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The asymmetry in the production cross-section σ of D± mesons,

AP = σ(D+) − σ(D−)

σ (D+) + σ(D−)
,

is measured in bins of pseudorapidity η and transverse momentum pT within the acceptance of the LHCb
detector. The result is obtained with a sample of D+ → K0

Sπ
+ decays corresponding to an integrated

luminosity of 1.0 fb−1, collected in pp collisions at a centre of mass energy of 7 TeV at the Large
Hadron Collider. When integrated over the kinematic range 2.0 < pT < 18.0 GeV/c and 2.20 < η < 4.75,
the production asymmetry is AP = (−0.96 ± 0.26 ± 0.18)%. The uncertainties quoted are statistical and
systematic, respectively. The result assumes that any direct CP violation in the D+ → K0

Sπ
+ decay is

negligible. No significant dependence on η or pT is observed.
© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

The Large Hadron Collider (LHC) offers an excellent opportunity
to study heavy flavour physics. The rate of production of cc and
bb pairs is substantial in the forward region close to the beam
direction. The associated cross-sections were measured at the LHCb
experiment in the forward region to be σcc = 1230 ± 190 μb and
σbb = 74 ± 14 μb at

√
s = 7 TeV [1,2].

Direct production of cc pairs at the LHC occurs almost entirely
via QCD and electroweak processes that do not discriminate be-
tween c and c quarks. However, in hadronization the symmetry is
broken by the presence of valence quarks, which introduce several
processes that distinguish between c and c quarks [3–5]. For exam-
ple, a c quark could couple to valence quarks to form a charmed
baryon, leaving an excess of c quarks. These would hadronize to
create an excess of D− mesons over D+ mesons. Furthermore, the
kinematic distributions of charmed hadrons and their antiparticles
can differ, introducing production asymmetries in local kinematic
regions. Analogous production asymmetries in the strange sector
are well-established at the LHC, and are seen to be large at high
rapidity [6]. However, no evidence for a D+

s production asymmetry
was found in a recent study [7].

Searches for CP violation (CPV) in charmed hadron decays can
be used to probe for evidence of physics beyond the Standard
Model [8]. Direct CPV is measured using time-integrated observ-
ables, and is of particular interest following evidence for CPV in

✩ © CERN for the benefit of the LHCb Collaboration.

two-body D0 decays reported by LHCb [9] and subsequently by
CDF [10]. In order to understand the origin of this effect, more pre-
cise measurements of CP asymmetries in a suite of decay modes
are required. Production asymmetries have the same experimental
signature as direct CPV effects and are potentially much larger than
the CP asymmetries to be determined. This problem can some-
times be avoided by taking the difference in asymmetry between
two decay modes with a common production asymmetry [9] or
by studying the difference in kinematic distributions of multi-body
decays [11]. However, these methods result in a reduction in statis-
tical power and are not applicable to all final states. It is therefore
important to measure production asymmetries directly.

In this Letter, the D± production asymmetry, defined as

AP = σ(D+) − σ(D−)

σ (D+) + σ(D−)
, (1)

for cross-sections σ(D±), is determined with a sample of D+ →
K0

Sπ
+ , K0

S → π+π− decays.1 As there are no charged kaons in
the final state, the detector biases in this decay are simpler to
understand than those in other D+ decays with higher branching
fractions. The K0

S , a pseudoscalar particle, has a charge-symmetric
decay, and the charge asymmetry in the pion efficiency at LHCb
has been measured previously for the 2011 data sample [7]. How-
ever, there is the possibility of CPV in the decay. The expected CPV
in the D+ decay, due to the interference of the Cabibbo-favoured

1 Charge conjugate decays are implied throughout this Letter unless stated other-
wise.
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and doubly Cabibbo-suppressed amplitudes, is defined by the
charge asymmetry in the partial widths Γ (D±),

ACP = Γ (D+) − Γ (D−)

Γ (D+) + Γ (D−)
. (2)

ACP is negligible in the Standard Model: a simple consideration of
the CKM matrix leads to a value of at most 1 × 10−4 depending
on the strong phase difference between the two amplitudes [12].
Since both amplitudes are at tree level, no enhancement of CPV
due to new physics is expected. The current world-best measure-
ment of ACP , by the Belle Collaboration, is consistent with zero:
(0.024 ± 0.094 ± 0.067)% [13]. On the other hand, CPV in the neu-
tral kaon system induces an asymmetry which must be considered.
This will be discussed further in Section 5.

2. Detector description

The LHCb detector [14] is a single-arm forward spectrome-
ter covering the pseudorapidity range 2 < η < 5, designed for
the study of particles containing b or c quarks. The detector in-
cludes a high precision tracking system consisting of a silicon-
strip vertex detector (VELO) surrounding the pp interaction region,
a large-area silicon-strip detector located upstream of a dipole
magnet of reversible polarity with a bending power of about 4 Tm,
and three stations of silicon-strip detectors and straw drift-tubes
placed downstream. The combined tracking system has a momen-
tum resolution �p/p that varies from 0.4% at 5 GeV/c to 0.6%
at 100 GeV/c, and an impact parameter (IP) resolution of 20 μm
for tracks with high transverse momentum pT. Charged hadrons
are identified using two ring-imaging Cherenkov detectors. Pho-
ton, electron and hadron candidates are identified by a calorimeter
system consisting of scintillating-pad and pre-shower detectors, an
electromagnetic calorimeter and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of iron and
multiwire proportional chambers. The trigger consists of a hard-
ware stage, based on information from the calorimeter and muon
systems, an inclusive software stage, which uses the tracking sys-
tem, and a second software stage that exploits the full event infor-
mation.

3. Dataset and selection

The data sample used in this analysis corresponds to 1.0 fb−1

of pp collisions taken at a centre of mass energy of 7 TeV at
the Large Hadron Collider in 2011. The polarity of the LHCb mag-
netic field was changed several times during the run, and approx-
imately half of the data were taken with each polarity, referred to
as ‘magnet-up’ and ‘magnet-down’ data hereafter. To optimise the
event selection and estimate efficiencies, 12.5 million pp collision
events containing D+ → K0

Sπ
+ , K0

S → π−π+ decays were simu-
lated with Pythia 6.4 [15] with a specific LHCb configuration [16].
Decays of hadronic particles are described by EvtGen [17]. The
interactions of the generated particles with the detector and its re-
sponse are implemented using the Geant4 toolkit [18] as described
in Ref. [19].

Pairs of oppositely charged tracks with a pion mass hypothe-
sis are combined to form K0

S candidates. Only those K0
S candidates

with pT > 700 MeV/c and invariant mass within 35 MeV/c2 of
the nominal value [20] are retained. Surviving candidates are then
combined with a third charged track, the bachelor pion, to form
a D+ candidate, with the mass of the K0

S candidate constrained to
its nominal value in a kinematic fit. Each of the three pion tracks
must be detected in the VELO, so only those K0

S mesons that decay
well within the VELO are used. This creates a bias towards short

Fig. 1. Mass distribution of selected K0
Sπ

+ candidates. The data are represented by
symbols with error bars. The dashed curves indicate the signal and the D+

s → K0
Sπ

+
decays, the lower solid line represents the background shape, and the upper solid
line shows the sum of all fit components.

K0
S decay times. Both the K0

S and D+ candidates are required to
have acceptable vertex fit quality.

Further requirements are applied in order to reduce the back-
ground and to align the selection of bachelor pions with the
dataset used to determine the charge asymmetry in the track-
ing efficiency (see Section 6). The daughters of the K0

S must have
p > 2 GeV/c and pT > 250 MeV/c. Impact parameter requirements
are used to ensure that both the K0

S candidate and its daughter
tracks do not originate at any primary vertex (PV) in the event,
and the K0

S decay vertex must be at least 10 mm downstream of
the PV with which it is associated. The bachelor pion must have
p > 5 GeV/c and pT > 500 MeV/c, be positively identified as a
pion rather than as a kaon, electron or muon, and must not come
from any PV. In addition, fiducial requirements are applied as in
Ref. [9] to exclude regions with large tracking efficiency asym-
metry. All three tracks must have an acceptable track fit quality.
The D+ candidate is required to have pT > 1 GeV/c, to point to
a PV (suppressing D from B decays), and to have a decay time
significantly greater than zero. After these criteria are applied,
the remaining background is mostly from random combinations
of tracks. The invariant mass distribution of selected candidates is
shown in Fig. 1.

In selected events, a trigger decision may be based on part or
all of the D+ signal candidate, on other particles in the event, or
both. The second stage of the software trigger is required to find
a fully reconstructed candidate which meets the criteria to be a
signal D+ → K0

Sπ
+ decay. To control potential charge asymmetries

introduced by the hardware trigger, two possibilities, not mutu-
ally exclusive, are allowed. The hardware trigger decision must be
based on one or both of the K0

S daughter tracks, or on a particle
other than the decay products of the D+ candidate. In both cases,
the inclusive software trigger must make a decision based on one
of the three tracks that form the D+ . For the first case, it is explic-
itly required that the same track activated the hardware trigger,
and therefore this is independent of the D+ charge. The second
possibility does not depend directly on the D+ charge, but an indi-
rect dependence could be introduced if the probability for particles
produced in association with the signal candidate to activate the
trigger differs between D+ and D− . This will be discussed further
in Section 7. After applying the selection and trigger requirements,
1,031,068 K0

Sπ
+ candidates remain.

4. Yield determination

The signal yields are measured in 48 bins of pT and η using
binned likelihood fits to the distribution of the K0

Sπ
+ mass m. The
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Fig. 2. Background-subtracted distribution of transverse momenta pT versus pseu-
dorapidity η for selected D+ → K0

Sπ
+ candidates in a signal region of 1845 < m <

1890 MeV/c2. The bin marked with an asterisk is excluded from the weighted av-
erage over the production asymmetries in the bins used to obtain the final result.

bins are shown in Fig. 2. The shapes of the D+
(s) → K0

Sπ
+ mass

peaks are described by ‘Cruijff’ functions [21],

f (m) ∝ exp

( −(m − μ)2

2σ 2
L,R + (m − μ)2αL,R

)
(3)

with the measured masses defined by the free parameter μ, the
widths by σL and σR , and the tails by αL and αR . The parameters
αL and σL are used for m < μ and αR and σR for m > μ. The back-
ground is fitted with a straight line plus an additional Gaussian
component to account for background from D+

s → K0
Sπ

+π0 decays.
The yield of the latter is consistent with zero in most pT, η bins.
The fit is performed simultaneously over four subsamples (D+
magnet-up, D+ magnet-down, D− magnet-up, and D− magnet-
down data) with the masses and yields of the D±

(s) , and the yield of
background, allowed to vary independently in the four subsamples.
All other parameters are shared. The charge asymmetries are then
determined from the yields. The results are cross-checked with a
sideband subtraction procedure under the assumption of a linear
background.

5. Effect of CP violation in the neutral kaon system

CP violation in the neutral kaon system can affect the observed
asymmetry in the D+ → K0

Sπ
+ decay [22]. The bias on AP due

to the CPV depends on the decay time acceptance F (t) of the K0
S

meson, according to

Aε ∼ 2�(ε)

×
[

1 −
∫ ∞

0 F (t)e− 1
2 (ΓS+ΓL)t(cos�mt − �(ε)

�(ε)
sin�mt)dt∫ ∞

0 F (t)e−ΓSt dt

]
,

(4)

where ε parameterises the indirect CPV in neutral kaon mixing,
ΓS and ΓL are the decay widths of the K0

S and K0
L respectively,

and �m is their mass difference [23,24]. Direct CPV and terms
of order ε2 are neglected. To determine the decay time accep-
tance, the K0

S decay time is fitted with an empirical function
shown in Fig. 3. All of the K0

S candidates used in this analy-
sis decay inside the VELO with an average measured lifetime of
6.97 ± 0.02 ps, which is much shorter than the nominal K0

S life-
time of 89.5 ps. Using �(ε) = 1.65×10−3 [20] in Eq. (4), we obtain
Aε = (2.831+0.003

−0.004) × 10−4 for the CPV in the neutral kaon sys-
tem, where the uncertainty quoted is statistical only. This value is

Fig. 3. Observed K0
S decay time distribution within the LHCb acceptance. The data

points are fitted with an empirical function (solid curve). This contains a component
for the upper decay time acceptance, due mainly to the requirement that the K0

S
decays inside the VELO (dashed curve) and a component for the lower decay time
acceptance, due to the selection cuts (dotted curve). These are shown scaled by
arbitrary factors. The CPV is not sensitive to the fine details of the distribution, so
the fit quality is not important.

subtracted from the measured production asymmetry and a sys-
tematic uncertainty equal to its central value is assigned.

6. Results

In order to convert the measured charge asymmetries in the
48 bins of pT and η into production asymmetries, a correction
for the asymmetry in the pion reconstruction efficiency is made.
This asymmetry was evaluated previously in eight bins of pion az-
imuthal angle φ and two bins of pion momentum with a control
sample of D∗+ → D0π+ , D0 → K−π+π−π+ decays in the same
dataset [7]. The average efficiency asymmetry ratios επ+/επ− in
that sample were found to be 0.9914 ± 0.0040 for magnet-up data
and 1.0045 ± 0.0034 for magnet-down data.

After the correction is applied, the resulting asymmetries for
magnet-up and magnet-down data in each D+ pT and η bin are
averaged with equal weights to obtain the production asymme-
tries in two-dimensional bins of pT and η, given in Table 1. Any
left–right asymmetries that differ between the signal D+ → K0

Sπ
+

decay and the D0 → K−π+π−π+ control channel will cancel in
this average.

Reconstruction and selection efficiencies from the simulation
are used to calculate binned efficiency-corrected yields. These are
used to weight the production asymmetries in the average over
the pT and η bins. The result is an asymmetry for D+ produced
in the LHCb acceptance. The same weighting technique is applied
to obtain production asymmetries as one-dimensional functions
of pT and η. The bin marked with an asterisk in Fig. 2 has a
high cross-section but is mostly outside the acceptance and so
it is excluded from the average. After subtracting the contribu-
tion from CPV in the kaon system, the production asymmetry
is (−0.96 ± 0.19 ± 0.18)%. The uncertainties are the statistical
errors on the D+ → K0

Sπ
+ yields and that due to the tagged

D0 → K−π+π−π+ sample used to calculate the pion efficiencies.
Summing these in quadrature, we obtain

AP = (−0.96 ± 0.26 (stat.)
)
%.

The production asymmetry as a function of pT and η is given
in Fig. 4. No significant dependence of the asymmetry on these
variables is observed. As a cross-check, the average production
asymmetry is calculated for magnet-up and magnet-down data
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Table 1
Production asymmetry for D+ mesons, in percent, in (pT, η) bins, for 2.0 < pT < 18.0 GeV/c and 2.20 < η < 4.75. The uncertainties shown are statistical only; the systematic
uncertainty is 0.17% (see Table 2).

pT ( GeV/c) η

(2.20,2.80) (2.80,3.00) (3.00,3.25) (3.25,3.50) (3.50,3.80) (3.80,4.75)

(2.00,3.20) −0.0 ± 2.5 −2.2 ± 1.2 −0.4 ± 0.8 −0.4 ± 0.7 −1.2 ± 0.6 −1.2 ± 0.5
(3.20,4.00) −0.4 ± 0.9 −0.4 ± 0.7 −0.4 ± 0.5 −1.1 ± 0.5 +0.1 ± 0.5 −1.2 ± 0.5
(4.00,4.55) +0.1 ± 0.8 −1.0 ± 0.8 −1.3 ± 0.6 −2.0 ± 0.6 −0.1 ± 0.6 −2.1 ± 0.7
(4.55,5.20) −1.6 ± 0.7 −0.6 ± 0.8 −0.5 ± 0.6 −0.7 ± 0.6 −1.6 ± 0.6 −2.0 ± 0.8
(5.20,6.00) −0.5 ± 0.7 −0.8 ± 0.8 +0.2 ± 0.7 −0.3 ± 0.7 −0.6 ± 0.7 −1.2 ± 0.9
(6.00,7.00) −1.4 ± 0.8 +0.5 ± 1.0 −0.9 ± 0.9 −0.6 ± 0.9 −0.7 ± 0.9 −1.6 ± 1.2
(7.00,9.50) −0.4 ± 0.8 −0.4 ± 1.1 −0.2 ± 1.1 +1.7 ± 1.1 −1.4 ± 1.1 +1.2 ± 1.4
(9.50,18.00) −0.6 ± 1.3 +1.8 ± 2.3 −2.5 ± 2.2 +1.8 ± 2.4 +1.1 ± 2.5 −7 ± 11

Fig. 4. Production asymmetry as a function of (a) transverse momentum pT and (b) pseudorapidity η. The straight line fits have slopes of (0.09 ± 0.07) × 10−2 ( GeV/c)−1

and (−0.36 ± 0.28)%, and values of χ2 per degree of freedom of 5.5/6 and 2.2/4, respectively. The error bars include only the statistical uncertainty on the D+ signal sample
and are uncorrelated within a given plot.
Table 2
Summary of absolute values of systematic uncertainties on AP. For the binned
production asymmetries given in Table 1, all uncertainties except that on the re-
construction efficiency apply, giving a combined systematic uncertainty of 0.17%.

Systematic effect Uncertainty (%)

Trigger asymmetries 0.15
D from B 0.04
Selection criteria 0.05
Running conditions 0.04
Pion efficiency 0.02
Fitting 0.04
Kaon CP violation 0.03
Weights (reconstruction efficiency) 0.05

Total including uncertainty on weights 0.18

separately, and found to be fully consistent: (−1.07 ± 0.41)% and
(−0.85 ± 0.34)%, respectively.

7. Systematic uncertainties

The sources of systematic uncertainty are summarised in Ta-
ble 2. The dominant uncertainty of 1.5 × 10−3 is due to asym-
metries introduced by the trigger. Events which are triggered in-
dependently of the signal decay, i.e. by a track that does not
form part of the signal candidate, could be triggered by particles
produced in association with the D+ meson. If this occurs, the
asymmetry in this sample would be correlated with the produc-
tion asymmetry, and would bias the measurement of it. This was
studied with a control sample of the abundant D+ → K−π+π+
decay. To mimic the charge-unbiased sample of D+ → K0

Sπ
+ de-

cays which are triggered by a K0
S daughter, we choose the kaon and

one pion at random and require that the trigger decision be based
on one of these tracks. This is close to being charge-symmetric
between D+ and D− candidates, with some residual effects due to

differences in material interaction between K + and K − mesons.
The raw asymmetry in this subsample of D+ → K−π+π+ decays
is then compared to that in the much larger sample of candi-
dates that are triggered independently of the signal decay. The
difference in raw charge asymmetry between these two samples,
(1.5 ± 0.4)× 10−3, is a measure of the scale of the bias. Unlike the
signal, the K−π+π+ decay also includes a component due to the
K +/K − asymmetry, and therefore this is treated as a systematic
uncertainty rather than a correction. This is cross-checked with
other control samples such as D+

s → φπ+ and the uncertainty is
found to be conservative.

Further systematic uncertainties arise from the contamination
of the prompt sample by D candidates that originate from B de-
cays. The yield of these is calculated using the measured cross-
sections [1,2], branching ratios, and efficiencies determined from
the simulation. The fraction of D candidates from B decays is
found to be (1.2 ± 0.3)%. This quantity is combined with the
B0 production asymmetry, which is estimated to be (−1.0 ±
1.3)% [25], to determine the systematic uncertainty.

Certain selection criteria differ between the D+ → K0
Sπ

+ signal
sample and the D0 → K−π+π−π+ decays used to determine the
asymmetry in the pion efficiencies. The charge asymmetry is found
to depend weakly on the value of the requirement on the pion pT.
Pions in the signal sample must have pT > 500 MeV/c while those
in the control sample must have pT > 300 MeV/c. A systematic
uncertainty is calculated by estimating the proportion of signal
candidates with 300 < pT < 500 MeV/c and multiplying this frac-
tion by the difference between the charge asymmetries in the low
pT region and the average.

The difference in signal yields per pb−1 of integrated luminosity
between magnet-up and magnet-down data is used to determine
a systematic uncertainty for changes in running conditions that
could impair the cancellation of detector asymmetries achieved
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by averaging over the magnet polarities. There is also a system-
atic uncertainty on the pion efficiency asymmetry associated with
the determination of the yields of D0 → K−π+π−π+ decays. The
error associated with the mass fit is determined by comparing fit-
ted and sideband-subtracted results. The CPV in the neutral kaon
decay, discussed in Section 5, is also included as a systematic un-
certainty.

Other systematic effects such as regeneration in the neutral
kaon system [26], second order effects due to the kinematic bin-
ning of the D+ → K0

Sπ
+ sample, and asymmetric backgrounds

such as that from D+
s → K0

SK+ with the kaon misidentified as a
pion, were considered but found to be negligible. When taking the
average asymmetry weighted by the efficiency-corrected yield in
each bin, the limited number of simulated events leads to an un-
certainty on the reconstruction efficiency and hence on the per-bin
weights. This does not contribute to the uncertainty on the indi-
vidual asymmetries given in Table 1, which are calculated without
using the simulation. A quadratic sum yields an overall systematic
uncertainty of 1.8 × 10−3.

In principle, CPV in the charm decay could occur via the inter-
ference of Cabibbo-favoured and doubly Cabibbo-suppressed am-
plitudes, but this is strongly suppressed by the CKM matrix and
no evidence for it has been observed at the B-factories [27,13]. If
we allowed for the possibility of new physics or large unexpected
enhancements of the Standard Model CPV in these tree-level D+
decays, the uncertainty on the null result found at Belle [13] would
increase the total systematic uncertainty to 2.1 × 10−3.

8. Conclusions

Evidence for a charge asymmetry in the production of D+
mesons is observed at LHCb. In the kinematic range 2.0 < pT <

18.0 GeV/c and 2.20 < η < 4.75, excluding the region with 2.0 <

pT < 3.2 GeV/c, 2.20 < η < 2.80, the average asymmetry is

AP = (−0.96 ± 0.26 ± 0.18)%,

where the first uncertainty is statistical and the second is system-
atic. The result is inconsistent with zero at approximately three
standard deviations. There is no evidence for a significant depen-
dence on pT or pseudorapidity at the present level of precision.
The bias on the measured asymmetry due to CP violation in kaon
decays has been calculated and found to be almost negligible for
this dataset. These results are consistent with expectations [5] and
lay the foundations for searches for CP violation in Cabibbo sup-
pressed D+ decays.
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