurations. The
main figure pane shows the peak of the distribution,
while the inset shows the high-pT tail. The figure
shows Vincia curves computed using two different
antenna functions: the default antenna given ear-
lier, and an enhanced antenna function, with a finite
term — 5/si jk — added. It also shows the result
obtained with Pythia 8.

The overall shape of the three curves is similar:
small values at small pT, rising to a peak and then
declining again with a rough power-law fall in the
asymptotic region, and a “knee” around pT ∼ 90
GeV due to the requirement of strong ordering
which we have imposed here. The difference be-
tween the two Vincia predictions illustrates the un-
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Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.

certainty due to the shower function and in particu-
lar higher-order terms in the shower. The differ-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation differs from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeoff between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the effect
is given in fig. 3, which shows qq → qq scatter-
ing with two different color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Different color flows and corresponding emission
patterns in qq → qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.

0° 45° 90° 135° 180°

1
180°

2
180°

Θ Hgluon, beamL

Ρ
em

it

Figure 4: Angular distribution of the first gluon emission in
qq → qq scattering at 45◦, for the two different color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45◦ and p̂T = 100 GeV. The
distributions clearly show that the backward color
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Figure 5: The dijet decorrelation angle. The histograms are
normalized to unity separately.

flow allows for much more radiation at 90◦ than the
forward one. The pT spectrum of the radiation (not
shown) is also harder. The next step will be to inter-
face the hadronization and underlying-event mod-
els in Pythia, and compare to experimental studies,
such as the one by CDF [27] (we note that an up-
date of that study, correcting it to the hadron level,
would be highly useful to the MC community).

Finally, to demonstrate the combination of all
shower components acting together, we show the
dijet decorrelation angle (the azimuthal angle be-
tween the two leading jets), ∆φJJ , in fig. 5. Using
FastJet [28], we consider anti-kT jets with radius
parameter R = 0.4. We demand the two leading jets
to have transverse momentum above 100 GeV and
to be at rapidities |y| < 2.8. Note that Pythia 8 pro-
duces about 40% more jet events which pass these
cuts than Vincia both with or without enhanced an-
tenna functions, partly due to its more active re-
coil strategy, which allows the original dijet system
to build up transverse momentum successively dur-
ing the shower cascade. This difference is not visi-
ble in fig. 5, as the distributions are all normalized
to unity. The two Vincia distributions are broadly
similar to the Pythia 8 distribution, and very sim-
ilar in the two-jet region (∆φJJ ∼ π) where the
parton-shower approximation should be reliable.
The differences are substantial in the region below

∆φJJ < 3π/4, where hard real emission is impor-
tant. In this region, fixed-order calculations should
be reliable, but unmatched parton showers will not
be. Nonetheless, the difference between the Vincia
calculation with default antenna strength and the
Pythia 8 calculation is similar to that between the
two Vincia calculations, suggesting again that the
variation provides a good qualitative assessment
of the uncertainty. We defer a comparison of this
distribution with fixed-order calculations to future
studies.

6. Conclusion and Outlook

In this Letter, we have presented the outline of a
formalism for an antenna shower for hadron col-
lisions, along with results from an initial imple-
mentation as a plug-in to Pythia 8. The formal-
ism requires the introduction of new antennæ, cor-
responding to one or both parents being initial-
state partons. These should be further subdivided
into the new categories of emission and conver-
sion antennæ based on their color flows. The
formalism also requires factorizations suitable for
phase spaces involving initial-state partons, and in-
troduces ratios of parton densities into the non-
emission probabilities governing the shower evo-
lution.

We have chosen to implement the shower as
a plug-in to the Pythia 8 program, which takes
advantage of the latter’s flexible framework and
makes use of its utilities, structures, and overall
management of the branching process. In this ap-
proach, it replaces Pythia’s shower with an antenna
shower. For practical and efficiency reasons, we
uniformly adopt a trial-and-veto algorithm for gen-
erating branchings. The trial functions used in the
implementation will be described elsewhere.

We expect to implement further optimizations of
the branching step in future work. The leading-
order matching approach described in ref. [15]
should carry over to the initial-state showering de-
scribed here, and will be an important next step for
the development of Vincia.
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