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The ALICE Collaboration at the CERN Large Hadron Collider reports the first measurement of the inclusive
differential jet cross section at mid-rapidity in pp collisions at

√
s = 2.76 TeV, with integrated luminosity

of 13.6 nb−1. Jets are measured over the transverse momentum range 20 to 125 GeV/c and are
corrected to the particle level. Calculations based on Next-to-Leading Order perturbative QCD are in good
agreement with the measurements. The ratio of inclusive jet cross sections for jet radii R = 0.2 and
R = 0.4 is reported, and is also well reproduced by a Next-to-Leading Order perturbative QCD calculation
when hadronization effects are included.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

A QCD jet is a collimated shower of particles arising from the
hadronization of a highly virtual quark or gluon generated in a
hard (high momentum transfer Q 2) scattering. Perturbative Quan-
tum Chromodynamics (pQCD) calculations of inclusive jet cross
sections agree with collider measurements over a wide kinematic
range, for a variety of collision systems [1–5]. Jets provide impor-
tant tools for studying Standard Model and Beyond Standard Model
physics, as well as hot and dense QCD matter that is created in
high energy collisions of heavy nuclei. In heavy-ion collisions, large
transverse momentum (pT) partons traverse the colored medium
and lose energy via induced gluon radiation and elastic scattering,
which modify jet structure relative to jets generated in vacuum.
These modifications (“jet quenching”) may be observable experi-
mentally, and can be calculated theoretically ([6] and references
therein).

Measurements of the properties of the hot and dense QCD
medium generated in Pb–Pb collisions at the Large Hadron Col-
lider (LHC) require reference data from more elementary collisions
(pp and p–Pb), in which generation of a QCD medium is not ex-
pected. In March 2011, the LHC undertook a three-day run with
pp collisions at

√
s = 2.76 TeV, the same center-of-mass energy as

the currently available Pb–Pb data, to obtain first measurements of
such reference data. This Letter reports the measurement of the in-
clusive differential jet cross section at mid-rapidity from that run,
based on integrated luminosity of 13.6 nb−1.

Jet reconstruction for this analysis utilizes the infrared-safe and
collinear-safe anti-kT algorithm [7,8]. The algorithm requires spec-
ification of a clustering parameter R , which is the maximum dis-

✩ © CERN for the benefit of the ALICE Collaboration.

tance in pseudorapidity η and azimuthal angle ϕ over which con-
stituent particles are clustered,

√
(�η)2 + (�ϕ)2 < R . We study

the dependence of the inclusive jet cross section on R , which is
sensitive to the transverse structure of jets, and compare our mea-
surements to pQCD calculations at Next-to-Leading Order (NLO)
[9–12].

2. Detector and data set

ALICE consists of two large-acceptance spectrometers [13]: the
central detector, containing a high precision tracking system, par-
ticle identification detectors, and calorimetry, all located inside a
large solenoidal magnet with field strength 0.5 T; and a forward
muon spectrometer. Only the central detector is used for this anal-
ysis.

The data were recorded by the ALICE detector for pp colli-
sions at

√
s = 2.76 TeV. Several trigger detectors were utilized: the

VZERO, consisting of segmented scintillator detectors covering the
full azimuth over 2.8 < η < 5.1 (VZERO-A) and −3.7 < η < −1.7
(VZERO-C); the SPD [14], a two-layer silicon pixel detector consist-
ing of cylinders at radii 3.9 cm and 7.6 cm from the beam axis and
covering the full azimuth over |η| < 2 and |η| < 1.4 respectively;
and the EMCal [15,16], an Electromagnetic Calorimeter covering
100 degrees in azimuth and |η| < 0.7. The EMCal for this measure-
ment consists of 10 supermodules with a total of 11 520 individual
towers, each covering an angular region �η×�ϕ = 0.014 × 0.014.
The EMCal Single Shower (SSh) trigger system generates a fast en-
ergy sum (800 ns) at Trigger Level 0 (L0) for overlapping groups
of 4 × 4 (η × ϕ) adjacent EMCal towers, followed by comparison
to a threshold energy. Event recording was initiated by two differ-
ent trigger conditions: (i) the Minimum Bias (MB) trigger, requiring
at least one hit in any of VZERO-A, VZERO-C, and SPD, in coinci-
dence with the presence of an LHC bunch crossing, and (ii) the
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EMCal SSh trigger, requiring that the MB trigger condition is sat-
isfied and that at least one SSh sum exceeds a nominal threshold
energy of 3.0 GeV. The MB trigger cross section was measured to
be 55.4 ± 1.0 mb by a van der Meer scan [17].

The primary event vertex was reconstructed as described in
[18]. Events selected for offline analysis were required to have a
reconstructed primary vertex within 10 cm of the center of the
ALICE detector along the beam axis. After event selection cuts,
the MB-triggered data set corresponds to integrated luminosity
of 0.5 nb−1, while the EMCal-triggered data set corresponds to
13.1 nb−1.

Simulations are based on the PYTHIA6 [19] (Perugia-2010 tune,
version 6.425) and HERWIG [20] (version 6.510) Monte Carlo event
generators. “Particle-level” simulations utilize the event genera-
tor output directly, without accounting for detector effects, while
“detector-level” simulations also include a detailed particle trans-
port and detector response simulation based on GEANT3 [21].

For offline analysis, input to the jet reconstruction algorithm
consists of charged particle tracks and EMCal clusters. Charged par-
ticle tracks are measured in the ALICE tracking system, which cov-
ers the full azimuth within |η| < 0.9. The tracking system consists
of the ITS [14], a high precision, highly granular Inner Tracking Sys-
tem consisting of six silicon layers including the SPD, with inner
radius 3.9 cm and outer radius 43.0 cm, and the TPC [22], a large
Time Projection Chamber with inner radius 85 cm and outer ra-
dius 247 cm, that measures up to 159 independent space points
per track.

In order to achieve high and azimuthally uniform tracking effi-
ciency required for jet reconstruction, charged track selection uti-
lizes a hybrid approach that compensates local inefficiencies in
the ITS. Two distinct track classes are accepted in the hybrid ap-
proach: (i) tracks containing at least three hits in the ITS, including
at least one hit in the SPD, with momentum determined without
the primary vertex constraint, and (ii) tracks containing less than
three hits in the ITS or no hit in the SPD, with the primary ver-
tex included in the momentum determination. Class (i) contains
90%, and class (ii) 10%, of all accepted tracks, independent of pT.
Track candidates have Distance of Closest Approach to the primary
vertex less than 2.4 cm in the plane transverse to the beam, and
less than 3.0 cm in the beam direction. Accepted tracks have mea-
sured pT > 0.15 GeV/c, with a pT-dependent minimum number
of space points in the TPC ranging from 70 at pT = 0.15 GeV/c
to 100 for pT > 20 GeV/c. Tracking efficiency for charged pions
from the primary vertex is approximately 60% at pT = 0.15 GeV/c,
increasing to about 87% for 3 < pT < 40 GeV/c. Charged track mo-
mentum resolution is estimated on a track-by-track basis using
the covariance matrix of the track fit [23], and is verified by the
invariant mass resolution of reconstructed Λ and K0

S [18]. The mo-
mentum resolution δpT/pT is approximately 1% at pT = 1.0 GeV/c
and approximately 4% at pT = 40 GeV/c for track class (i) and ap-
proximately 1% at pT = 1.0 GeV/c and approximately 7% at pT =
40 GeV/c for track class (ii). Charged tracks with pT > 40 GeV/c
make negligible contribution to the inclusive jet population con-
sidered in this analysis.

EMCal clusters are formed by a clustering algorithm that com-
bines signals from adjacent EMCal towers, with cluster size limited
by the requirement that each cluster contains only one local en-
ergy maximum. A noise suppression threshold of 0.05 GeV is im-
posed on individual tower energies, and the cluster energy must
exceed 0.3 GeV. Noisy towers, identified by their event-averaged
characteristics and comprising about 1% of all EMCal towers, are
removed from the analysis. Clusters with large apparent energy but
anomalously small number of contributing towers are attributed
to the interaction of slow neutrons or highly ionizing particles in
the avalanche photodiode of the corresponding tower, and are re-

moved from the analysis. EMCal non-linearity was measured with
test beam data to be negligible for cluster energy between 3 GeV
and 50 GeV, with more energetic clusters making negligible contri-
bution to the inclusive jet population considered in this analysis. A
non-linearity correction is applied for clusters with energy below
3 GeV, with value approximately 7% at 0.5 GeV.

Charged hadrons deposit energy in the EMCal, most commonly
via minimum ionization, but also via nuclear interactions gener-
ating hadronic showers, while electrons deposit their full energy
in the EMCal via electromagnetic showering. Both charged hadron
and electron contributions to EMCal cluster energy are accounted
for, in order not to double-count a fraction of their energy in
the measured jet energy. The correction procedure, which is sim-
ilar in nature to “Particle Flow” algorithms for jet reconstruction
[24], minimizes dependence of the analysis on the simulation of
hadronic and EM showers. Measured charged particle trajectories
are propagated to the EMCal [15], with each track then matched
to the nearest cluster within �η = 0.015 and �ϕ = 0.03. Multi-
ple charged hadrons can be matched to a single cluster, though
the probability for this is less than 0.2%. Test beam measure-
ments of single charged particle interactions in the EMCal show
that the probability for the EMCal shower energy to exceed the
particle momentum is negligible [15]. For measured cluster en-
ergy Eclust and sum of momenta of all matched tracks Σp, the
corrected cluster energy Ecorr is set to zero if Eclust < Σp; oth-
erwise, Ecorr = Eclust − fsub ∗ Σp, where fsub = 1 for the primary
analysis. This data-driven procedure accurately removes charged
particle shower energy from EMCal clusters that do not have con-
tribution from photons or untracked charged particles (i.e. those
without “cluster pileup”), which corresponds to approximately 99%
of all clusters. Correction for residual cluster pileup effects utilizes
detector-level simulations based on PYTHIA6. The simulations ac-
curately reproduce the distribution of (Eclust − Ecorr)/Σp, which
corresponds closely to an in-situ measurement of the E/p distri-
bution of the EMCal in the region E/p < 1.

3. Jet reconstruction and trigger bias

Jet reconstruction is carried out utilizing the FastJet anti-kT al-
gorithm with boost-invariant pT recombination scheme [7], and
with clustering parameters R = 0.2 and 0.4. A jet is accepted if its
centroid lies within the EMCal acceptance, with distance at least
R to the EMCal edge. The measured cross section is corrected to
acceptance |η| < 0.5 and 0 < ϕ < 2π .

The charged particle tracking algorithm may misidentify low pT
decay daughters from secondary vertices as primary vertex tracks,
and assign them a much larger pT value. In addition, background
in the EMCal can generate false neutral clusters with large ap-
parent pT, as described above. The cuts imposed at the track or
cluster level to suppress such cases directly may not be fully ef-
ficient, leading to fake jets with large apparent pT,jet. However,
such false high pT tracks or clusters will have little additional
hadronic activity in their vicinity, if they are not a part of an ener-
getic jet. These cases are identified by examining the distribution
of z = ph,proj/pjet, the magnitude of the projection of the hadron
3-momentum on the jet axis, relative to the total jet momentum.
Jets whose pT is carried almost entirely by a single hadron gener-
ate a peak near z = 1 that is found to be discontinuous with the
remainder of the distribution. The fake jet population due to single
mis-measured tracks or clusters is therefore removed by requiring
zleading < 0.98 independent of pT,jet, where zleading refers to the z
value of the most energetic hadron candidate in the jet. The ef-
fect of the zleading cut on the inclusive jet yield is negligible for
pT,jet > 10 GeV/c.
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Table 1
Systematic uncertainty of the Jet Energy Scale (JES). Data at 25 GeV/c are from the MB data set, whereas data at 100 GeV/c are from the EMCal-triggered data set.

Source of systematic uncertainty Jets R = 0.2 Jets R = 0.4

25 GeV/c 100 GeV/c 25 GeV/c 100 GeV/c

Tracking efficiency 1.4% 2.2% 1.8% 2.4%
Momentum scale of charged tracks negligible negligible negligible negligible
Charged hadron showering in EMCal 0.7% 1.4% 0.6% 1.6%
Energy scale of EMCal cluster 0.6% 0.6% 0.8% 0.8%
EMCal non-linearity 0.3% negligible 0.6% negligible
EMCal clustering algorithm 1.0% 1.0% 1.0% 1.0%
Underlying event 0.2% negligible 1.0% 0.3%
Unmeasured neutron + K0

L 0.6% 0.6% 0.6% 0.6%
Fragmentation model dependence 1.6% 1.6% 1.6% 1.6%

Total JES uncertainty 2.6% 3.3% 3.1% 3.6%
Particle-level simulations based on PYTHIA6 show negligible
bias in the inclusive jet cross section due to the MB trigger, for
jets in the kinematic range considered here (pT > 20 GeV/c).

The bias imposed on the inclusive jet cross section by the EM-
Cal SSh trigger is determined by comparing the cross sections
measured with MB and SSh triggers. However, the MB data set
has limited statistical reach, and a more precise determination of
the SSh trigger bias for the inclusive jet yield is carried out using
a data-driven approach incorporating simulations. The first step in
this approach is to measure the SSh trigger efficiency for clusters
by comparing the rate of SSh-triggered clusters and clusters from
MB-triggered data, whose ratio reaches a plateau for cluster energy
above 5 GeV. The trigger efficiency in the plateau is assumed to be
100% for the regions in which the trigger hardware was known
to be fully functional (about 90% of the acceptance). Detector-level
simulated jet events are then generated using PYTHIA6. In order to
account for local variations in trigger efficiency, each EMCal clus-
ter in a simulated event is accepted by the trigger with probability
equal to the measured cluster trigger efficiency at that energy, for
the supermodule in which it is located. A simulated event is ac-
cepted by the trigger if at least one EMCal cluster in the event
satisfies the trigger requirement. The cumulative trigger efficiency
for jets is then determined by comparing the inclusive jet spec-
trum for the triggered and MB populations in the simulation. The
systematic uncertainty due to trigger efficiency arises from depen-
dence on the hadronization model, which is assessed by comparing
calculations incorporating the PYTHIA6 and HERWIG generators;
from the uncertainty in the online trigger threshold and in the rel-
ative scaling of SSh-triggered and MB cross sections; and from the
difference in SSh trigger bias for inclusive jets determined directly
from data and from the alternative, data-driven approach incorpo-
rating simulations. The resulting uncertainty decreases rapidly as
jet pT increases.

Particles from the underlying event (UE) should not be included
in the jet measurement, but their contribution cannot be discrim-
inated on an event-wise basis. Correction for the UE contribution
was therefore applied on a statistical basis. The UE transverse mo-
mentum density was estimated to be 2.1±0.4 GeV/c per unit area,
using dijet measurements [25] over a limited kinematic range, sup-
plemented by PYTHIA6 particle-level simulations. The systematic
uncertainty is taken as the difference in UE density between data
and simulations. The corresponding uncertainty in JES for R = 0.4
jets is 1% at pT = 25 GeV/c and 0.3% at pT = 100 GeV/c (Table 1).

4. Correction to particle level

The inclusive jet distribution is corrected to the particle level.
No correction is made for hadronization effects that may modify
the energy in the jet cone at the particle level relative to the par-
ton level. This choice is made to facilitate future comparison to jet

measurements in heavy-ion collisions, where correction to the par-
ton level is not well-defined at present.

Correction is based on detailed, detector-level simulations uti-
lizing PYTHIA6 and GEANT3, which have been validated exten-
sively using ALICE measurements of jets and inclusive particle pro-
duction. An example of this validation is given in Fig. 1, which
shows the distribution of jet neutral energy fraction (NEF) for data
and detector-level simulations, for various intervals of pT,jet. Good
agreement between data and simulation is observed. Similar lev-
els of agreement are achieved for other key comparisons of data
and simulation, including the number of charged track and EM-
Cal cluster constituents per jet, the zleading distribution, the mean
pT of clusters and tracks in jets, and the inclusive distributions of
identified hadrons over a wide pT range. Corrections to the inclu-
sive jet yield are applied bin-by-bin [26], with correction factor for
each bin defined as

CMC
(

plow
T ; phigh

T

) =
∫ phigh

T

plow
T

dpT
dF uncorr

meas
dpT

· dσ
particle
MC /dpT

dσ detector
MC /dpT

∫ phigh
T

plow
T

dpT
dF uncorr

meas
dpT

, (1)

where dσ
particle
MC /dpT and dσ detector

MC /dpT are the particle-level and

detector-level inclusive jet spectra from PYTHIA6; dF uncorr
meas
dpT

is a
parametrization of the measured, uncorrected inclusive jet distri-
bution, which provides a weight function to minimize the depen-
dence on the spectral shape of the simulation; and plow

T and phigh
T

are the bin limits.
Fig. 2 illustrates the detector response to jets from simula-

tions, by comparing jet pT at the particle level (pparticle
T,jet ) and

detector level (pdetector
T,jet ) on a jet-by-jet basis. The upper pan-

els show the probability distribution of their relative difference,
for representative intervals in pparticle

T,jet . In all cases, pdetector
T,jet is

smaller than pparticle
T,jet with high probability. This occurs because

the largest detector-level effects are due to unobserved particles,
i.e. finite charged particle tracking efficiency and undetected neu-
trons and K0

L . Correction to jet energy for unmeasured neutron and
K0

L energy is estimated to be 3.6–6%, depending on jet pT and R .
Simulation of this component of the particle spectrum was val-
idated by comparison with ALICE measurements of the inclusive
spectrum of protons and kaons in pp collisions at

√
s = 2.76 TeV

for pT < 20 GeV/c. Large upward fluctuations in the detector re-
sponse (pdetector

T,jet > pparticle
T,jet ), which are much less probable, are

due predominantly to rare track configurations in which daughters
of secondary vertices are incorrectly reconstructed with high pT,
with their contribution not eliminated by the cuts described above.
Comparison of simulations and data show that these configurations
are accurately modeled in the simulations. Their rate in data is
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Fig. 1. Jet neutral energy fraction (NEF) distributions for MB data (open squares), EMCal-triggered data (filled circles) and simulations (histograms), in four different pT,jet
intervals.

Fig. 2. Simulated detector response to jets. Upper panels: probability distribution of (pdetector
T,jet − pparticle

T,jet )/pparticle
T,jet , in intervals of pparticle

T,jet . Lower left: mean and median of

distribution as a function of pparticle
T,jet . Lower right: standard deviation of distribution as a function of pparticle

T,jet . The statistical errors are smaller than the marker size.
small and they make negligible contribution to the measured jet
spectrum.

Fig. 2, lower left, shows the mean and median of the rel-
ative difference between pparticle

T,jet and pdetector
T,jet , as a function of

pparticle
T,jet . The median correction to the jet energy is about 15% at

pT = 25 GeV/c and 19% at pT = 100 GeV/c. Fig. 2, lower right,
shows the standard deviation of the relative difference as a func-
tion of pparticle

T,jet , corresponding to an estimate of Jet Energy Reso-
lution (JER) approximately 18%. However, the distributions in the
upper panels are seen to be significantly non-Gaussian, especially

at low pparticle
T,jet , so that the median shift and standard deviation do

not fully characterize the detector response. The full distribution of
the detector response is used to determine dσ detector

MC /dpT in CMC.
For R = 0.4, CMC rises monotonically from 1.5 at pT = 20 GeV/c to
2.5 at pT = 120 GeV/c, while for R = 0.2, CMC rises monotonically
from 1.7 at pT = 20 GeV/c to 2.7 at pT = 120 GeV/c.

Table 1 shows all contributions to the systematic uncertainty
of JES, determined from the variation in corrected jet yield aris-
ing from systematic variation of components of the detector re-
sponse and analysis algorithms. A given fractional variation in JES
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Table 2
Systematic uncertainty of corrections to the inclusive jet cross section. Data at 25 GeV/c are from the MB data set, whereas data at 100 GeV/c are from the EMCal-triggered
data set. The values refer to percent variation of the cross section.

Sources of systematic uncertainties Jets R = 0.2 Jets R = 0.4

25 GeV/c 100 GeV/c 25 GeV/c 100 GeV/c

JES 13.1% 16.5% 15.5% 18.0%
Input PYTHIA6 spectrum shape 4% 6% 4% 7%
Momentum resolution of charged track 2% 2% 3% 3%
Energy resolution of EMCal cluster 1% 1% 1% 1%
EMCal-SSh trigger efficiency none 1.7% none 1.8%
Cross section normalization 1.9% 1.9% 1.9% 1.9%

Spectrum total systematic uncertainty 14% 18% 16% 20%

Fig. 3. Upper panels: inclusive differential jet cross sections for R = 0.2 (left) and R = 0.4 (right). Vertical bars show the statistical error, while boxes show the systematic
uncertainty (Table 2). The bands show the NLO pQCD calculations discussed in the text [11,12]. Lower panels: ratio of NLO pQCD calculations to data. Data points are placed
at the center of each bin.
corresponds to a fractional variation in jet yield approximately
five times larger. The uncertainty due to unmeasured neutron and
K0

L energy is estimated by comparing the corrections based on
PYTHIA6 and HERWIG. The EMCal energy scale uncertainty is de-
termined by comparing the π0 mass position and E/p of electrons
between data and simulation. Systematic sensitivity to the EMCal
clustering algorithm is explored with an alternative approach, in
which clusters are strictly limited to 3 × 3 adjacent EMCal tow-
ers, resulting in 1% systematic uncertainty. The systematic uncer-
tainty due to the EMCal cluster non-linearity correction is assessed
by omitting this correction in the analysis. The systematic uncer-
tainty due to the correction for charged hadron energy deposition
in the EMCal is estimated by varying both fsub and the track-
cluster matching criteria. Sensitivity to the relative contribution of
quark and gluon jets is assessed by tagging each jet from PYTHIA6
according to the highest energy parton within its phase space,
and calculating CMC separately for quark and gluon-initiated jets.
PYTHIA6 estimates that gluon-initiated jets make up about 70% of
the jet population within the kinematic region of this measure-
ment, and variation of the q/g ratio by 10% relative to that in
PYTHIA6 contributes 1% uncertainty to the fragmentation model
dependence of JES. The total JES systematic uncertainty is less than
3.6%.

Table 2 presents the components of the systematic uncertainty
of CMC (Eq. (1)). The uncertainty due to the particle-level spec-
trum shape is estimated by fitting the particle-level spectrum with
a power law function ∝ 1/pn

T (n ≈ 5) and varying n by ±0.5, which
covers the variation in n derived from different Monte Carlo mod-
els. The uncertainties due to momentum resolution of charged

Fig. 4. Ratio of inclusive differential jet cross sections for R = 0.2 and R = 0.4, with
pQCD calculations from [12]. Data points are placed at the center of each bin.

tracks and energy resolution of the EMCal clusters are estimated
from comparison of data and simulations.

Systematic uncertainties at different pT are largely correlated.
The components are added in quadrature to generate the cumula-
tive uncertainty, which is labeled “Spectrum total systematic un-
certainty” in Table 2, and “Systematic uncertainty” in Figs. 3 and 4.
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5. Results

Fig. 3 shows the inclusive differential jet cross section at parti-
cle level for R = 0.2 (left) and R = 0.4 (right), together with the
results of pQCD calculations at NLO. In order to limit sensitiv-
ity to the systematic uncertainty of the SSh trigger efficiency, MB
data are used for pT < 30 GeV/c, whereas EMCal-triggered data are
used for pT > 30 GeV/c. The Armesto calculation [11] is carried
out at the parton level using MSTW08 parton distribution func-
tions (pdf) [27]. The Soyez calculation utilizes CTEQ6.6 pdfs [28]
and is carried out at both the partonic and hadronization levels
[12]. The bands indicate the theoretical uncertainty estimated by
varying the renormalization and factorization scales between 0.5pT
to 2.0pT. The lower panels of Fig. 3 show the ratio of the NLO
pQCD calculations to data. The calculations for both R = 0.2 and
R = 0.4 are seen to agree with data within uncertainties, when
hadronization effects are included. Both calculations also agree
well with inclusive jet cross section measurements at

√
s = 7 TeV

[11,12].
Fig. 4 shows the ratio of the measured inclusive differential jet

cross sections for R = 0.2 and R = 0.4. The numerator and de-
nominator utilize disjoint subsets of the data, to ensure that they
are statistically independent. The kinematic reach of this measure-
ment is therefore less than that of the individual inclusive spectra.
The figure also shows parton-level pQCD calculations at Leading-
Order (LO), NLO and NLO with hadronization correction [12]. This
ratio allows a more stringent comparison of data and calculations
than the individual inclusive cross sections, since systematic uncer-
tainties that are common or highly correlated, most significantly
trigger efficiency, tracking efficiency, and cross section normaliza-
tion, make smaller relative contribution to the uncertainty of the
ratio. In addition, the pQCD calculation considers the ratio directly,
rather than each distribution separately, making the calculated ra-
tio effectively one perturbative order higher than the individual
cross sections (e.g. the curve labeled “NLO” is effectively NNLO)
[12].

This ratio, which provides a measurement of the transverse
structure of jets, is seen to be less than unity, i.e. at fixed pT
the cross section is smaller for R = 0.2 than for R = 0.4. The NLO
calculation of the ratio agrees within uncertainties with the mea-
surement if hadronization effects are taken into account, indicating
that the distribution of radiation within the jet is well-described
by the calculation. The transverse structure of jets produced in pp
collisions has also been studied using the jet energy profile [29],
whose measurement is described well by a pQCD calculation at
NLO with resummation [30]. Both the cross section ratio presented
here and the jet energy profile will be applied in future study of
jet quenching in heavy ion collisions.

6. Summary

In summary, we have presented the first measurement of the
inclusive differential jet cross section at mid-rapidity in pp colli-
sions at

√
s = 2.76 TeV. These data provide an important reference

for jet measurements in heavy-ion collisions at the same
√

sNN,
as well as a test of pQCD calculations at a previously unexam-
ined energy. NLO pQCD calculations with hadronization agree well
with both inclusive jet cross section measurements at R = 0.2 and
R = 0.4, as well as their ratio.
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