

The LHCb Upgrade Hans Dijkstra

For the LHCb collaboration

- Flavour Physics goals at the LHC.
- Performance vs Pileup.
- The Trigger.
- The upgrade in a nutshell.
- Upgrading the detector:
- FE-electronics.
- Tracking detectors.
- PID detectors.
- Conclusions.

Physics Goals in a Nutshell

- 2011: LHCb Upgrade LOI http://cdsweb.cern.ch/record/1333091/files/LHCC-I-018.pdf
- Current \rightarrow upgrade: $\int L = \sim 5 \rightarrow 50 \text{fb}^{-1}$

	Exploration	Precision studies
	Search for $B_s \to \mu^+ \mu^-$ down to SM	Measure unitarity triangle angle γ to
	value	$\sim 4^{\circ}$ to permit meaningful CKM tests
Current LHCb	Search for mixing induced CP violation in B_s system $(2\beta_s)$ down to SM value Look for non-SM behaviour in forward- backward asymmetry of $B^0 \to K^* \mu^+ \mu^-$ Look for evidence of non-SM photon polarisation in exclusive $b \to s\gamma^{(*)}$	Search for CPV in charm
	Search for $B^0 \to \mu^+ \mu^-$	Measure $\mathcal{B}(B_s \to \mu^+ \mu^-)$ to a
		precision of $\sim 10\%$ of SM value
	Study other kinematical observables	Measure $2\beta_s$ to precision
	in $B^0 \to K^* \mu^+ \mu^-$, e.g. $A_T(2)$	<20% of SM value
Upgraded		Measure γ to $< 1^{\circ}$ to match
LHCb	CPV studies with gluonic	anticipated theory improvements
	penguins e.g. $B_s \to \phi \phi$	
		Charm CPV search below 10^{-4}
	Measure CP violation in	
	$B_s \operatorname{mixing} (A_{fs}^s)$	Measure photon polarisation in (i)
		exclusive $b \to s \gamma^{(*)}$ to the % level

Letter of Intent

6 Oct, LHC days in Split

LHCb and LHC

Snapshot LHC status "page 1":

- Much lower lumi than GPDs
- No lumi-decay in LHCb:
- Squeeze to $\beta^*=3$ m, but offset beams.
- Reduce offset every 10-15 min to keep same lumi.
- Run at $4\times 10^{32} \rm cm^{-2} s^{-1}$ for ~ 15 h.
- LHC could deliver $> 10^{33} {\rm cm}^{-2} {\rm s}^{-1}$ at LHCb already today.
- Can LHCb take this today?

Performance and Pileup

Very clean signal-background separation:

- σ (PV): x,y~ 10 μ m, z~ 60 μ m 90 % of PV distributed over 20 cm in z.
- $\sigma(\tau_B) \sim 40$ fs, compared to $\tau_B = 1.5$ ps.
- $\Delta p/p$: 0.4-0.6 %.
- RICH-PID: $\varepsilon(K \to K) \sim 95$ %, mis-ID $(\pi \to K) \sim 5$ %.
- Muon-PID:

 $\varepsilon(\mu
ightarrow \mu) \sim 97$ %, mis-ID $(\pi
ightarrow \mu) \sim 1-3$ %.

•
$$\Delta(E_{\gamma})/E_{\gamma} \sim 0.1/\sqrt{E} \oplus 0.01$$
 (E in GeV).

 $B~{\rm S/N}$ almost independent of pileup $D~{\rm S/N}$ shows some degradation vs pileup.

Pileup Events

Now: LHC has 50 ns bunch spacing.

- 1262 colliding bunches in LHCb.
- $@4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ nr pp-int/xing with $b\bar{b}$ is ≤ 6 .
- $@10^{33} cm^{-2} s^{-1}$: 90 % of xings ≤ 6 , hence total B-rate 80 % larger!

 \geq 2015: LHC will go to 25 ns bunch spacing.

- \sim 2500 colliding bunches in LHCb.
- $@8 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ nr pp-int/xing with $b\bar{b}$ is ≤ 6 .
- $2 \times @10^{33} cm^{-2} s^{-1}$: 90 % of xings ≤ 6 , hence total B-rate 80 % larger!
- $@2 \times @10^{33} cm^{-2} s^{-1}$: pileup similar to "now".

Hence: why not run at much larger L already now?

Trigger Yield as a function of Luminosity

First Level Trigger:

- hadronic-channels: $L^{\rm peak} \geq 3-4.10^{32}$ no gain, and eventually will loose.
- μ -channels: yield $\propto \int L$

In addition:

Radiation:

- designed for $\int L \leq 20 \text{ fb}^{-1}$.
- Affects mainly large η .

Tracking & Particle-ID:

- Si tracking not a problem.
- Straws: $L^{\text{peak}} \ge 10^{33}$ spillover becomes a problem.
- PID: OK for $L^{\text{peak}} \leq 10^{33}$, then some degradation.

Trigger Overview

Level-0 (hardware):

- Largest E_T hadron, $e(\gamma)$ and μ . Typical thresholds: 3.5, 2.5, 1.5 GeV.
- Bottleneck: 1 MHz max-output rate.
- L0 limiting yield for larger L^{peak} :
- $@L > 2.10^{32}$: L0-retention $\sim 10\%$
- $@L > 10^{33}$: L0-retention $\sim 3\%$
- Result: E_T threshold $\gg M_B$.

High Level Trigger (software):

- Access to all detector info.
- Limitation: CPU (brain?) power.
- Will improve with Moore's law "automatically".
- This year: 20-30% more CPU power, by storing events, and processing in inter-fill gaps.

6 Oct, LHC days in Split

HLT Inclusive Trigger

HLT strategy:

- Reconstruct all PVs.
- HLT1:
- Select tracks with significant IP to any PV.
- Reconstruct p_T of these tracks.
- Select $\sim 10~\%$ events with at least one track with significant IP, $p_T.$
- HLT2:
- Reconstruct p of all tracks with $p_T>0.5~{\rm GeV}.$
- Built secondary vertices, with 2,3,4 tracks.
- Calculate "corrected-mass" using PV \leftrightarrow secondary-vertex pointing constraint. Example: MC: $B^0 \rightarrow \mu\mu K\pi$, using 2-tracks.
- Data: $B^+ \rightarrow J/\psi {\rm K}^+$ with 2 tracks only.
- (Leptonic decays: use leptons)

HLT already very efficient, just based on topology.

HLT Exclusive Triggers

© Charm "background" overwhelming!

- Inclusive charm triggers \rightarrow high rate.
- Use exclusive reconstructed channels.
- Use RICH PID.
- Charm as on-line monitor. few min snapshot of on-line display.

Upgrade the Trigger

Higher lumi bottleneck is 1 MHz L0 trigger! Improve: need both IP and p_T of tracks in first level Two ways investigated:

- 1) Put more information in L0, keep 1 MHz:
 - L0-latency is 4 $\mu {\rm s},$ of which 2.5 $\mu {\rm s}$ for trigger.
 - Add VELO+TT, calculate IP, p_t in FPGA etc..
 - 2.5 $\mu \rm s$ is show stopper, also very inflexible.
- 2) "Remove" L0, all software trigger:
 - Readout FE at 40 MHz, iso 1 MHz now.
 - Move all data for every xing to EFF.
 - Very flexible trigger.
 - Keep L0-like Low Level Trigger (LLT) to "stage" rate to CPU-farm.

LHCb decided on 2).

LLT-rate (MHz)	1.	5.	10.
$B_s \rightarrow \phi \phi$	0.12	0.51	0.82
$B_d \rightarrow K^* \mu \mu$	0.36	0.89	0.97
$B_{\rm s} \to \phi \gamma$	0.39	0.92	1.00

Strategy and Expected Performance

Upgrade Strategy:

- Change FE-electronics to be able to move all data of every xing into a large Event Filter Farm (EFF).
- Install in LS2 (2018)
- Target luminosity $10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$.
- Sub-detectors which require replacement should sustain $2 \times 10^{33} {\rm cm}^{-2} {\rm s}^{-1}$

Simulated LLT and "present" HLT:

- \bullet Assume flat $10^{33} \rm cm^{-2} s^{-1}$.
- 5 $\mathrm{fb}^{-1}/\mathrm{year}$.
- For charm improve even more.
- More EFF-power (algorithms, GPU, ?), will improve even further.

Expected Upgrade Sensitivities

2012: LHCb Upgrade Framework TDR http://cdsweb.cern.ch/record/1443882/files/LHCB-TDR-012.pdf

• 2018: expect $\int L = 5 \text{ fb}^{-1}$

LHC

• 2028: expect $\int L = 50 \text{ fb}^{-1}$

Туре	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50 {\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2eta_{s}~(B^{0}_{s} ightarrow J/\psi~\phi)$	0.10	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \rightarrow J/\psi \ f_0(980))$	0.17	0.045	0.014	~ 0.01
	$A_{\mathrm{fs}}(B^0_s)$	6.4×10^{-3}	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 o \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\rm eff}(B_s^0 \to K^{*0}\bar{K}^{*0})$	-	0.13	0.02	< 0.02
	$2\beta^{\mathrm{eff}}(B^0 o \phi K^0_S)$	0.17	0.30	0.05	Technical Design Report
Right-handed	$2\beta_s^{\mathrm{eff}}(B_s^0 o \phi\gamma)$	-	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_s\to\phi\gamma)/\tau_{B^0_s}$	_	5~%	1 %	0.2 %
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \mathrm{GeV}^2/c^4)$	0.08	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB} (B^0 \to K^{*0} \mu^+ \mu^-)$	25~%	6 %	2~%	7 %
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV}^2/c^4)$	0.25	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25~%	8 %	2.5~%	$\sim 10 \%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	1.5×10^{-9}	$0.5 imes 10^{-9}$	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100 \%$	$\sim35~\%$	$\sim 5 \%$
Unitarity	$\gamma (B \rightarrow D^{(*)}K^{(*)})$	\sim 10–12 [°]	4^{0}	0.90	negligible
triangle	$\gamma (B_s^0 \to D_s K)$	-	11 ⁰	2.0°	negligible
angles	$\beta \ (B^0 \rightarrow J/\psi \ K^0_S)$	0.80	0.60	0.20	negligible
Charm	A_{Γ}	2.3×10^{-3}	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	2.1×10^{-3}	0.65×10^{-3}	0.12×10^{-3}	

$6~\mbox{Oct},~\mbox{LHC}$ days in Split

Upgrading LHCb

- Upgrading "all" FE-electronics to readout FE at 40 MHz.
- Upgrading Tracking detectors.

• Upgrading PID detectors.

FE-electronics $1 \rightarrow 40$ **MHz**

Current: FE latency-buffer, and zero-suppress after L0 trigger

Upgrade: zero-suppress in FE, no trigger \rightarrow FE, LLT in back-end.

6 Oct, LHC days in Split

Upgrading Trackers

Aim: cope with $2\times 10^{33} \rm cm^{-2} s^{-1}$

VELO (now Si-strixels):

- Two options being studied: pixels and strixels
- Main challenges (common!): cooling and data rates
- Improve $\sigma_{\rm IP}$: reduce Si distance to beam.

TT (now Si-strips):

- Si-strips. Reduce strip size at large $\eta.$
- Main challenges: cooling (radiation dose) and material budget.
- Closer to 10 mrad beam-pipe.

T-stations (now 5 mm straw tubes with Si-strips close to beam-pipe):

- Straw: 40 MHz read-out, and further away from beam-pipe.
- Near beam-pipe: Scintillating Fibre or larger Si-strip detector.
- SciFi tracker challenges: radiation hardness of fibres and SiPM read-out.
- Si tracker: material budget.

Velo Upgrade

Radial Strips Circular

- Prototype sensors being tested: 200 μ m thick, n-in-p. Smallest pitch: $30 \rightarrow 25 \ \mu$ m.
- FE-chip: common development for all Si-strip detectors in LHCb

Pixels:

- Prototype sensors: 200 μ m thick. pixel: 55 × 55 μ m²
- FE-chip: Velopix being developed based on Timepix3 (spinoff from Medipix3), 256 × 256 pixels/chip.

Velo Cooling

Close to beam: $\sim 5\times 10^{15}~n_{\rm eq} cm^{-2}$

- Keep T < $-10 \ ^{o}$ C to prevent thermal runaway.
- Present Velo: evaporative CO₂ cooling, and TPG substrate to connect sensor with cooling manifold:
- Upgrade cooling:
- Like now: TPG \rightarrow diamond?
- Move CO₂ to sensors: micro-channel cooling Bond Si with micro-channels on sensor. Can remove 13 W from $40 \times 17 \text{ mm}^2$ area.

Microchannel cooling

Velo Inner Radius

Velo is a moveable detector. It closes around the beam every LHC fill.

- 300 $\mu{\rm m}$ thick Al RF-foil @ r =5.5 mm
- First Si-strip at @ r = 8.2 mm.

LHC beam stable (few μ m) during Fill.

Upgrade:

- Thinner RF-foil and closer to beam.
- Si closer to RF foil, reduce guard ring, better resolution.
- $\bullet \rightarrow$ large gain in IP-resolution.

Tracker Stations

Scintillating Fibres

- 250 $\mu m \not {om}$ fibres.
- X/X0 = 0.7 % per layer of 5 fibres.
- 2.5 m long modules produced.
- excellent spacial precision achieved.
- $\sim 50 \ \mu m$ precision/cluster.
- Radiation:
- SiPM: need shielding+cooling.
 Test (in situ) ongoing.
- Fibre attenuation near beam-pipe: campaign of irradiation tests.

Silicon IT

- Si-IT size driven by OT occupancy.
- Aim: $2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
- Pattern recognition deteriorates $> 20 \ \%$ occupancy.
- OT occupancy dominated by secondaries, hence:
- New Be beam-pipe support (LS1)
- Lighter IT, using air cooling. Radiation: $\lesssim 5^{\rm o}{\rm C}$
- Less (12 \rightarrow 10) IT layers?
- Move IT behind OT.
- Use faster OT gas.

PID Upgrade

Muon system:

- Vital input for LLT, HLT and off-line μ -identification.
- M1 (before Calorimeters) will be removed. Provides improved momentum resolution for L0, not needed in LLT.
- FE already read-out at 40 MHz. Needs some modifications to comply with upgrade scheme.
- Present M2-M5 can cope with $1 \times 10^{33} cm^{-2} s^{-1}$. At higher rates too much dead-time close to beam. Several options under study: shielding, smaller pads, faster FE.

Calorimeter system:

- LLT on $\gamma,$ electron and hadrons. Off-line γ resolution.
- Now: Scintillating Pad Detector (e/ γ separation) and Pre-Shower (π suppression): not needed in LLT. Remove and improve ECAL resoluton.
- Radiation: studies ongoing, module in tunnel with $5 \times$ highest flux. Expect mild resolution degradation at highest doses. Could replace innermost cells.
- Lower PMT gain \rightarrow new FE being developed.

RICH system:

• Next slides..

RICH Upgrade (baseline)

PID performance vs track multiplicity

- Keep present arrangement, i.e. RICH1 and RICH2
- Remove aerogel (low p coverage) from RICH1: too few photons/ring to reconstruct at high lumi.
- Need to replace photon detectors (HPD) with 40 MHz read-out system.
 Several possibilities unser study.
- Existing PID pattern recognition functions well, even at 2×10^{33} .

RICH Upgrade: $R\&D \rightarrow 2020++?$

- Time Of internally Reflected Cherenkov light.
- Measure TOF of Cherenkov photons produced in 1 cm thick 6×5 m² quartz plate.
- Located after T-stations.
- Cover low momentum range (lost due to aerogel removal) Important for tagging with K[±].

Conclusions

- Proven record to be able to do high precision flavour physics at LHC.
- LHCb needs to upgrade the trigger to be able to profit from larger LHC luminosity.
- LHCb decided to move to full software trigger at first level. Very flexible trigger to adapt to needs a decade from now.
- \bullet All sub-detectors R&D underway, some options, final decisions Q1-2013.
- Install during LS2 (2018).
- $\int L \sim 5 \text{ fb}^{-1}$ by 2018, then collect $\int L \sim 5 \text{ fb}^{-1}$ /year with much improved (hadron) trigger.
- Expect improved sensitity by factor 3-6 compared to no upgrade, depending on channel.
- Allows exploration of new observables.

