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1 Introduction

Over the past years, the AdS/CFT correspondence has become a more and more popular

and widespread tool which offers the opportunity to apply ideas from string theory to re-

alistic materials studied in condensed-matter physics, see e.g. [1–5] and references therein.

More specifically, it is potentially very useful when considering strongly coupled or crit-

ical condensed matter, which is generically not possible to describe within perturbation

theory. However, in the context of the AdS/CFT correspondence these systems can be un-

derstood and investigated more conveniently using a dual theory in a higher-dimensional

curved spacetime, i.e., in the framework of general relativity. Most commonly, the duality

exists between a weakly coupled, classical gravity theory in a curved anti-de-Sitter (AdS)

spacetime on the one hand, and a strongly coupled, conformal field theory (CFT) living

on the flat boundary of the AdS spacetime on the other hand. Such a conformal field

theory describes for example a quantum critical point of the condensed-matter system un-

der consideration, and the observables that are most readily available from the AdS/CFT

correspondence are usually correlation functions of the composite operators that classify

the conformal field theory. For our purposes, most relevant are correlators of fermionic

operators, since they may show Fermi or non-Fermi liquid-like behavior most easily [6–10].

However, in condensed-matter physics it is more natural to think in terms of fermionic

single-particle operators, i.e., creation and annihilation operators in a Fock space, that

satisfy the following (equal-time) anti-commutation relations[
ψα(~x, t), ψ†α′(~x

′, t)
]
+

= δ(~x− ~x′)δα,α′ , (1.1)

where α labels the spin of the electron. Furthermore, in experiments on condensed-matter

systems, the quantity that is measured is essentially always related to single-particle or

two-particle correlation functions and not to the above-mentioned composite operators.

For example, the retarded single-particle correlation or Green’s function GR is measur-

able in electronic systems using angle-resolved photoemission spectroscopy (ARPES). For

this reason, we are interested in finding GR of a strongly interacting condensed-matter

system using holographic methods. Inspired by previous work on this topic, such as [11]

and [12, 13], we have shown recently how the usual holographic prescription can be mod-

ified in such a manner that it allows for the construction of the retarded single-particle

Green’s function [14]. In a sense, our method can be seen as a bulk derivation of the

semi-holographic description advocated in [12].
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A crucial consequence of the anti-commutation relations in equation (1.1) is the ex-

istence of a sum rule for the corresponding single-particle two-point correlation function,

given by

1

π

∫ +∞

−∞
dω Im

[
GR;α,α′(~k, ω)

]
= δα,α′ . (1.2)

This sum rule is essential in determining whether the quantity under consideration is the

correlator of a single-particle or a composite operator, and therefore plays a central role in

our construction.

The quantum critical points described by the AdS/CFT correspondence are character-

ized by their dynamical scaling exponent z. In the usual correspondence, an anti-de-Sitter

background leads to a quantum critical point with relativistic scaling, i.e., z = 1. But

from a condensed-matter perspective we are also interested in quantum critical points that

have a dynamical scaling exponent different from one. To achieve this, the usual anti-

de-Sitter background is generalized into a so-called Lifshitz background, which leads to

a non-relativistic, i.e., z 6= 1 scaling on the boundary [15]. Non-zero temperature effects

can then be studied by placing a black brane in the Lifshitz spacetime [16], see also [17]

for a more recent discussion. The pure Lifshitz geometry without a black brane develops

singularities due to diverging tidal forces [18]; as a result the zero-temperature limit might

become ill-defined.1 While this could be of possible concern for our analysis, our findings

show that the fermionic Green’s function is well defined at zero temperature and the limit

T → 0 is smooth, so at least the spectral-weight function for fermions does not suffer from

any singularities.

In [14] we have described how to construct the retarded Green’s function of a strongly

interacting, but particle-hole symmetric system of chiral fermions with an arbitrary dy-

namical exponent z using a Lifshitz black-brane background. The aim of the present paper

is to analyze the physics that follows from our prescription. In particular, we calculate

the retarded single-particle Green’s function in various cases, at zero and non-zero temper-

atures, and present the corresponding spectral-weight function and dispersion relations.

Although we give some results for z = 1, we mostly focus on the case z = 2 and four

boundary spacetime dimensions. With this number of dimensions, the boundary fermions

are Weyl fermions and the boundary system behaves like an interacting Weyl semimetal. A

semimetal is a gapless semiconductor. In addition, a Weyl semimetal [21, 22] is a semimetal

with touching valence and conduction bands based on chiral two-component fermions that

in the non-interacting limit and at low energies, satisfy the Weyl equation ±~σ ·~k ψ = E ψ.

Here, the ± denotes the chirality of the fermion. Because the total system has to be

chirality-invariant, the most simple realizations of such a Weyl semimetal considered in the

literature usually contain two of such linear-dispersion cones with opposite chirality, sep-

arated in momentum-space [21]. The single-particle propagator presented here represents

the physics of one of these chiral cones. Since the holographic boundary theory is that

of Weyl fermions, and one cannot write down mass terms for Weyl fermions, the system

will automatically be gapless at zero chemical potential. Due to the Weyl character of the

1See however [19, 20] for possible resolutions within string theory.
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holographic boundary fermions, the topology of the band structure is therefore protected,

just like in Weyl semimetals.

We would like to stress that holography is employed in a bottom-up manner in this

paper. That is, the holographic model is an effective low-energy theory, satisfying the above

definition of a Weyl semimetal, whereas the microscopic structure of the actual condensed-

matter system remains hidden. Of course, all holographic AdS/CMT models have this

latter feature in common. We just assume that the Weyl semimetal under consideration

leads to a low-energy theory that is strongly coupled, chiral and scale-invariant. The

advantage of a bottom-up approach is that we can explore a range of possible situations.

In this paper, we are studying the properties of the ground state of such a holographic

model for a semimetal at zero doping, so there is a zero total charge density. But as will

be discussed, this ground state has in fact very interesting properties. In particular, zero

chemical potential corresponds to particle-hole symmetric systems, and there are many-

body correlations due to the possibility of creating particle-hole pairs. This indicates that

we are not describing a single fermionic excitation, but a fermionic many-body problem.

By computing the momentum distribution of the particles and holes, we find for z 6= 1 that

our holographic model for a Weyl semimetal contains a quantum phase transition between

a non-Fermi-liquid phase and a Fermi-liquid phase with two Fermi surfaces, one for the

particles and one for the holes, even at zero doping. In this phase, there is a non-zero

density of both particles and holes, and conduction can take place.

The scale set by the Fermi surface is determined by an appropriate combination of

dimensionless parameters λ and g that enter in our prescription for the Green’s function

on the holographic boundary [14], and the quantum critical point is at λ = 0. One can

think of 1/λ as a spin-orbit coupling constant and of g as an effective interaction parameter

coupling the elementary fermion to the conformal field theory. These parameters are not

present in the standard formulation of holography, but enter our holographic prescription

for the fermionic single-particle Green’s function. We discuss the nature of these parameters

in more detail in the next section.

The phase transition that takes place is schematically illustrated in figure 1, where

we show the non-interacting band structure and how it is populated in the ground state

of each phase. In particular, for λ > 0 the conduction band is empty and the valence

band is completely filled, whereas for λ < 0 the conduction band contains a Fermi sea of

particles and the valence band a Fermi sea of holes. Note that we present here an idealized

picture that neglects the renormalization of the Fermi surfaces involved, which is discussed

at length in this paper.

The layout of the paper is as follows. In section 2, we briefly summarize some basic

formulas from [14] that are needed here. In section 3, we present analytic and numerical

results for the single-particle spectral function for the cases z = 1 and z = 2. In section 4 we

consider the single-particle momentum distribution, and describe properties of the quantum

phase transition and the Fermi liquid involved, that does allow for well-defined but strongly

renormalized quasi-particles and quasi-holes near the two Fermi surfaces. The main part

of the paper ends with conclusions in section 5. Finally, there are a number of appendices

which contain our conventions and give more details about the calculations.
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(a) λ > 0
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(b) λ < 0

Figure 1. An idealized picture of the ground state that we find for λ > 0 and λ < 0. Grey

areas refer to filled energy levels. In this picture, we only show the effect of the interactions on the

occupation numbers and not on the dispersion relations.

2 Single-particle Green’s function for Lifshitz fermions

In this section, we determine solutions to the Dirac equation in a Lifshitz spacetime, from

which we construct the retarded fermionic single-particle Green’s function. To keep the

paper self-contained, we start by defining our notation and conventions. Readers who are

only interested in the result of the calculation may skip directly to equation (2.11). Further

details on the derivation can be found in the appendices, in particular, for remarks on how

to switch from natural to SI units we would like to refer to appendix A.1. Some of the

results in this section have already appeared in more detail in our previous work [14], other

related work on fermions in Lifshitz backgrounds can be found in [23–25].

We begin by specifying the gravitational background metric of a Lifshitz black

brane [16], i.e.,

ds2 = −V 2(r) r 2zdt2 +
dr2

r2 V 2(r)
+ r 2d~x 2 , V 2(r) = 1−

(rh
r

) d+z−1
, (2.1)

where d denotes the number of spatial dimensions. The extra spatial coordinate r runs

from the horizon at r = rh to the boundary at r = ∞, and the temperature of the black

brane is obtained by demanding the absence of a conical singularity at rh, leading to [16]

T =
d+ z − 1

4π
(rh)z . (2.2)

The metric (2.1) enjoys the Lifshitz isometry, which will be inherited by the boundary

theory as we will show shortly, and which reads

r → λr , t→ λ−zt , x→ λ−1x , T → λzT . (2.3)
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Next, we introduce a Dirac fermion Ψ into the above gravitational background. Fol-

lowing [11, 14], we include a boundary action on an ultra-violet (UV) cut-off surface at

r = r0. While many of the results can be phrased for arbitrary dimensions, for later pur-

poses we specify to d = 4 spatial dimensions already here. In the conventions of [14], the

total action for the bulk fermion that we consider is

Stotal[Ψ] = igf

∫
d5x
√−g

(
1

2
Ψ
−→
/DΨ− 1

2
Ψ
←−
/DΨ−M ΨΨ

)
−
∫
r=r0

d4x
√
−h
(

Ψ†+Z /Dz(r, x)Ψ+ + i gf
√
grr Ψ†+Ψ−

)
,

(2.4)

where the first term on the right-hand side is the Dirac action in the bulk and the second

term is the boundary action. Our notation is such that Ψ = Ψ†Γ0 with Γ0 being anti-

hermitian, and a natural choice for the Dirac matrices employed in this paper is given in

appendix A.2. Furthermore, we have decomposed Ψ into chiral components according to

its eigenvalue under Γr [8, 9] in the following way

Ψ ≡
(

Ψ+

Ψ−

)
, Γr Ψ =

(
+Ψ+

−Ψ−

)
. (2.5)

The normalization constants gf and Z appearing in (2.4) are left unspecified for the mo-

ment. The coupling of the fermions to the gravitational field is through the vielbeins ea
µ

and the spin connection (Ωµ)ab, which are determined from the geometry and whose explicit

form can be found in appendix A.2. The symbol /Dz appearing in the boundary action is

the usual Dirac operator for a fermion in a Lifshitz background with arbitrary dynamical

exponent z, and h denotes the determinant of the induced metric on the boundary.

Following [26], we also define Fourier-transformed spinors on each constant r slice as

Ψ±(r, x) =

∫
d4p

(2π)4
ψ±(r, p) eipµx

µ
, pµ = (−ω,~k) , (2.6)

where ω and ~k denote the frequency and momenta of the plane wave. The Dirac equation(
/D − M

)
Ψ = 0 resulting from (2.4) (see [14] for more details) and in-falling boundary

conditions that we shall employ at the horizon imply a relation between ψ+ and ψ−. It

can be expressed as

ψ−(r, p) = −iξ(r, p)ψ+(r, p) , (2.7)

and can be used to integrate out ψ− from the action. Together with (2.4) and (2.6) this

results in a holographic effective action for the field ψ+ on the cut-off surface as

Seff [Ψ+] = −
∫
r=r0

d4p

(2π)4

√
−h ψ†+

[
Z /Dz(p) + gf

√
grrξ(r0, p)

]
ψ+ . (2.8)

The Green’s function of ψ+ that follows from (2.8) for our geometry (2.1) reads

GR(r0, p) = −
(
rz0V (r0) /Dz(p) +

gf
Z
r1+z

0 V 2(r0) ξ(r0, p)
)−1

, (2.9)

– 5 –
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where we have rescaled ψ+ so that it acquires a canonically normalized kinetic term. The

final step is now to take a double-scaling limit

r0 →∞ , gf → 0 , gfr
1+z−2M
0 = const. (2.10)

As we take this limit, we make sure that the resulting effective action has a kinetic term

expected from a theory with dynamical scaling z. In the case z 6= 1, this can be achieved

by renormalizing away a relativistic kinetic term and adding appropriate counter-terms to

the action [14]. The result for z 6= 1 then is

GR(~k, ω) = −
(
ω − 1

λ
~σ · ~k |~k|z−1 − Σ(p)

)−1

, (2.11)

where λ is an arbitrary real number in our approach and where in the following we denote

k = |~k|. Before we discuss the self-energy Σ(p), we would like to spend some words on the

nature and interpretation of the parameter λ, both from a holographic point of view, and

from a condensed-matter point of view of the boundary.

The parameter λ appeared first in [14], where it was denoted λ = −1/η (see the

discussion between (3.18) and (3.19) in that reference). It is a coefficient that is determined

by the holographic renormalization procedure for Lifshitz geometries in the presence of bulk

fermions that has not been carried out. In our set-up, it is the parameter that multiplies the

counterterm for the fermions on the UV brane involving spatial derivatives, after sending

the UV cut-off to infinity. Given a particular bulk model, λ is a fixed number. For instance,

for a dynamical exponent z = 1, and relativistic symmetry, λ = ±1 (or ±1/c in natural

units, c being the speed of light). For other values of the dynamical exponent, we do

not know the magnitude of λ, nor do we know its sign. It is fixed and not tunable for a

given bulk action. Nevertheless, we treat it here as a variable, and allow it to vary in the

phase diagram of the boundary system, in much the same way as the bulk fermion mass

M . In this manner we can explore all the possible physical properties of the system, even

though at present we do not precisely know its value for the background that we are using.

Moreover, as explained in section 4.5, the same phase diagram can be obtained from a fixed

value of λ, but by varying the bulk mass M over a broader range, see also (2.14). From this

point of view, treating λ as a variable is perfectly viable, as long as one has enough bulk

models (or string compactifications) with sufficiently many different choices for λ. This is

completely consistent within our approach, as we have not specified the bulk action. We

only used the metric that couples to the bulk fermions.

Forgetting about holography, and looking at the boundary system from a condensed-

matter point of view, the parameter λ is the strength of the spin-orbit coupling ~σ · ~k kz−1.

What the value of the spin-orbit coupling is depends on the underlying microscopic model

for the fermions, and we cannot compute it without specifying the model. In fact, it may

depend on the properties of the material. Hence we treat it as a parameter that encodes this

ignorance, and we allow to vary it. In other words, we study how the physics changes as a

function of λ, and the result of this analysis is the main content of our paper. In particular,

we found that the sign of λ appears to be crucial in determining whether the system displays

– 6 –



J
H
E
P
0
4
(
2
0
1
3
)
1
2
7

Fermi-liquid behavior or not. In a certain sense, we are doing model building, and thus

we checked that for all values of λ, important physical consistency conditions such as sum

rules and Kramer-Kronig relations are satisfied.

After having discussed the significance of the parameter λ, we return to the self-

energy appearing in the Green’s function (2.11). In our set-up, the holographic self-energy

Σ(p) is by construction an effective description of the interactions between the elementary

chiral fermions. This interaction term arises from coupling the elementary field ψ+ to the

conformal field theory encoded in the Lifshitz background. As can be seen by comparing

with (2.9), it is related to the quantity ξ(r, p) introduced in (2.7) by

Σ(p) = −g lim
r0→∞

r2M
0 ξ(r0, p) , −1

2
< M <

1

2
, (2.12)

where g is the coupling constant which stays finite in the limit (2.10) and reads

g =
gf
Z
r1+z−2M

0 . (2.13)

The definition of the self-energy Σ(p) in (2.12) is valid for all values of the momentum ~k,

however, for ~k = 0 the allowed range of M is extended to −z/2 < M < z/2. This can be

derived from the asymptotic behavior of ξ(r, p) near the boundary, and for more details we

refer the reader to appendix B. Furthermore, it is possible to extend the relation between

ξ(r, p) and Σ(p) even to |M | > 1/2 for non-zero momentum, which requires introducing

certain counter-terms on the cut-off surface at r0 before taking the limit r0 → ∞. Since

we will also be interested in the range 1/2 < M < z/2, using the results in appendix B,

we can show that the relation (2.12) in this case should be modified to

Σ(p) = −g lim
r0→∞

(
r2M

0 ξ(r0, p)−
~σ · ~k

2M − 1
r2M−1

0

)
,

1

2
< M <

z

2
. (2.14)

Note that the second term in this expression, which is divergent for M > 1/2, removes the

divergence in ξ(r, p) and yields a finite result for Σ(p).

The transfer matrix ξ(r, p) defined in equation (2.7) is a complex two-by-two matrix.

In the case we are interested in, that is, d = 4, it can be diagonalized by choosing the Weyl

basis of gamma matrices (A.15). A first-order differential equation for the eigenvalues

ξ±(r, p) of ξ(r, p) can be derived, which was achieved in the anti-de-Sitter case (z = 1)

in [26] and generalized to arbitrary z in [14]. The resulting differential equations read

r2V ∂rξ± + 2Mrξ± =
ω

rz−1V
∓ k3 +

( ω

rz−1V
± k3

)
ξ2
± , (2.15)

where we used rotational invariance to set ~k = (0, 0, k3). Imposing in-falling boundary con-

ditions at the black-brane horizon, which corresponds to considering the retarded Green’s

function, leads to the boundary condition

ξ±(rh) = i . (2.16)

The functions ξ±(r, p) as well as the resulting self-energy Σ(p) have various symmetries,

which are discussed in more detail in appendix C.

– 7 –
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Figure 2. Illustration of our holographic construction of the self-energy.

From the imaginary part of the retarded Green’s function GR, the total spectral weight,

or spectral function, can be obtained, which is of great importance in condensed-matter

physics and is also directly observable in experiments. It is defined as the trace of the

two-by-two matrix GR, i.e.,

ρ(~k, ω) =
1

2π
Im Tr

[
GR(~k, ω)

]
. (2.17)

It was shown in [14] that the spectral-weight function corresponding to (2.11) satisfies the

sum rule ∫ ∞
−∞

dω ρ(~k, ω) = 1 , (2.18)

in the physically allowed range for the scale dimensions of the CFT operator coupled to

ψ. In [14], this range was found to be −z/2 < M < z/2, where the lower bound is due to

unitarity in the field theory, and the upper bound is a consequence of the requirement that

the coupling of the elementary fermion to the CFT is irrelevant in the ultra-violet. Within

this allowed physical range for M , we have checked numerically that the Kramers-Kronig

relations are satisfied and the sum rule (2.18) is obeyed. The latter is a consequence of the

fact that GR is the Green’s function for an elementary field ψ and its hermitian conjugate

ψ†, that satisfy anti-commutation relations. In conclusion, the prescription (2.11) thus

allows us to holographically compute single-particle Green’s functions, which are important

from a condensed-matter perspective.

To close this section, we summarize and illustrate our holographic construction in fig-

ure 2. In particular, equation (2.11) describes chiral single-particle propagators on the

boundary of the spacetime. These single-fermion excitations are modeled as dynamical

sources coupled to the fermionic composite operators in the conformal field theory. These

chiral single-fermions interact with each other, which is described via the coupling with the

– 8 –
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conformal field theory due to a fermionic excitation of opposite chirality that travels into

the bulk spacetime, feels the bulk gravitational effects classically, and comes back to the

boundary, forming the self-energy of the single fermions. In the ultra-violet (UV), the points

where the chiral dynamical source emits and reabsorbs the fermion of opposite chirality are

very close together and the latter fermion cannot travel far into the bulk. Hence, it only no-

tices the flat background on the cut-off surface in the bulk spacetime, which leads to a free

fermionic propagator in the UV. For the infra-red (IR) case, however, the fermion of oppo-

site chirality can indeed travel far into the curved part of the bulk spacetime, and as a result

the IR dynamics will be dominated by interactions and will generally not be free. This cor-

responds physically to the usual “energy-scale” interpretation of the extra spatial direction.

For clarity, we recite the three different couplings that one should distinguish here.

1. The first coupling is the analog of the ’t Hooft coupling λH that describes the effective

coupling in the conformal field theory. This is assumed to be large in our model, hence

the corresponding string states in the bulk are assumed to decouple.

2. The second coupling is the inverse of Newton’s constant, G−1
5 , that is proportional

to N2, where N is the degree of the gauge group governing the conformal field

theory. This is assumed to be large, allowing us to treat the fermion bulk action

as a perturbation on the action of general relativity. In particular, we may ignore

the back-reaction of the bulk fermions on the spacetime in the large-N limit. This

corresponds to the fact that the connected parts of four-point functions of composite

operators in the conformal field theory vanish.

3. Finally there is what we call g, the coupling between the dynamical source and the

dominant channel in the conformal field theory.

The first two coupling constants are implicit in our model, as the gravitational action is

not specified. A strongly interacting conformal field theory is characterized by non-trivial

scaling dimensions, different than the engineering dimensions. This is indeed the case

modeled here. In order to produce a non-trivial self-energy for the single fermion, the first

and last coupling constants should be large, at least of order 1. As a consequence, there

is always a momentum-space region in the IR where the self-energy is dominant over the

kinetic term in the single-fermion propagator (2.11). This is what we mean when saying

that the single fermions are “strongly interacting”. In the context of the Weyl semimetal,

the single-particle propagator from (2.11) models the excitations of one of the chiral cones.

3 Single-particle spectra

In the previous section, we have outlined the construction of the retarded single-particle

Green’s function. In the present section, we now study this Green’s function for both the

relativistic z = 1 and non-relativistic z = 2 case in more detail, and work out its physical

properties. The zero-temperature results were first obtained in [14], and here we consider

non-zero temperatures as well. However, let us stress that the systems we describe are

always at zero chemical potential.
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3.1 Relativistic case z = 1

In the case that the elementary fermion ψ+ interacts with a relativistic CFT, the back-

ground is given by an AdS black brane and is described by the metric shown in equa-

tion (2.1) for z = 1. The mass range for the bulk Dirac fermion is then restricted to lie

within the interval −1/2 < M < 1/2.

3.1.1 Zero temperature

For vanishing temperature and z = 1, the self-energy Σ(p) can be computed analytically for

arbitrary frequencies ω and momenta ~k. The result for the full retarded Green’s function

has been worked out in [14] and reads

GR(~k, ω) = − 1

p2
(

1− gc1e
−iπ(M+ 1

2)p2M−1
)(ω + ~σ · ~k

)
, (3.1)

where we defined p ≡
√
ω2 − ~k · ~k as well as the constant (for arbitrary values of z)

cz = (2z)−
2M
z

Γ
(

1
2 − M

z

)
Γ
(

1
2 + M

z

) . (3.2)

Note that (3.1) can be extended into the complex plane by allowing for complex momenta

p, which is important when determining the pole structure of the Green’s function. Because

of the branch point at p = 0, we need to introduce a branch cut which is taken to run from

p = 0 to p = −i∞ for later convenience. Furthermore, we find that in order for (3.1) to be

free of singularities in the upper half ω plane, i.e., to satisfy the Kramers-Kronig relations,

we have to demand

g > 0 , (3.3)

which is derived in detail in appendix D.1. It is then straightforward to show that the

Green’s function (3.1) also satisfies the sum rule (2.18), as it was done in [14] and sum-

marized in appendices D.2 and D.3. Furthermore, as mentioned above, (3.1) is valid on

the complex p plane, with the prescription that on the real ω line the self-energy is found

by using

p2M−1e−iπ(M+ 1
2) =


+p2M−1e−iπ(M+ 1

2) , p ≡
√
ω2 − ~k · ~k , ω > +|~k| ,

+p2M−1e+iπ(M+ 1
2) , p ≡

√
ω2 − ~k · ~k , ω < −|~k| ,

−p2M−1 , p ≡
√
~k · ~k − ω2 , −|~k|<ω < +|~k| .

(3.4)

This directly follows from (3.1) by noting that the region ω < −|~k| for real frequencies

is obtained from the region ω > |~k| by p → eiπp, that is ω → eiπω and ~k → eiπ~k, while

the region |ω| < |~k| is obtained via p → eiπ/2p. Note also that the Green’s function for

−|~k| < ω < +|~k| has no imaginary part.
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k3

ω
ρ(~k, ω)

(a) M = +1/4

k3

ω
ρ(~k, ω)

(b) M = −1/4

Figure 3. Total spectral function for T = 1/30, g = 1 and M = ±1/4.

k3

ω
ρ(~k, ω)

(a) M = +1/4

k3

ω
ρ(~k, ω)

(b) M = −1/4

Figure 4. Total spectral function for T = 2, g = 1 and M = ±1/4.

3.1.2 Non-zero temperature

We have studied the effects of non-zero temperature on the structure and form of the

Green’s function by numerical integration of the Dirac equation. To illustrate our results,

we have included figures 3 and 4 which show the total spectral-weight function (2.17) for

T = 1/30 and T = 2, respectively. Furthermore, we made a distinction between positive

and negative masses M , and we employed the rotational symmetry to set ~k = (0, 0, k3).

Let us discuss these figures in some more detail:
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• First, we note that a non-vanishing temperature results in a smearing out of the

features of the Green’s function, as can be seen by comparing figures 3 and 4.

• For M > 0 we observe a large spectral weight approximately at ω = ±k3, which is

due to the “light cone” of relativistic physics. In the zero-temperature case (3.4), the

imaginary part of the Green’s function is strictly zero outside of the light cone in the

region −|~k| < ω < +|~k|. For non-zero temperatures, there is a small contribution in

this region, which increases with temperature.

Note that the peak in the spectral weight is not caused by a pole in the Green’s

function, but by the aforementioned branch cut. Therefore, it has no interpretation

as a well-defined quasi-particle excitation, but it is still possible to approximately

determine the dispersion relation, as it is shown in the next subsection.

• For negative masses M < 0, the spectrum has a similar form. Indeed, there is again

a large peak at ω = ±k3. However, for low T , the imaginary part of the Green’s

function goes to zero at k3 = 0 as ω → 0. It has a maximum in between, which

leads to a broad maximum in the spectrum. Its approximate location is determined

analytically in section 3.1.3.

We have also investigated the ratio R of the location of the maximum and its width

as a function of g. This ratio is approximately constant, which means that its shape

becomes broader as we increase its position, and vice versa. The spectral function at

k3 = 0 looks very similar to what is plotted in figure 7 for the non-relativistic case

with z = 2. It is not possible to tune the parameters such that the peak is located

sufficiently far away from the origin at ω = 0 while its maximum remains sharp.

Therefore, we cannot interpret this feature in the spectral function as a massive

particle. Again, we give some further analytic arguments of this statement at zero

temperature in section 3.1.3.

3.1.3 Dispersion relation

In the last subsection 3.1.2, we have illustrated that the spectral weight is peaked at

particular functions ω(~k). In this section, we now investigate the corresponding dispersion

relation of the theory. For vanishing temperature this can be done analytically via the

single-particle Green’s function by solving

ReG−1
R (~k, ω) = 0 . (3.5)

By definition, the solutions to this equation determine the dispersion relation of the would-

be (quasi-)particle. The interpretation as a particle only becomes justified if the width

is small compared to the energy of the particle. Indeed, a large peak in the spectral

density function is only obtained when both Re(G−1
R ) and (Im Σ)2 are minimal, as follows

from the identity

ImGR = − Im Σ

(ReG−1
R )2 + (Im Σ)2

. (3.6)
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Let us first solve (3.5). Using the explicit expression (3.1), equation (3.5) generically

gives two possible dispersion relations, namely

ω = ±|~k| and g c1Re
[
e−iπ(M+ 1

2)p2M−1
]

= 1 . (3.7)

The first solution describes a free, massless relativistic excitation which is always present.

The second equation in (3.7) should be studied separately in the two regions |ω| < |~k| and

|ω| > |~k|. In the first case, using (3.4) we obtain the solution

p2 =

(
− 1

gc1

) 2
2M−1

. (3.8)

Since gc1 > 0 and the left-hand side of (3.8) should be real, we conclude that there is no

solution for |ω| < |~k|. In the second case, |ω| > |~k|, the solution reads

p2 =

(
g c1 cos

[
π

(
M +

1

2

)]) 2
1−2M

. (3.9)

For 0 < M < 1/2, we do not find a solution since gc1 > 0. On the other hand, for

−1/2 < M < 0, we obtain

ω = ±
√
~k · ~k +m2 , m2 =

(
gc1 cos

[
π

(
M +

1

2

)]) 2
1−2M

, (3.10)

which is indeed close to the locations of the maxima in the spectral-weight function that

were found for non-zero temperature. For zero temperature, equation (3.10) yields the

exact result.

Now we can look at the width, by computing the imaginary part of the self-energy at

the values (3.10). A straightforward calculation shows that, at zero temperature, we have

Im Σ = −(ω − ~σ · ~k) tan

[
π

(
M +

1

2

)]
, (3.11)

with ω given by (3.10). However, for momenta small compared to the gap m (in the

restframe of the would-be particle), we can approximate

Im Σ ≈ m tan

[
π

(
M +

1

2

)]
. (3.12)

The width is then comparable to the gap, and therefore the peak in the spectral density

does not have a quasi-particle interpretation. One might try to make the width smaller by

taking the value of M close to the unitarity bound, M = −1/2. However, notice that then

the gap also narrows down. We conclude therefore that no true quasi-particles exist.

3.2 Non-relativistic case z 6= 1

In principle, every value of the dynamical exponent z can be considered using the prescrip-

tion shown in (2.11). However, for our purposes we are mostly interested in z = 2 where

the elementary fermion interacts with a CFT exhibiting z = 2 Lifshitz scale invariance.
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3.2.1 Zero temperature

Unlike the relativistic case studied above, for an arbitrary dynamical exponent z we were

not able to obtain GR(ω,~k) analytically for both ω and ~k non-vanishing. But it is possible

to determine the zero-temperature result for ~k = 0 and ω = 0 separately, and then restrict

the general expression to a great extent.

Let us therefore start with the case ~k = 0 and T = 0. From [14] we recall the expression

for the Green’s function as

GR(~0, ω) = − 1

ω − g cz ω
2M
z e−iπ(

M
z

+ 1
2)
, (3.13)

where we employed the definition (3.2). In the case with ω = 0 and T = 0 we instead

find [14]

GR(~k, 0) =
1

1
λ ~σ · ~k kz−1 + g c1 k2M−1~σ · ~k

, (3.14)

where again k denotes |~k|. The generic case at vanishing temperature when both ~k and ω

are non-zero can then be restricted as follows. Using the scaling and rotational symmetries

of the self-energy (see appendix C.1), and defining u = ω/kz for notational simplicity,

we have

GR(~k, ω) = − 1

ω − 1
λ ~σ · ~k kz−1 − g

(
k2Ms1,M (u) + k2M−1s2,M (u)~σ · ~k

) , (3.15)

where s1,M and s2,M are complex functions of u and M only. Furthermore, we can derive

conditions on the functions s1,2 using the symmetry of Σ(p) under the change M → −M , as

discussed in appendix C.4. The asymptotic behavior of the functions s1,M (u) and s2,M (u)

in the limits u → 0 and u → ∞ is fixed by the expressions (3.13) and (3.14) given above.

We therefore have

s1,M (u)
u→∞−−−−→ u

2M
z e−iπ(

M
z

+ 1
2) cz , s2,M (u)

u→∞−−−−→ 0 ,

s1,M (u)
u→0−−−→ 0 , s2,M (u)

u→0−−−→ c1 .
(3.16)

Unfortunately, these conditions do not seem to be sufficient to determine the analytic

form of (3.15). Therefore we have to study the Green’s function numerically. Yet, we

can determine the qualitative form of the dispersion relation by analytic arguments as we

describe below in section 3.2.3.

3.2.2 Non-zero temperature

We have studied the retarded Green’s function and the corresponding spectral-weight func-

tion for z = 2 numerically as a function of ω, ~k, T and λ. Using the symmetries summarized

in appendix C, that is, chirality and particle-hole symmetry, we observe that the compo-

nents of the spectral-weight function obey the following relations

ρ±(~k, ω) = ρ∓(−~k, ω) = ρ±(−~k,−ω) . (3.17)
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Consequently, it suffices to consider separate components instead of the trace over chiral

components.

Next, we recall that for z 6= 1 the Green’s function (2.11) contains the parameter λ,

which we have not determined analytically. Treating λ as a free parameter, we observe

that under a change of sign of λ, the far UV behavior of one component of the spectral

weight function asymptotes the UV behavior of the other component with the original sign,

that is,

ρ±−λ(~k, ω)
|ω|→∞, |k|→∞−−−−−−−−−−→ ρ∓+λ(~k, ω) = ρ±+λ(−~k, ω) . (3.18)

Since λ can be interpreted as a spin-orbit coupling constant, we use the following convention

for plotting components of the spectral-weight function: when λ is positive (negative), the

plus (minus) component of the spectral-weight function is shown. In this manner we make

sure that we always compare spectra with equal group velocity in the UV, also when λ

changes sign. We make this choice because qualitatively the UV physics is then, apart from

the topology of the band structure, independent of the sign of λ. This allows us to compare

more clearly the physics for positive and negative values of λ as we will see shortly.

In figures 5 and 6 we show numerical results for separate components of the corre-

sponding spectral-weight function. The parameters are chosen as M = ±1/4, g = 1 and

T = 1/30, for a number of different values for λ. We discuss some of the features in turn:

• In figure 5, showing the results for positiveM , we see that the spectral-weight function

is very sharply peaked in the UV and behaves as a free chiral fermion with a quadratic

dispersion. In the IR, the self-energy becomes dominant which changes and smears

out the form of the free-fermion dispersion due to strong interactions. When λ

switches sign, the spectral-weight function changes in the IR, with the convention

such that the far UV behavior stays the same. For λ > 0, the band structure is

similar to that of a Weyl semimetal, as can be seen by combining it with the density

plot of ρ−(~k, ω) for λ > 0 (not shown) and comparing it with figure 1. Indeed, the

observed ~σ ·~k dependence and the absence of a gap are defining properties of the Weyl

semimetal. For λ < 0, the system is gapless too, and similar to a Weyl semimetal in

the presence of Fermi surfaces.

• In figure 6, where M is negative, we observe a phenomenon similar to the relativistic

case with M < 0. In particular, the spectral weight has to vanish for k = 0 as ω → 0,

so there is a maximum in the spectral-weight function at non-zero ω. However, the

ratio of the location and the width of the peak, R, again remains constant as we

change g, so there is no gap generation with a quasi-particle interpretation. This is

further illustrated in figure 7.

To close our discussion about non-zero temperature effects in the case of z = 2, let us

consider the strict IR (or hydrodynamic) limit ω → 0, k → 0. As explained in appendix B.3,

in this limit the contribution from the free propagator vanishes and the Green’s function

reduces to the inverse of the self-energy Σ(p). An analytical result for all values of the
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k3

ω

(a) Density plot of ρ+(~k, ω) at λ = 2

k3

ω

(b) Density plot of ρ+(~k, ω) at λ = 0.5

k3

ω

(c) Density plot of ρ+(~k, ω) at λ = 0.1

k3

ω

(d) Density plot of ρ−(~k, ω) at λ = −0.1

k3

ω

(e) Density plot of ρ−(~k, ω) at λ = −0.5

k3

ω

(f) Density plot of ρ−(~k, ω) at λ = −2

Figure 5. Density plot of ρ±(~k, ω) for z = 2, M = +1/4, T = 1/30, g = 1.
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k3

ω

(a) Density plot of ρ+(~k, ω) at λ = 2

k3

ω

(b) Density plot of ρ+(~k, ω) at λ = 0.5

k3

ω

(c) Density plot of ρ+(~k, ω) at λ = 0.1

k3

ω

(d) Density plot of ρ−(~k, ω) at λ = −0.1

k3

ω

(e) Density plot of ρ−(~k, ω) at λ = −0.5

k3

ω

(f) Density plot of ρ−(~k, ω) at λ = −2

Figure 6. Density plot of ρ±(~k, ω) for z = 2, M = −1/4, T = 1/30, g = 1.
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1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

ω

ρ±(0, ω)
k = 0, T = 0, M = −1/4, R = 0.4574

g = 0.25 blue line

g = 1 red line

g = 5 green line

Figure 7. Spectral-weight function for vanishing momentum determined from (3.13). Since the

ratio of the location and the width of the peak remains constant (R = 0.4574 in the figure), there

is no quasi-particle interpretation.

dynamical exponent z and dimension d and for non-zero temperature has been obtained

for this case in equation (B.21), which we recall here for convenience

GR(~0, 0) =
i

g
2

4M
d+z−1

(
d+ z − 1

4π

) 2M
z

T−
2M
z . (3.19)

3.2.3 Dispersion relation

We now consider the dispersion relation for z 6= 1 at zero temperature, which can be

derived from the general form of the Green’s function given in (3.15). In particular, the

dispersion relation is obtained by solving (3.5), which in the present case reads

ω − 1

λ
~σ · ~k kz−1 − g k2MRe

(
s1,M (u) +

~σ · ~k
k

s2,M (u)

)
= 0 . (3.20)

In the following we consider the upper-spin component for definiteness. The latter means

that ~σ · ~k/k is replaced by sign(k3), where we again employed the rotational symmetry to

align the momenta in the z-direction. For positive (negative) momentum k3 the dispersion

relation then becomes

ω ∓ 1

λ
kz − g k2M Re

(
s1,M (u)± s2,M (u)

)
= 0 . (3.21)

In order to determine the qualitative form of the dispersion relation, we study various

limits of the equation above.

• We first consider the UV limit ω → ∞, k → ∞ for which there are three distinct

possibilities: ω/kz → ∞, kz/ω → ∞ and ω/kz → const. The first two do not allow
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for a solution of (3.21), but the third possibility leads to

ω ≈ ± 1

λ
kz for k � 1 (3.22)

in the allowed mass range −z/2 < M < z/2. This result confirms our general picture

that the interaction of the elementary fermion with the CFT is irrelevant in the UV,

hence the dispersion becomes that of a free fermion.

• Next, we consider the limit k3 → 0+, ω > 0. In the mass range −z/2 < M < z/2 we

determine the dispersion curve from (3.13) as

ω + g cz

∣∣∣cos
[
π
(
M
z + 1

2

) ]∣∣∣ sign(M) ω
2M
z = 0 . (3.23)

Noting that g > 0 and cz > 0, we find that the only solution to this equation is

ω = 0+ for M > 0. On the other hand, for M < 0 we obtain the only solution as

ω =
(
g cz

∣∣∣cos
[
π
(
M
z + 1

2

) ]∣∣∣) z
z−2M ≡ mz , M < 0 . (3.24)

These solutions correspond to the points where the dispersion curve touches the axis

at k = 0.

Studying the dispersion relation for the case of k3 → 0+ and ω < 0, we find another

solution at ω = −mz, consistent with the particle-hole symmetry. This is the non-

relativistic analog of the result we obtained in equation (3.10). As mentioned above,

and similar to the case with z = 1, the corresponding peaks in the spectral-weight

function cannot be interpreted as a true gapped quasi-particle excitation. This is

further illustrated by a plot of the analytic result in figure 7.

• The most interesting case is when 0 < M < 1/2 and λ < 0. As one can see from

figure 5, this situation is quite different from 0 < M < 1/2 and λ > 0. The dispersion

curve ω(~k) for λ < 0 crosses the ω = 0 axis three times, instead of only once at

ω = k = 0. It therefore seems that two Fermi surfaces appear at the momenta

for which ω(±kF ) = 0. This signals a phase transition as one crosses from positive

to negative λ. The remainder of this paper is devoted to a detailed study of this

phase transition.

4 Quantum phase transition

In figures 5 and 6 we have already seen that for z = 2 the parameter λ controls features of

the spectral density significantly. In particular, when switching the sign of λ the number of

zeros of the dispersion relation ω(~k) changes, as becomes clear when comparing for instance

figures 5(a) and 5(f). In the present section, we study this phenomenon in more detail.

For simplicity we focus on the case 0 < M < 1/2 since the quantum phase transition

discussed here is also present for −1/2 < M < 0. However, we also briefly consider the

case |M | > 1/2 in section 4.5.

– 19 –



J
H
E
P
0
4
(
2
0
1
3
)
1
2
7

4.1 Momentum distribution

Let us start by defining the momentum distribution function. We choose again a convention

such that the group velocity of a particle with one of the spin components always has the

same sign at large momenta, irrespectively of the sign of λ. More concretely, with nF (ω)

the Fermi distribution we write

N±~k
=


1

π

∫ ∞
−∞

dω ImG±R(ω,~k) nF (ω) for λ > 0 ,

1

π

∫ ∞
−∞

dω ImG∓R(ω,~k) nF (ω) for λ < 0 .

(4.1)

The behavior of N±~k
when λ changes sign is illustrated in figure 8 for non-zero temperatures,

where we again employed the rotational symmetry to set ~k = (0, 0, k3). In particular, for

λ < 0 the momentum distribution indicates a Fermi surface with a certain width, on which

we comment later. When λ switches sign, two extrema appear that develop into sharp

discontinuities as λ increases. This is a clear signature of a Fermi surface. The locations

of the jumps are determined analytically in the next section.

4.2 Fermi momentum

We now study analytically how the number of putative Fermi surfaces changes as we vary

the parameter λ. To do so, we recall that Fermi surfaces are determined by the poles of the

Green’s function at vanishing frequencies ω = 0. The latter can be computed by setting

to zero the denominator in (2.11). Note also that the self-energy is given by (2.12) which

satisfies the particle-hole symmetry derived from (C.16). Employing the general form of

the self-energy implied by (3.15), we see that in the limit ω → 0 the imaginary part of Σ(p)

vanishes and the condition for the presence of a Fermi surface coincides with the presence

of zeros of the dispersion relation (3.5). Thus, the loci of the Fermi surfaces are given

precisely by the points where the dispersion curve ω(~k) crosses the ω = 0 axis.

We therefore consider equation (3.21) in the limit ω → 0. Using (3.16) and the

expression (3.2) for c1, we obtain the following formula for the loci of the Fermi surfaces

1

λ
kz + g k2Mc1 = 0 . (4.2)

Then, as we have mentioned in equation (3.3), to avoid violation of causality we have to

require g > 0. Equation (4.2) can thus have non-trivial solutions in the range −1/2 < M <

1/2 only when λ < 0, that is

k = kF =
(
−gλc1

) 1
z−2M . (4.3)

Next, let us consider again the numerical results for the imaginary part of the Green’s

function shown in figure 5. For λ < 0, there are zero-energy modes at non-vanishing

momentum, suggesting that the system indeed has two Fermi surfaces at zero temperature.

However, due to the small but non-zero temperature which we have to employ in our

numerics, the spectrum shown in the plots has a finite width and the locations of the zero
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(d) λ = −0.5, kF = 1.03
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(e) λ = −1, kF = 1.63
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(f) λ = −100, kF = 35.2

Figure 8. Momentum distribution of the minus component for M = +1/4, T = 1/30, g = 1. For

λ > 0 it has a smooth kink-like behavior whereas for λ < 0 two Fermi surfaces develop. The red

dots give the analytic value (4.3) of kF . For small and negative λ, the Fermi surfaces are smeared

out because of the non-zero value of the temperature.

modes are approximately at the Fermi momentum (4.3). To investigate this point further

and to confirm that we are indeed dealing with a genuine Fermi surface, in the following

we compute the quasi-particle weight Z as a function of λ and g, as well as the effective

mass and the lifetime at the Fermi surface as a function of ω, T , g and λ.
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4.2.1 Quasi-particle residue

In order to scrutinize the Fermi surfaces, in this subsection we determine the quasi-particle

residue by linearizing the dispersion relation around the Fermi surface at ω ≈ 0, k ≈ kF .

For convenience, we choose the lower component of the Green’s function which results in the

spectral-weight function shown in figures 5(d)-(f). Furthermore, we employ the rotational

symmetry to set ~k = (0, 0, k3) with k3 > 0, and thus k3 = k in the following. We then

compute up to first order in derivatives

− Re
(
G−R
)−1

∣∣∣
k≈kF , ω≈0

≈ ω
(

1− ∂ω Re Σ−(kF , ω)
∣∣∣
ω=0

)
− (k − kF ) ∂k

(
Re Σ−(k, 0)− 1

λ
kz
) ∣∣∣∣

k=kF

.
(4.4)

Using (4.4) in the retarded Green’s function, close to the Fermi surface we obtain the

expression

G−R(k, ω) =
−Z

ω − Z(k − kF ) ∂k
(

Re Σ−(k, 0)− 1
λk

z
) ∣∣
k=kF

− iZ Im Σ−(k, ω)
, (4.5)

where the wavefunction renormalization factor, or quasi-particle residue Z, is given by

Z =
1

1− ∂ω Re Σ±(kF , ω)
∣∣
ω=0

. (4.6)

The residue is equal for both spin components because the ω derivatives of Re Σ± are

equal at ω = 0. Furthermore, note that Z depends on the coupling g explicitly due to the

factor g in Σ(p), but also implicitly via the dependence of kF on g shown in (4.3). The

dependence on λ is only through kF . To be able to determine the quasi-particle residue,

the real part of the self-energy has to be linear in ω = 0, which is indeed the case, as shown

in figure 9. The first derivative of the real part of the self-energy is shown for T = 1/100

in figure 10(a).

Let us illustrate the calculation of Z for a particular value of λ and g, namely λ = −0.5

and g = 1. For T = 1/30, the first derivative of the real part of the self-energy has the non-

zero value ∂ω Re Σ+(kF , 0) ≈ −0.8 at ω = 0. This leads to a finite quasi-particle residue of

about Z ≈ 0.56, which is precisely the height of the step in the momentum distribution at

k3 = ±kF , as shown in figure 11. Repeating this calculation for different values of λ, we

have determined Z(λ), which is shown in figure 12. Note that 0 ≤ Z ≤ 1 as is required.

Furthermore, the large deviation from 1 of the quasi-particle residue for small and negative

λ, demonstrates that we are indeed describing a strongly interacting system.

4.2.2 Effective mass

In the last subsection we have seen that at the Fermi surfaces there are quasi-particles

which are strongly renormalized. Now, to further characterize the Fermi liquid we should

also compute their effective mass. The latter is defined as the inverse of the slope of the

quasi-particle dispersion around the Fermi surface, that is,

ω(k) =
1

meff
(k − kF ) kF near the Fermi surface, (4.7)
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Figure 9. Imaginary and real part of the self-energy Σ+(p) evaluated at the Fermi momentum for

T = 1/100, g = 1, λ = −0.5 and M = 1/4. The imaginary part is zero around ω = 0 and the real

part is linear around ω = 0, which are both defining properties of a Fermi liquid.

-4 -2 2 4
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(a) ∂ω Re Σ+
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ω

∂2
ω Im Σ+

(b) ∂2
ω Im Σ+

Figure 10. This figure shows the first derivative of Re Σ+(p) and the second derivative of Im Σ+(p),

both at λ = −0.5, T = 1/100, M = 1/4 and g = 1, evaluated at the Fermi momentum.

where we are again employing k3 > 0 and thus k3 = k. Therefore, in our present situation

the retarded Green’s function near the Fermi momentum can be written as

G−R(k, ω) =
−Z

ω − 1
meff

(k − kF )kF − iZ Im Σ−(k, ω)
, (4.8)

and by comparing with the explicit form given in (4.5) we conclude that

1

meff
=

Z

kF
∂k

(
Re Σ−(k, 0)− 1

λ
kz
) ∣∣∣∣

k=kF

. (4.9)

At zero temperature, we can calculate the effective mass analytically. In particular, for

z = 2 we obtain from the exact result given in equation (3.14) that

Re Σ−(k, 0) = gc1k
2M , ∂k Re Σ−(k, 0)

∣∣
k=kF

= −2M

λ
kF , (4.10)

– 23 –



J
H
E
P
0
4
(
2
0
1
3
)
1
2
7

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N−~k

k3

kF = 1.0305

Z = 0.557

λ = −0.5

Figure 11. The momentum distribution for M = 1/4, T = 1/30 and g = 1. The quasi-particle

residue is given by the distance between the dotted lines: the difference in height is the numerical

value of Z, which is 0.56 for λ = −0.5. The red dots give the analytic value of ±kF .

-2.0 -1.5 -1.0 -0.5
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0.6

0.8

-2.0 -1.5 -1.0 -0.5 0.0
0.

0.4
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1.2

λ

Z(λ)

T = 1/30 red curve

T = 1/1000 blue curve

λ

meff/|λ|

Figure 12. Wavefunction renormalization factor Z as a function of λ for g = 1, M = 1/4 and

for different temperatures. Z is only defined for negative λ. The quasi-particle weight lies between

one and zero, as expected. It approaches unity for very large and negative values of λ, i.e., very far

away from the phase transition. For λ → 0− it vanishes only strictly at T = 0. Due to non-zero

temperature effects, the quasi-particle residue has a non-zero minimum at λ = 0, which is smaller

for the lower temperature curve. The inset shows a plot of meff/|λ| as a function of λ for M = 1/4.
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where we eliminated gc1 in favor of kF . Therefore, the effective mass for z = 2 at zero

temperature reads

meff = − λ

2Z(λ) (M + 1)
. (4.11)

The effective mass is shown in the inset in figure 12.

4.2.3 Quasi-particle decay rate

We now turn to the lifetime of the quasi-particles. At zero temperature, from the analytic

result (3.14) we infer that the imaginary part of the self-energy vanishes at ω = 0, k = kF .

In figure 9, which shows the imaginary part of the self-energy, we see that this behavior

is confirmed numerically. This implies that the spectral function at the Fermi surface is

a δ-function at T = 0, which is a well-known and defining property of a Fermi liquid. As

a consequence, the momentum distribution shows a discontinuity at the Fermi surfaces.

Now, the inverse of the imaginary part of the self-energy Im Σ± has SI units of time, and

at ω = 0, we associate it to a lifetime for the quasi-particles2

τ~k =
1

−2Z Im Σ±(~k, 0)
. (4.12)

The lifetime τkF is infinite precisely at the Fermi momentum. We can also define a

frequency-dependent decay rate at the Fermi momentum as

Γ(ω) = −2Z Im Σ±(kF , ω) . (4.13)

At the Fermi surface ω = 0, the decay rate Γ is the inverse of the quasi-particle lifetime,

therefore it vanishes for ω → 0. This behavior can also be observed in the spectra above.

In particular, when T and ω are small but non-zero, the δ-function is broadened, which

is indeed visible numerically, as shown in figure 13. For completeness, we note that the

retarded Green’s function given in (4.5) can now be written as

G−R(k, ω) =
−Z

ω − 1
meff

(k − kF )kF + i
2τk

. (4.14)

A broadening of the δ-function implies a non-zero decay rate for the quasi-particles.

For a normal Fermi liquid, the imaginary part of the self-energy at the Fermi momentum

vanishes at zero temperature and small frequency as ω2, which stems from Pauli blocking

for scattering near the Fermi surface. For small non-zero temperatures, thermal averaging

over ω2 yields a T 2 dependence of the decay rate.

Let us compare this with our numerical results. We observe that the decay rate vanishes

much faster than in a conventional Fermi liquid. In figure 10, we show the first derivative

of Re Σ+(p) and the second derivative of Im Σ+(p) as a function of ω at k = kF . The

2Here, we ignore ω-dependent corrections to the lifetime, as the dominant contribution comes from the

behavior at ω = 0.
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(a) T = 1/20
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Figure 13. The spectral function for the spin-up component at the Fermi momentum as a function

of ω. In both plots parameters are chosen as gλ = −0.5. This figure confirms numerically two

important points that were made in the text. Firstly, for the higher temperature (a), a sharp peak

is just visible at ω = 0. For the lower temperature (b), this sharp peak is still there but is so narrow

that it can barely be discerned. This indeed indicates that, at T = 0, there is a δ-function behavior

at the Fermi surface, and that this δ-function peak becomes broader as temperature increases.

Secondly, close to the Fermi surface, that is, for small ω, the form of the spectrum depends only

on the product gλ. Indeed, all four curves for different g but equal gλ overlap for small ω. This

overlap is better for lower T . This shows that the scale of the Fermi momentum is indeed set by

the combination gλ and that the spectra are close to the Fermi surface indeed governed by kF
from (4.3) as we expect.

former is non-zero at ω = 0, which indicates a non-zero value of Z as explained above. The

latter is zero at ω = 0, which shows that the quasi-particle decay rate vanishes faster than

ω2. The behavior shown in figure 10 is in agreement with the existence of Fermi surfaces

at k = kF , however the decay rate is more suppressed than the typical ω2 behavior of a

conventional Fermi liquid. This indicates that, next to Pauli blocking, there is another

mechanism at hand which strongly suppresses interactions around the Fermi surface for

low temperatures T and small frequencies ω. This appears to be a general feature of

holographic Fermi liquids and can be understood better by performing a WKB analysis of

the bulk Dirac equation.

4.3 Second-order WKB analysis around the Fermi surface

In section 4.2.3 we have seen that the fermionic quasi-particles are rather stable since their

lifetime at the Fermi surface diverges faster than the power law expected from Fermi-

liquid theory. To gain more insight into this property, we would like to obtain an analytic

expression for the self-energy at the Fermi surface, that is, we want to know the form of

the self-energy for both ω 6= 0 and k = kF 6= 0. As stated before, it is not possible to solve

the differential equation for ξ exactly for generic non-zero values of ω and k, however, we

can deploy the WKB approximation to study the fermionic excitations around the Fermi

surfaces analytically, as was done for instance in [27, 28].

In principle, the WKB calculation gives the exact result for the retarded Green’s
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function in the limit k → kF and ω � 1. Indeed, as we will see, it yields very elegantly

the functional form of the self-energy at the Fermi surface, from which we can derive

the behavior of the quasi-particle lifetime at k = kF . The behavior turns out to be

exponential, i.e.,

Im Σ ∼ e−α k2

ω , (4.15)

with α a constant to be determined. This result is consistent with the exponential behavior

found in [27, 28]. Furthermore, we also find, to first approximation, an analytical result

for the wavefunction renormalization Z, which is consistent with the strong quasi-particle

renormalization found numerically. Notably, to obtain the latter result, we have to use the

second-order WKB approximation.

However, before presenting the explicit result for the self-energy of our second-order

WKB calculation, we have to mention the following. Obtaining the exact prefactors of the

various terms in the final result, e.g. the constant α in (4.15), turns out to be non-trivial.

The reason is that several integrals in the computation cannot be performed analytically

(see appendix E for details) but have to be evaluated numerically. Alternatively, we could

make an approximation to the integrals which, however, turns out to be similarly difficult.

Our approach here is to deploy the WKB approximation to gain an understanding of the

functional form of the quasi-particle lifetime at the Fermi surfaces. Therefore, the result

that we present in equation (4.21) is obtained using the latter method, and so the prefactors,

including α, are not exact. At the end of appendix E, we show some numerical evidence

for the conjectured value of the constant α.

Let us outline the basic steps of our WKB calculation and refer to appendix E for

further details. We determine the Green’s function at zero temperature. The expansion

parameter that plays the role of 1/~ in the conventional WKB approximation, and that

we take to be large in order to satisfy the WKB conditions, is the rescaled momentum

(see appendix C.1)3

k̄ =
k√
ω
� 1 . (4.16)

To simplify the calculation we also assume that both ω and k̄ are positive, and we introduce

the rescaled variable x = r/
√
ω. Choosing the up and down components u± and d±,

respectively, of ψ± introduced in (2.6) as

ψ± =
1√

r5V (r)

(
u±
d±

)
, (4.17)

we define new fluctuation fields y± in terms of the original fields u± as

y± =

√
xk̄ ± 1

x3/2
u± . (4.18)

3We will specialize to the case of interest z = 2 in this section, although the calculation can easily be

generalized to arbitrary z > 1.
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(a) Linear plot of the effective potential V±
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Figure 14. Plots of the effective potentials V+ and V− (blue and red line) as function of x = r/
√
ω

at T = 0 for k̄ = 10 and M = 1/4. In the near-horizon region 0 < x < xtp, both effective potentials

are negative. The potential V+ has a turning point at xtp, which can be seen as the first dip from

the left in (b). V− has a pole located approximately at the position of the classical turning point

of V+. V+ is always positive for x > xtp, while V− has a different turning point at an intermediate

value of x. This point can be seen in the inset in (a) and as the second dip from the left in (b).

Then, the once-iterated Dirac equation can be written as a Schrödinger-like equation

1

k̄2

d2

dx2
y±(x)− V±(x) y±(x) = 0 , (4.19)

with the effective Schrödinger potential at T = 0 of the form

V±(x) =
1

x4
− 1

k̄2x6
+

(
1
2 ±M

) (
3
2 ±M

)
k̄2x2

+
3

4

1(
xk̄ ± 1

)2 − 3
2 ±M

xk̄
(
xk̄ ± 1

) . (4.20)

The characteristic behavior of the Schrödinger potentials for the chiral components is il-

lustrated in figure 14. In particular, V+ has a single classical turning point at xtp and

V− has a pole and a turning point. For k̄ � 1, both effective potentials have a very high

potential barrier close to x→ 0. For simplicity we present here the calculation only for the

plus-component, the result for the minus-component is easily obtained using the symmetry

explained in appendix C. Also, we only perform the calculation for the case M > 0 so that

the single turning point of V+ at xtp divides the entire range into two regions, a classically

allowed region where V < 0 and a classically disallowed region where V > 0.

The strategy to determine the WKB solution is as follows. We first incorporate the

in-falling near-horizon boundary condition into the WKB wavefunction in the classically

allowed region x < xtp. Then, we apply the usual linearized connection formulae at x = xtp

to continue the solution into the classically disallowed region x > xtp. Next, we match this

solution onto the exact near-boundary solution to fix the remaining integration constants.

Finally, from the asymptotic expansion of the solution we read off the coefficients A± (see

appendix B.2) that determine GR via ξ = iA−/A+. The details of this calculation are
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explained in appendix E, and the final result for the WKB self-energy reads

Σ+(~k, ω) = g c1 k
2M γ+

ε+

1− i
2
γ−
γ+
e−iπMe−2 k

2

ω

1 + i
2
ε−
ε+
eiπMe−2 k

2

ω

, (4.21)

where we employed again ~k = (0, 0, k3) with k3 > 0, so that the corresponding Green’s

function in the limit k̄ � 1 reads

G+
R(~k, ω) = −

ω − 1

λ
kz − g c1 k2M γ+

ε+

1− i
2
γ−
γ+
e−iπMe−2 k

2

ω

1 + i
2
ε−
ε+
eiπMe−2 k

2

ω

−1

. (4.22)

The constant c1 was given in (3.2), and we defined

ε± = 1± M

2k̄2
log k̄ ∓ 1

4k̄2
, γ± = 1± M

2k̄2
log k̄ ∓ 3

4k̄2
. (4.23)

As mentioned before, the result (4.21) comes from performing an expansion within the

framework of the WKB calculation. In this case, we find α = 2 for the aforementioned

coefficient in (4.15), which we can improve by taking into account more terms in the

expansion. In particular, as explained in more detail in appendix E, the correct prefactor

in the exponent seems to be approximately α ≈ π/2.

After having obtained our result, let us now study the Green’s function (4.22) in more

detail. As a first consistency check, we see that in the limit ω → 0, which corresponds to

k̄ ≡ k/√ω →∞, we find the same locus for the Fermi surface at k = kF as in equation (4.3).

Furthermore, the decay rate of the quasi-particle excitations around the Fermi surface is

calculated using (4.12) and employing the imaginary part of the self-energy at k = kF ,

which reads

Im Σ+(~kF , ω) =
1

2
g c1 k

2M
F sin

(
π

(
M − 1

2

))
γ+

ε+

(
γ−
γ+

+
ε−
ε+

)
e−2

k2
F
ω , (4.24)

where kF is given by (4.3). We note that γ± and ε± become unity in the strict Fermi-surface

limit, and the result thus shows an exponentially suppressed decay rate with additional

ω/k2
F corrections. This result demonstrates the extremely stable nature of the quasi-

particle excitations on the Fermi surface and is consistent with previous WKB calculations

that similarly find exponentially narrow decay rates [27, 28]. A comparison with the

numerical results is made in figure 15.

Another analytic result that we extract from (4.21) is the wavefunction renormaliza-

tion (4.6) on the Fermi surface. This follows from the real part of the self-energy which reads

Re Σ+(~k, ω) = g c1 k
2M γ+

ε+
, (4.25)

up to exponentially small terms multiplied by exp(−αk2/ω) that will drop out in the limit

ω → 0 after differentiation. Combining (4.25) with (4.3) and (4.6), we arrive at an analytic

result for the wavefunction renormalization factor of the form

Z =
2λ

2λ− 1
, (4.26)
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Dashed red curve: numerics at T = 1/50

Dashed blue curve: numerics at T = 1/750

Solid yellow curve: WKB from (4.21) for α = 2

Solid green curve: WKB from appendix E for α = 5/3

Solid blue curve: WKB from (4.21) for α = π/2

Figure 15. Comparison of WKB and numerical results for | Im Σ+| at k = kF with λ = −1 yielding

kF ≈ 1.64, and M = 1/4 as a function of ω. The dashed curves are numerical results, the solid

curves are second-order WKB results at T = 0. Note that the WKB result (4.21) for α = π/2

agrees very well with the low temperature numerical result.

which for λ < 0 satisfies 0 ≤ Z ≤ 1 as required. We note that, to obtain this non-

trivial result different from one, we have to go beyond the leading order in the WKB

approximation, since otherwise the derivative of the self-energy in (4.21) would vanish due

to the exponential suppression. Interestingly, because all factors M in (4.23) are multiplied

by ω, these drop out in the limit ω → 0 so that the analytic result (4.26) is independent of

M . This is in contrast to the numerical results which do depend on the value of M . The

analytic result (4.26) is therefore expected to be the M = 0 part of a larger expression,

that one may obtain using a more sophisticated WKB calculation. This presumption is

supported by figure 16, which shows that both results are consistent in the case M = 0.

However, the aim of the WKB calculation was merely to support our numerical results,

and finding perfect agreement is beyond the scope of this work.

4.4 Phase diagram

The results obtained in the sections above, in particular the plots in figure 8, can be

explained by the existence of a quantum phase transition at λ = 0 and g ≥ 0. Firstly, we can

understand why there must be different phases. Consider again the Green’s function (2.11)

and recall that λ can change sign whereas g is required to be positive (in the range −1/2 <

M < 1/2) in order to satisfy the Kramers-Kronig relation. Furthermore, the kinetic term

scales as kz, but the self-energy is proportional to k2M which is a lower power of k. As

a consequence, there will always be a small but non-zero ~k interval at low values of the

momentum in which the self-energy term dominates. When there is a difference in the

relative sign, there can be a cancellation between the kinetic and the interaction term in

the Green’s function at low momenta. This is what brings the Fermi surfaces into existence.

When there is no relative sign difference, the self-energy contribution adds up to the kinetic
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Dashed red curve: numerics at T = 1/30 for M = 1/4

Dashed blue curve: numerics at T = 1/30 for M = 0

Solid blue curve: WKB at T = 0 from (4.26)

Figure 16. Comparison of WKB and numerical results for the quasi-particle residue Z from (4.6)

as a function of λ. The dashed curves are numerical results, the solid curve is the second-order

WKB result at T = 0. This figure shows that the WKB result for Z resembles the M = 0 result,

indicating that the analytic expression may be the M = 0 part of a more general result.

term, which results in a different behavior of N±~k
and therefore in a different phase. Thus,

the crucial property is the possibility of a relative sign change between the kinetic and

interaction term which is dominant at low momenta.

We sketch the phase diagram of our system in figure 17, and relate it to our results for

the momentum distribution at various values of λ and T .

• For λ < 0 and temperatures T small compared to the Fermi energy εF = kzF /|λ|, we

have a phase with two Fermi surfaces: one for the particles and one for the holes,

which can be seen as two sharp discontinuities in the momentum distribution at

k3 = ±|kF |. The system is formally only a Fermi liquid at exactly zero temperature.

Numerically we can obtain only non-zero temperature results, and the effect of tem-

perature is to smear out the discontinuities over an interval around ±|kF |. However,

when T/εF is small (outside the critical region) we still see the Fermi-liquid-like or

degenerate behavior. Indeed in figure 8 for small λ < 0 the jumps are not infinitely

sharp but still very much located around a single value of ~k.

• When increasing temperature, in the region T ∼ εF there is a crossover between the

Fermi-liquid phase and the quantum critical phase, indicated by the dashed lines in

figure 17. To calculate the crossover temperature as a function of λ we realize that

the crossover occurs when T ≈ εF , thus at

T ≈ εF =
1

|λ| k
z
F = |λ| 2M

z−2M = gc1k
2M
F . (4.27)

In the case M = 1/4, z = 2, the crossover is at T ∼ |λ|1/3.
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Figure 17. Sketch of the phase diagram in the case −1/2 < M < 1/2 and g = 1, showing the

non-Fermi-liquid phase for low T and positive λ, the Fermi-liquid phase for low T and negative

λ, and two qualitatively different quantum-critical phases for high temperatures and λ positive

and negative. The system is strictly only a Fermi liquid at T = 0 (thick line), but has Fermi-

liquid-like behavior for low temperatures. The dashed curves correspond to the crossovers to the

quantum-critical regimes. There is a quantum phase transition at λ = 0, T = 0.

• When T � εF the Fermi surfaces will be smeared out to an extend that they are

difficult to identify, as it can be seen in figure 18(a). Then the system is in the

quantum critical phase. As λ → 0− , εF decreases, and as a consequence the Fermi

surfaces develop into smooth bumps for very small λ. Numerically, we will always

observe temperature effects for small values of |λ|.

• At λ = 0 and T = 0, there is a quantum phase transition from a phase with two

Fermi surfaces to a phase with no Fermi surfaces. At λ = 0 and T > 0, the system is

in the quantum critical phase. Interestingly, there is a qualitative difference between

the quantum critical λ < 0 and λ > 0 phases, see figure 18(b) for an impression of

the behavior of N±~k
for very small λ.

• In the case λ > 0, the momentum distribution has a kink-like behavior and is

centered around k = 0. For T � εF , the width of the kink is determined by

kF ≡ (gλc1)1/(z−2M), whereas for T � εF it is determined by T , see figure 18(c).

4.5 Fermi surfaces and the quantum phase transition for 1
2 < |M | < z

2

In the previous sections, we have studied the system in the particular range 0 < M < 1/2

and we have demonstrated the appearance of Fermi surfaces for λ < 0. However, we

obtain a similar behavior also for positive values of λ if we consider 1/2 < M < z/2 and

−z/2 < M < −1/2.

Let us demonstrate this for 1/2 < M < z/2. In this case, the relation between the

self-energy Σ(p) and the bulk quantity ξ(r, p) is given by equation (2.14). However, the
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(c) λ = +1

Figure 18. Momentum distribution in the quantum critical region for T = 5, g = 1, M = 1/4 and

various values of λ. For λ < 0, the momentum distribution always shows two extrema at non-zero

k3, which develop into Fermi surfaces when the temperature is lowered. This is shown in (a). The

behavior for small negative λ is illustrated in figure (b) with kF ≈ 0.026. Note that because kF is

relatively small, we plotted N−
~k

here as a function of k3/kF for clarity. For λ > 0 the momentum

distribution is very broad as can be seen in (c).

expression (C.24) for the Green’s function is unchanged because this form is determined

solely by the symmetry properties of ξ(r, p), which are also satisfied by the counter-term

in (2.14). In particular, the ω → 0 limit of the dispersion relation is again given by

equation (4.2) which we recall for convenience,

1

λ
kz + g k2Mc1 = 0 . (4.28)

Now, we can find a non-trivial, real solution to this equation in the range 1/2 > M > z/2

for positive λ because the constant c1 given by (3.2) is negative in this range. Note that

the same conclusion applies for −z/2 < M < −1/2. Thus, we now obtain Fermi surfaces

for positive λ in these ranges for M . Furthermore, we also find a quantum phase transition

at λ = 0 below which the aforementioned Fermi surfaces disappear.
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5 Conclusion and discussion

In our recent work [14] we proposed the construction of a holographic fermionic retarded

Green’s function modified to describe single-particle correlations, using the AdS/CMT

correspondence. Two aspects of this prescription that make it particularly interesting for

condensed-matter applications, are the following. Firstly, the retarded Green’s function

satisfies the zeroth frequency sum rule and the Kramers-Kronig relation both at zero and

also at non-zero temperatures. We have checked that this is the case analytically where

possible, see appendix D, and otherwise numerically. This shows that the correlation func-

tion is a genuine single-particle correlation function that can be compared to experimental

ARPES data. Secondly, it can describe quantum critical points with relativistic as well as

non-relativistic dynamical exponent z > 1, as a consequence of the (approximate) Lifshitz

isometry of the used bulk spacetime.

In this paper, we have investigated the physics arising from this modified holographic

prescription. The resulting spectral-weight function and dispersion relations that we pre-

sented in section 3, show that we are describing a particle-hole symmetric, gapless, chiral

boundary system that behaves as a strongly interacting Weyl semimetal in the sense that

it satisfies the Weyl equations in the non-interacting and low-energy limit. To be more

precise, our results show that the system has strong interactions in the infra-red, where

the self-energy is dominant over the kinetic energy, while in the far ultra-violet the system

becomes free.

An important point mentioned in the introduction is repeated here. We use holography

here in a bottom-up approach. This means that the model is an effective low-energy theory

which has the properties of a Weyl semimetal as described above. As with all holographic

AdS/CMT models, the microscopic structure of the actual boundary system is unknown.

We do not claim to describe the emergence of a Weyl fermion from a chirality-invariant

microscopic structure. What we present is a specific model that may or may not be able

to capture the IR physics of generic realistic Weyl semimetals. Our working assumption is

that the Weyl semimetal under consideration gives rise to a strongly-coupled, chiral, scale-

invariant theory in the IR. The main problem here is that in principle, we cannot be sure

that our holographically obtained self-energy corresponds sufficiently accurately to a self-

energy that stems from Coulomb interactions between the (chiral) electrons. This should

be scrutinized for instance using feedback from future experiments on realistic materials.

On the other hand, bottom-up model building has the advantage of being able to

capture a wide range of possible situations, and it provides an exploratory study of

possible strongly-coupled dynamics. The model that we consider is specified by the

following features:

1. The IR theory is Lifshitz-invariant with dynamical scaling exponent z.

2. Single-particle excitations are coupled to the CFT only through a single channel,

specified by the scaling dimension of the chiral CFT operator that is determined by

the corresponding bulk fermion mass M .
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3. The chemical potential, corresponding to the number of particles, vanishes. In

condensed-matter language this means that there is particle-hole symmetry.

4. Considering the single-particle dispersion relation, the single-particle cones of definite

chirality are separated in momentum space in the IR and we are considering only the

physics of one of these cones.

Assumption 1. is fairly general and covers a wide range of interesting IR physics. As-

sumption 2. is merely a simplifying working assumption. The single fermion in this model

is described by a dynamical source field that is coupled to gauge-invariant composite

operators in the dual CFT, and we do not claim that this generally happens in nature.

However, many CFTs exhibit a discrete spectrum of scaling dimensions, making it plau-

sible that one particular channel will contribute dominantly to the self-energy of a single

fermion in the IR. Assumptions 3. and 4. are merely a convenient restriction of this paper.

What is presented in this work corresponds to a subspace in the phase diagrams of these

types of models specified by zero chemical potential and neglecting (large-momentum)

Umklapp processes that couple the two cones. However, this subspace is not unrealistic.

The chemical potential couples to the number of particles minus the number of holes in

the spectrum of the theory. In the case of zero chemical potential there is still non-trivial

IR dynamics in the form of particle-hole excitations. Indeed, at zero doping the various

phases and the corresponding quantum phase transition described in section 4 are realized.

The scale that governs the quantum phase transition is an appropriate combination of the

parameters g and λ appearing in our prescription. As a generalization of our holographic

model for a Weyl semimetal we will extend the prescription to non-zero doping in future

work. This is interesting for condensed-matter purposes as it corresponds for instance to

turning on a gate voltage in the material. Holographically this can be done by adding

another U(1) gauge field to the bulk spacetime under which the fermions are charged,

and by considering charged Lifshitz black branes [36]. It will be interesting to investigate

the consequences for the phase diagram described in section 4. Finally, the simplified

description obtained by focusing on a single chiral sector is reasonable, as we are interested

in energy scales lower than the scale separating the two chiral cones in momentum space.

Indeed we are currently working on generalizing this picture to two (opposite) chiral cones.

Weyl semimetals have recently received considerable interest in the condensed-matter

community because of their fascinating and unusual properties that result from the topolog-

ical nature of the band structure [21, 22, 29–34]. In order to investigate the band structure,

the Weyl semimetals are usually treated as free or weakly interacting systems. Using our

holographic prescription for models of Weyl semimetals, we are now also able to explore

these systems when they are strongly interacting or critical. In particular, the inclusion

of a holographic self-energy leads to the existence of several different phases including a

Fermi-liquid phase and a non-Fermi-liquid phase, separated by a quantum phase transition,

as we have shown in section 4.

There are various interesting directions in which our prescription can be extended.

Firstly, our current prescription is intended to describe single-particle correlation functions,

which appear often in condensed matter. However, in experiments one also encounters two-
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particle correlation functions. Important examples include the current-current correlation

function that determines the electrical conductivity, σ, and the heat current-heat current

correlation function which is related to the thermal conductivity κ. The electrical conduc-

tivity has been investigated in a holographic context before, starting with [35], but it would

be interesting to also consider this particular function using our holographic prescription.

In particular, since our present discussion is at zero doping, that is, it contains an equal

amount of particles and holes, we expect the corresponding conductivity in the boundary

system to remain finite in the ω → 0 limit even without impurities. Additionally, in Fermi-

liquid theory the thermal conductivity κ scales as 1/T , whereas the electrical conductivity

σ scales as 1/T 2. Their ratio is therefore proportional to temperature, i.e., κ/σ ∼ T , which

is the famous Wiedemann-Franz law. It would be interesting to investigate whether this

law also holds here using the holographic results for electrical and thermal conductivity.

A topic often discussed in the AdS/CMT literature is the well-known Luttinger the-

orem from Fermi-liquid theory, which states that the total particle density in a system is

proportional to the total volume in momentum space enclosed by its Fermi surfaces. In our

case, this can be checked as follows. The system we describe is at zero doping, so the total

number density of the particles and holes together is zero. The Fermi surfaces for particles

and holes separately enclose a non-zero volume, but the difference in volume enclosed by

the Fermi surfaces is zero. Therefore, the Luttinger theorem is trivially satisfied in our case.

Finally, whereas our current prescription takes into account only the leading-order

contributions in the 1/N expansion, it would be interesting to also consider quantum or

O(1/N) corrections. In particular, it is sometimes proposed [37] that the typical feature

of holographic Fermi liquids, an exponentially suppressed quasi-particle decay rate at the

Fermi surface, may be a large N remnant, i.e., a consequence of the fact that the leading

order does not take into account all possible quasi-particle decay processes. Therefore, con-

sidering also 1/N contributions may resolve this problem and restore the conventional ω2

power-law behavior, which is rather robust in Fermi liquids. An example of 1/N corrections

that are ignored here, are the back-reaction of the massive fermions on the gravitational

background in the bulk, but one may also think of other 1/N corrections.
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A Conventions

A.1 A note on dimensions and units

In this paper, we work with natural units in which ~ = c = kB = 1, where kB is Boltzmann’s

constant, and we use dimensionless coordinates r, t, ~x. As a consequence, Newton’s constant

Gd+1 as well as the metric are dimensionless. However, to convert the Lifshitz metric (2.1)
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to standard SI units, we introduce a length scale l and define the dimensionful expression

ds̃2 ≡ l2ds2 =
l2

r̃2

dr̃2

V 2(r̃)
− V 2(r̃)

r̃ 2z

l2z
c2dt̃ 2 +

r̃ 2

l2
d~̃x

2
, (A.1)

where

r̃ = l r , ~̃x = l ~x , t̃ =
l

c
t , (A.2)

which has the correct units of meter and second, respectively. Note that l can be interpreted

as the scale characterizing the size of the Lifshitz spacetime. The temperature of the black

brane, obtained in (2.2), can be converted to have dimension of Kelvin by the rescaling

T̃ =
~c
kB

T

l
, (A.3)

and the mass of the fermions in SI-units takes the form

M̃2 =
~c
G̃d+1

M2ld−3 . (A.4)

Here, G̃d+1 is Newton’s constant which has dimension md · s−2 · kg−1. To convert the

dimensionless frequencies ω and momenta ~k to SI units, one should rescale

ω̃ =
c

l
ω ,

~̃
k =

~k

l
. (A.5)

Employing the results of this section, the reader can at any time convert to physical

units. However, for ease of notation, we present our analysis and results in dimensionless

coordinates.

A.2 Vielbeins and Dirac matrices

Here, we collect some formulae related to the spin connection and vielbeins, and state

our choice of Dirac matrices. The vielbeins are denoted by eaµ with µ = 0, . . . , d and

a = 0, . . . , d, and satisfy

gµν = eaµ ηab e
b
ν , ηab = diag (−1,+1, . . . ,+1) . (A.6)

We will furthermore employ the following notation and relations

ea = eaµdxµ , Ωa
b = (Ωµ)ab dxµ , 0 = dea + Ωa

b ∧ eb , (A.7)

where Ω is the torsion-free spin connection. Given the metric (2.1), we can read off

er =
dr

rV
, et = rzV dt , ei = r dxi , (A.8)

where a = {t, r, i} with i = 2, . . . , d labeling the spatial directions. Using the relation

in (A.7) as well as the anti-symmetry of Ω, we determine its non-vanishing components as

Ωt
r = rV ∂r

(
rzV

)
dt , Ωi

r = rV dxi . (A.9)
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For the spinors, we use the following notation

Ψ = Ψ†Γt , Dµ = ∂µ +
1

4
(Ωµ)abΓ

ab , /D = Γaea
µDµ . (A.10)

Here, ea
µ is the inverse transpose of eaµ and the symbol Γab is defined in terms of the

Gamma matrices Γa as

Γab =
1

2

[
Γa,Γb

]
. (A.11)

We also perform chiral projections using

Ψ± ≡
1

2

(
1± Γr

)
Ψ , Γr Ψ± = ±Ψ± . (A.12)

A convenient choice of Gamma matrices reads as follows [38]:

• For odd dimensions d, we can choose

Γr =

(
1 0

0 −1

)
, Γt =

(
0 γ0

γ0 0

)
, Γi =

(
0 γi

γi 0

)
, (A.13)

where the γ-matrices are the d-dimensional Dirac matrices of the boundary theory.

We then decompose Ψ into chiral components of the bulk spinor

Ψ =

(
ψ+

ψ−

)
, (A.14)

where the components ψ± are chiral in the bulk, but they are Dirac spinors on the

boundary.

• In the case when d is even, a natural choice is given by

Γr = γd+1 , Γt = γ0 , Γi = γi , (A.15)

where γd+1 is the analog of γ5 in four dimensions and γ are the gamma matrices of

the boundary theory. In this case Ψ± correspond to operators with definite chirality

on the boundary.

• Most of our interest lies in the case d = 4. Using (A.12), and with a slight abuse of

notation, we write the four-component Dirac bulk spinor Ψ in terms of two-component

spinors Ψ+ and Ψ− as

Ψ =

(
Ψ+

Ψ−

)
. (A.16)

The four-dimensional gamma matrices can be expressed in terms of σa = (1, ~σ) and

σa = (−1, ~σ) with σi being the Pauli matrices in the following way

Γa =

(
0 σa

σa 0

)
, a = {t, i} . (A.17)
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B Details on the near-boundary asymptotics

B.1 Dirac equation

The Dirac equation for the fermion field Ψ can be obtained from varying the action (2.4)

with respect to Ψ, and imposing δΨ+ = 0 at r = r0 (see [14] for more details). We find the

usual expression (/D −M)Ψ = 0, which can be written as follows[
rV Γr ∂r +

i

r
Γ · k̃ +

1

2
Γr pz(r)−M

]
ψ(r) = 0 . (B.1)

Here we defined the function pz(r) = r1−z∂r[r
zV ] + (d − 1)V , and used the notation

Γ · k̃ = Γt ω̃ + Γi ki together with the generalized momenta

k̃ =
(
ω̃, ki

)
, ω̃ = − ω

rz−1V
. (B.2)

Next, we can simplify equation (B.1) by introducing

ψ(r) =
1√

rd−1+zV
φ(r) , (B.3)

which leads to [
rV Γr∂r +

i

r
Γ · k̃ −M

]
φ(r) = 0 . (B.4)

In terms of the chiral components φ±(r), the Dirac equation (B.4), both in even and odd

dimensions d, then reads

φ±(r) = ∓ i

k̃2
(γ · k̃)A(∓M)φ∓(r) , A(M) ≡ r

(
rV ∂r −M

)
, (B.5)

where we employed the notation for the Γ matrices given in appendix A.2. Finally, we can

also derive a second-order equation by applying A(±M)(γ · k̃) to both sides of the Dirac

equation in (B.5), which leads to

k̃2φ±(r) = A(∓M)A(±M)φ±(r)− r2V
∂rω̃

k̃2
γ0 (γ · k̃)A(±M)φ±(r) . (B.6)

Note that for the case of interest in this paper, that is d = 4, half of the components in

equations (B.5) and (B.6) are trivial, because we can use the Weyl representation of the

gamma matrices so that φ± correspond to the upper and lower two components of φ.

B.2 Asymptotic solutions near the boundary

We now determine the form of the asymptotic solutions near the boundary at r = ∞. In

contrast to the AdS case with z = 1, for z 6= 1, the asymptotics are different for vanishing

and non-vanishing spatial momentum ~k. We therefore consider both cases in turn.
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Asymptotics for ~k = 0. In the case of vanishing spatial momentum, we make a power-

law ansatz for the second-order differential equation of the chiral components. The asymp-

totic expansion near the boundary then comprises two independent solutions and is given by

φ± = r±M
(
1 + r−2zc± + . . .

)
A± + r∓M−z

(
1 + r−2zd± + . . .

)
B± , (B.7)

where we included subleading corrections in the two separate branches. Here, A± and B±
are spinors in the Clifford algebra, and the coefficients c± and d± are matrices therein.

We also observe that (B.7) agrees with the AdS case [38] for z = 1, and we note that a

subleading term in the A (or B) branch can be more dominant over the leading term in

the B (or A) branch for certain ranges of M and z. Employing the expansion (B.7) in the

first order Dirac equation (B.5), we derive a local relation between B∓ and A± of the form

B± = −i ωγ0

2M ± zA∓ ,
(B.8)

which fixes half of the integration constants. The coefficients of the subleading terms are

found as

c± =
ω2

2z(±2M − z) , d± =
ω2

2z(∓2M − 3z)
. (B.9)

However, here we need to assume that the subleading terms in the expansion (B.7) are still

leading over the subleading terms in the Dirac equation (B.5) which appear in the function

V . A careful analysis translates this assumption into the condition

z < d− 1 . (B.10)

As we can see from (B.8) and (B.9), the above analysis breaks down for M = ±z/2.

Moreover, in that case the powers in the asymptotic expansion (B.7) can become equal and

so the spinor coefficients cannot be disentangled. The way to treat the case M = ±z/2 is

to allow for logarithmic terms in the asymptotic expansion, which lift the degeneracy in

the two branches A and B. In particular, for M = −z/2 we have

φ+ = r−
z
2A+ + r−

z
2 log(r)B+ + . . . ,

φ− = r+ z
2

(
1 + c−r

−2z log(r) + . . .
)
A− + r−3 z

2

(
1 + . . .

)
B− ,

(B.11)

with the coefficients of the form

B+ = iωγ0A− , B− =
iωγ0

2z
A+ , c− =

ω2

2z
. (B.12)

For M = +z/2, we find

φ+ = r+ z
2A+ + r−3 z

2B+ + . . . ,

φ− = r−
z
2A− + r−

z
2 log(r)B− + . . . ,

(B.13)

together with

B− = −iωγ0A+ , B+ = − iωγ
0

2z
A− . (B.14)
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Asymptotics for ~k 6= 0. For non-zero spatial momenta ~k and generic values of the Dirac

mass M , the asymptotic solution to the second-order differential equation (B.6) reads

φ± = r±M
(
1 + r−2c± + . . .

)
A± + r∓M−1

(
1 + r−δ±d± + . . .

)
B± . (B.15)

Note the important difference compared to (B.7), namely that the exponent of the leading

order term does not depend on z. The relation between A± and B∓ can again be derived

via the first-order Dirac equation (B.5). Together with the subleading coefficient c±, their

form reads

B± = i
~k · ~γ

2M ± 1
A∓ , c± = −

~k2

2(±2M − 1)
. (B.16)

The subleading behavior in the B-branch turns out to be more complicated. Both the

exponent δ± and the coefficient d± depend on the value of z. We have to distinguish

between three separate cases

1 < z < 3 : δ± = z − 1 , d± =
ω

~k2

(±2M + 1

±2M + z

)
~γ · ~k ,

z = 3 : δ± = 2 , d± =
1

3± 2M

(
~k2

2
+
ω

~k2
(2M ± 1)~γ · ~k

)
,

3 < z : δ± = 2 , d± =
~k2

2(3± 2M)
.

(B.17)

As is clear from (B.16), the case of M = ±1/2 is again special and needs to be treated

separately. Along similar lines as for vanishing momenta, logarithmic terms will appear in

the expansion.

B.3 Hydrodynamic limit

We can determine the Green’s function analytically in the strict hydrodynamic limit ω → 0,
~k → 0 for arbitrary temperatures T in the region |M | < z/2. However, one has to be careful

in defining this limit because the r → rh and ω → 0 limits do not commute in the differential

equation (2.15). Here, we define the limiting procedure as first setting ~k = 0, and then

taking ω → 0 while keeping T finite. Thus, we should use the same boundary condition

ξ(rh) = i as before. The differential equation (2.15) for ξ(r) then becomes

r2V ∂rξ± + 2Mrξ± = 0 , (B.18)

whose solution with the boundary condition ξ+(rh) = i reads

ξ±(r) = ie
−2M

∫ r
rh

dt
t V (t) . (B.19)

Substituting then the expression for V (r) given in (2.1) and performing the integral, we find

ξ±(r) = i

(
r

rh

)−2M [
1 + V (r)

]− 4M
d+z−1 , (B.20)
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where we have left the dimension d and the dynamical exponent z unspecified. The self-

energy appearing in the Green’s function is given by (2.12), and so we obtain

GR(~0, 0) =
i

g
2

4M
d+z−1

(
d+ z − 1

4π

) 2M
z

T−
2M
z , (B.21)

where we employed (2.2) to related rh to the temperature T . Note that this expression is

valid for d+ z − 1 6= 0, which includes the case of interest in this paper, namely d = 4 and

z = 2.

C Symmetry properties of the Green’s function

In this appendix, we discuss symmetries of the self-energy Σ(p) defined in (2.12) and of

the full Green’s function (2.11). This analysis utilizes the properties of the differential

equation (2.15) and boundary condition (2.16), which we recall for convenience

r2V ∂rξ± + 2Mrξ± =
ω

rz−1V
∓ k3 +

( ω

rz−1V
± k3

)
ξ2
± , ξ±(rh) = i . (C.1)

C.1 Scale-invariant variables

We start our discussion with the scaling properties of (C.1). To simplify our notation, we

define the constant κ = d+z−1
4π , and we can distinguish three cases which will be considered

in turn.

• We define new variables in the following way

ω =
ω

kz3
, T =

T

kz3
, x =

r

k3
, (C.2)

which leads to

V =

√
1−

(xh
x

)d+z−1
, xh =

(
T

κ

) 1
z

. (C.3)

The differential equations (C.1) then takes the form

x2V ∂xξ± + 2Mxξ± =
ω

xz−1V
∓ 1 +

(
ω

xz−1V
± 1

)
ξ2
± , ξ±(xh) = i , (C.4)

and we obtain

ξ±
(
x0, ω, T

)
= k−2M

3 ξ±
(
r0, ω, k3, T

)
. (C.5)

• Along similar lines, we can define another set of variables as follows

k =
k3

ω
1
z

, T =
T

ω
, y =

r

ω
1
z

, (C.6)

leading to

V =

√
1−

(
yh
y

)d+z−1

, yh =

(
T

κ

) 1
z

, (C.7)
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as well as

y2V ∂yξ± + 2Myξ± =
1

yz−1V
∓ k +

(
1

yz−1V
± k
)
ξ2
± , ξ±(yh) = i . (C.8)

We then find

ξ±
(
y0, k, T

)
= ω−

2M
z ξ±

(
r0, ω, k3, T

)
. (C.9)

• Finally, we can define variables as

ω =
κ

T
ω , k =

( κ
T

) 1
z

k3 , z =
r

rh
, (C.10)

where we recall that rh = (T/κ)
1
z . The above choice implies

V =

√
1−

(zh
z

)d+z−1
, zh = 1 , (C.11)

and the differential equations become

z2V ∂zξ± + 2Mzξ± =
ω

rz−1V
∓ k +

(
ω

rz−1V
± k
)
ξ2
± , ξ±(zh) = i . (C.12)

We then have

ξ±
(
z0, ω, k

)
=

(
T

κ

)− 2M
z

ξ±
(
r0, ω, k3, T

)
. (C.13)

C.2 Chirality

From equation (C.1) we observe that the spin-up and spin-down components ξ+ and ξ−
are related by a reflection of the momentum

ξ±(r, k3, ω) = ξ∓(r,−k3, ω) . (C.14)

Furthermore, equations (2.12) and (2.11) which relate ξ to the self-energy Σ(p) and to the

Green’s function Σ to GR do not spoil this symmetry. We thus obtain the following relation

for the components of the full Green’s function

G±R(~k, ω) = G∓R(−~k, ω) . (C.15)

This symmetry can easily be understood in the relativistic case of z = 1: since ψ± cor-

respond to left- and right-handed spinors in the boundary theory, the helicity h given by

h = ~σ · ~k/|~σ · ~k| is conserved. In the non-relativistic case z 6= 1, this may be viewed as a

generalization of chirality.
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C.3 Particle-hole symmetry

From equation (C.1) we also observe that the components ξ+ and ξ− enjoy the additional

symmetry

ξ±(r, k3, ω) = −ξ∗±(r,−k3,−ω) , (C.16)

where ξ∗ denotes the complex conjugate of ξ. Noting then again that (2.12) and (2.11)

preserve this property as well, we see that also the full Green’s function satisfies

G±R(~k, ω) = −
(
G±R(−~k,−ω)

)∗
= −

(
G∓R(~k,−ω)

)∗
, (C.17)

where we used the chirality symmetry in the last equality. This symmetry can be seen as a

particle-hole symmetry since it relates components with frequency ω to components with

frequency −ω.

C.4 A symmetry relating M to −M
In the case when the operator under consideration is right handed, that is, O+, the source

is identified with the boundary value of ψ− instead. Hence, the transfer matrix ξ(r, p)

defined in (2.7) is replaced with

ζ+ = i
ψ+,1

ψ−,1
, ζ− = i

ψ+,2

ψ−,2
, (C.18)

where ψ1,2 are the up and down components of the spinors defined in (2.5) and (2.6).

Let us now consider ζ+ for definiteness, the discussion for ζ− is analogous. First, we

see that ζ+ = −1/ξ+, and we easily verify that the equation for ζ+ is exactly the same

equation (2.15) that ξ+ satisfies, but with the replacement k3 → −k3 and M → −M . In

addition, the boundary conditions (2.16) for ζ+ and ξ+ are the same, and therefore we have

the following symmetry property:

ζ+(r,M, ω, k3) = −ξ−1
+ (r,M, ω, k3) = ξ+(r,−M,ω,−k3) . (C.19)

On the other hand, equation (2.12) is now replaced with

Σ(p) = −g lim
r0→∞

r−2M
0 ζ(r0, p) , (C.20)

and so we arrive at

Σ(−M,−~k, ω) = −g2 Σ−1(+M,+~k, ω) . (C.21)

However, note that strictly speaking this derivation is valid only within the range −z/2 <
M < z/2 for ~k = 0 and within −1

2 < M < 1
2 for ~k 6= 0. Outside this region one needs

to subtract divergent terms to obtain the Green’s functions from ξ and ζ, which can be

shown by observing that the counter terms that are needed in order to renormalize GR
also respect this symmetry.
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As a consequence of this symmetry, conditions on the functions s1,M and s2,M

from (3.15) can be obtained as

s1,−M (u)s2,+M (u) = s1,+M (u)s2,−M (u) ,

s1,+M (u)s1,−M (u)− s2,+M (u)s2,−M (u) = −1 .
(C.22)

Solving (C.22) in favor of s2,M (u), we find for non-degenerate values of s1,M and s2,M that

s2,M (u) = s1,M (u)

√
1 +

1

s1,M (u) s1,−M (u)
, (C.23)

and by using (C.23) in (3.15) we arrive at

GR(~k, ω) = − 1

ω − 1
λ ~σ · ~k kz−1 − g k2Ms1,M (u)

(
1 + ~σ·~k

k

√
1 + 1

s1,M (u)s1,−M (u)

) . (C.24)

Thus, we have reduced the problem to the determination of a single function s1,M (u) of a

single variable u = ω/kz for two values of M .

C.5 A symmetry of the momentum distribution

Using the above symmetries of the Green’s function in combination with the sum rule,

we can easily derive a convenient identity for the momentum distribution (4.1). Namely,

we have

N±~k
+N±

−~k
=

1

π

∫ +∞

−∞
dω

[
ImG±R(~k, ω)nF (ω) + ImG±R(−~k, ω)nF (ω)

]
=

1

π

∫ +∞

−∞
dω ImG±R(~k, ω) [nF (ω) + nF (−ω)]

= 1 ,

(C.25)

where we used (C.17) in the second line, and the sum rule (2.18) and nF (ω) +nF (−ω) = 1

in the third line.

D Pole structure and sum rules

In this appendix, we analyze the pole structure of the Green’s function, and we show

analytically for the case of vanishing temperature that the sum rule is satisfied. The

situation of vanishing momenta can be analyzed for all values of z, however, analytic

expressions for the Green’s function for k 6= 0 are only available for z = 1. We therefore

restrict the latter computations to the relativistic case.

D.1 Pole structure

We now consider the pole structure of the Green’s function in the case of vanishing momen-

tum and zero temperature. Employing (3.13), we see that there is a trivial pole at ω = 0

which corresponds to the free particle. A non-trivial pole is determined by the equation

0 = 1− gcz ω
2M
z
−1e−iπ(

M
z

+ 1
2) . (D.1)
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Using then polar coordinates ω = |ω|eiθ, we find for the imaginary part of (D.1) the

equation

0 = sin

[
2M − z

z
θ − 2M + z

z

π

2

]
, (D.2)

with solutions

θn =
π

2
− n+ 1

z − 2M
πz , n ∈ Z . (D.3)

If we want to satisfy the Kramers-Kronig relations, that is, the requirement of no poles in

the upper half-plane, we have to make sure that there is no solution to (D.3) in the range

(0,+π) for all values of n, that is,

θn /∈ (0,+π) ∀n . (D.4)

By noting that 0 < z− 2M < 2z for |M | < z
2 , we see that the only possible solution in the

forbidden range is given by n = −1 with θ−1 = π
2 . All the other solutions are already out

of the forbidden range, but yield poles on the non-principal sheets of the complex plane.

For example, for n = −2 the pole resides in θ−2 ∈ (π,+∞) depending on the value of M ,

while for n = 0 it is in the range θ0 ∈ (0,−∞).

Let us now turn to the real part of (D.1). Employing again polar coordinates and

using (D.3), we arrive at the equation

0 = 1− gcz |ω|
2M
z
−1(−1)n , (D.5)

which is solved by

|ω| = |gcz|
z

z−2M , sign (gcz) = (−1)n . (D.6)

It is now clear that in order to avoid the pole θ−1 = π
2 on the principal sheet, we have

to require

gcz > 0 . (D.7)

Furthermore, all other possible poles of the Green’s function (specified by (D.3) and (D.6))

with even n are either on the lower-half of the principal sheet or on non-principal sheets

of the complex plane. Therefore, for the choice of sign (D.7) the Kramers-Kronig relations

are satisfied.

For the case of vanishing temperature and z = 1, analytic results are also available for
~k 6= 0. As it has been explained in [14], the analytic continuation of the Green’s function

for non-vanishing momenta is given by replacing ω →
√
ω2 − k2. This implies that there

are poles at ω = ±|~k|, with the pole in the lower half-plane corresponding to the retarded

Green’s function. Furthermore, for the choice of sign (D.7), there are no additional poles in

the upper half-plane of the principal sheet. Therefore, we have shown that in the relativistic

case the Kramers-Kronig relations are satisfied also for non-vanishing momenta.
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D.2 Sum rule for ~k = 0

The Green’s function in the case of vanishing temperature and momenta can be found in

equation (3.13). The spectral density (2.17) then reads

ρ(~k = 0, ω) =
1

2π
Im Tr

[
GR(~k = 0, ω)

]
= − 1

π
Im

[
1

ω − gcz ω
2M
z e−iπ(

M
z

+ 1
2)

]
. (D.8)

Introducing the following constants

B = gcz cos

[
π

(
M

z
+

1

2

)]
, C = gcz sin

[
π

(
M

z
+

1

2

)]
, (D.9)

we express the spectral density as

ρ(~k = 0, ω) = +
1

π

C ω 2M
z(

ω − B ω 2M
z

)2
+
(
C ω 2M

z

)2 . (D.10)

Next, to compute the sum rule we recall the symmetry ρ(~k,−ω) = ρ(~k,+ω). We then have∫ +∞

−∞
dω ρ(~k = 0, ω) = 2

∫ +∞

0
dω ρ(~k = 0, ω)

=
2

π

z

2M − z arctan

[
−BC + ω

2M
z
B2 + C2

C

]ω=∞

ω=0

=
2M

2M − z −
z

2M − z sign(gcz) .

(D.11)

Therefore, for the choice of sign (3.3) we indeed find that the sum rule (2.18) for vanishing

momenta and vanishing temperature is satisfied∫ +∞

−∞
dω ρ(~k = 0, ω) = 1 . (D.12)

D.3 Sum rule for ~k 6= 0

In the case of z = 1 and vanishing temperature, the expression for the Green’s function

was given in equation (3.1) together with (3.4). To compute the sum rule in this situation,

we write∫ +∞

−∞
dω ρ(~k, ω) =

2

2π

∫ +∞

0
dω Im

−2ω

p2
(

1− gc1 e
−iπ(M+ 1

2)p2M−1
) , (D.13)

with p as in (3.4). Next, we take (3.4) into account to obtain∫ +∞

−∞
dω ρ(~k, ω) = +

1

π

∫ +|~k|

0
dω Im

−2ω

(ω2 − k2) (1 + gc1 (k2 − ω2)2M−1)
(D.14)

+
1

π

∫ +∞

+|~k|
dω Im

−2ω

(ω2 − k2)2
(

1− gc1 e
−iπ(M+ 1

2
)(ω2 − k2)2M−1

) ,
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where we note that the first term on the right-hand side vanishes due to taking the imagi-

nary part. Performing then the change of variables x = ω2 − k2, we find∫ +∞

−∞
dω ρ(~k, ω) = − 1

π

∫ ∞
0

dx Im

[
1

x2 − gc1 x2M+1e−iπ(M+ 1
2

)

]
. (D.15)

After a further change of variables y = x2, we arrive at∫ +∞

−∞
dω ρ(~k, ω) = − 2

π

∫ ∞
0

dy Im

[
1

y − gc1 y2Me−iπ(M+ 1
2

)

]
, (D.16)

which is a special case of the computation in appendix D.2. We therefore find∫ +∞

−∞
dω ρ(~k, ω) = 1 . (D.17)

E WKB calculation

In this appendix, we present details of the calculation leading to equation (4.22). We

consider the case M > 0, T = 0 and without loss of generality make the assumptions

ω > 0, ~k = (0, 0, k3) and k3 > 0. Furthermore, we consider the spin-up component of

the Green’s function, the other cases can be worked out using the symmetries outlined in

appendix C.

The parameter which we take large in the WKB approximation is k̄ ≡ k/√ω, and the

fluctuation equations of u± are given by (B.6) which yield

0 = ∂2
ru± +

[
2

r
+

ω

r2k̃2

(
−ω
r
± k
)]
∂ru± +

[
− k̃

2

r4
− Mω

r3k̃2

(
∓ω
r

+ k
)
− M(M ± 1)

r2

]
u±

≡ ∂2
ru± + f±1 (r)∂ru± + f±2 (r)u± , (E.1)

where k̃ had been defined in (B.2). This expression can be put in the Schrödinger form by

the transformation

u± = h±(r)y± , h±(r) = exp

(
−1

2

∫ r

dt f±1 (t)

)
. (E.2)

A suitable parametrization of the extra spatial coordinate in the limit k̄ � 1 is given in

terms of x = r/
√
ω. In this variable, the transformation (E.2) reads as follows

h±(x) =

√
xk̄ ± 1

x3/2
. (E.3)

Then, the Schrödinger equations become

1

k̄2

d2

dx2
y±(x)− V±(x) y±(x) = 0 , (E.4)

with the effective Schrödinger potentials

V±(x) =
1

x4
− 1

k̄2x6
+

(
1
2 ±M

) (
3
2 ±M

)
k̄2x2

+
3

4

1

(xk̄ ± 1)2
−

3
2 ±M

xk̄(xk̄ ± 1)
. (E.5)
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1010

x

|V+|

(a) Double-logarithmic plot of |V+|. The turning

point is approximately xtp = 1/10.

1 100 104 106
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1010

1019

1028

1037

x

Re y+

(b) Double-logarithmic plot of Re y+. The imagi-

nary part is similar but with a minus sign. Left of

the turning point there is oscillatory behavior, the

other regions exhibit exponential behavior.

0.05 0.06 0.07 0.08 0.09 0.10

-0.10

-0.05

0.05
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x

Re y+

(c) Near-horizon oscillatory behavior. Until the turning point,

there is good agreement between the numerical (blue) and

WKB (red) result. After that, the WKB solution is no longer

valid.

0.07 0.08 0.09 0.10 0.11

-0.2

0.2

0.4

0.6

x

Re y+

(d) Matching procedure near the classical turning point. The

dashed red curves are the WKB results, the solid blue curve is

the numerical solution, and the solid green curve is the Airy

function solution needed in the matching formulae which agrees

with the numerics around the turning point.
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x

Re y+

(e) Double-logarithmic plot of Re y+ in the classically disallowed region.

The solid blue curve is the numerical solution, the dashed lines are the an-

alytic solution (E.12) for exponents α = π/2 (red) and α = 5/3 (yellow).

The former agrees with the numerical result, the latter deviates from it.

For large x, the WKB results are not valid anymore but are taken over

by the Bessel-function solutions plotted on the far right, which overlap

with the WKB solution for smaller x.

10 100 1000 104 105 106

1033

1036

1039

1042

x

Re y+

(f) Double-logarithmic plot of the near-boundary region, where the

Bessel-function solution is valid. The blue curve is the numerical result,

the dashed curves are the analytic result (E.16) for exponents α = π/2

(red) α = 5/3 (yellow).

Figure 19. Illustration of the numerical WKB calculation for k̄ = 10 and M = 1/4.

In addition to solving the above Schrödinger equation for y+ analytically using the WKB

approximation as described below, we have also solved it numerically. The numerical results

are presented in figure 19, which we discuss as we proceed in our computation.

We now focus on the plus component of the fluctuations. In the region close to the
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horizon at x � 1, and in the limit k̄ � 1, the relevant piece of the potential for y+

reduces to

V+ ≈
1

x4
− 1

k̄2x6
, (E.6)

from which we see that there is a turning point located at approximately xtp = 1/k̄. In

the region x < xtp the WKB wavefunction is given by

y+(x) =
A1

(−V+)1/4
e+ik̄

∫ xtp
x dt

√
−V+(t) +

A2

(−V+)1/4
e−ik̄

∫ xtp
x dt

√
−V+(t) , (E.7)

with V+ obtained from (E.6). The solution for x < xtp is compared with the numerics in

figure 19(c). This solution should be connected to the solution near the horizon at x→ 0,

which yields the condition that A2 = 0. We will not need to fix the coefficient A1 because,

as shown below, it will cancel out in the final answer. The next step is to continue the

solution from the region x < xtp to the region x > xtp by using the well-known WKB

connection formula, see for example [27, 28]. This procedure is illustrated in figure 19(d).

One important subtlety here is that in the final answer we will need second-order corrections

to the WKB formula as well. Noting that the parameter that plays the role of ~ here is

1/k̄, we find,

y+(x) =
A1e

−iπ
4

V+(x)
1
4

[
e

+k̄
∫ x
xtp

dt
√
V+(t)

(
1 +

σ+(x)

k̄

)
+
i

2
e
−k̄

∫ x
xtp

dt
√
V+(t)

(
1 +

σ−(x)

k̄

)]
, (E.8)

where the second-order WKB coefficients can be found as (see for example [39])

σ± = ±
∫ x

xtp

dt

(
1

8

V ′′+(t)

V+(t)
3
2

− 5

32

V ′+(t)2

V+(t)
5
2

)
. (E.9)

This is our WKB solution in the classically disallowed region xtp � x <∞, where we can

now approximate the potential by4

V+ →
1

x4
+
M(M + 1)

k̄2x2
+

M

x3k̄3
− 1

x6k̄2
. (E.10)

To the desired order in k̄, (E.9) then yields

±σ± =
1

4k̄2x
+
M(M + 1)x3

4k̄2
+
Mx2

8k̄3
− 1

4k̄
+ . . . , (E.11)

and with this approximation we find from (E.8) the following solution, which is illustrated

in figure 19(e),

y+(x) = A1 x e
−iπ

4

(
e−

k̄
x ek̄

2
κ+(x) +

i

2
e+ k̄

x e−k̄
2
κ−(x)

)
, (E.12)

4Note that we keep the leading 1/k̄2 corrections in order to be consistent with keeping the σ± corrections

in (E.8).
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where we employed

xtp =
1

k̄
− M(M + 1)

k̄5
+ . . . , (E.13)

and have defined the functions

κ±≈
[
1± M(M + 1)x

2k̄
± M

2k̄2
log(k̄x)

][
1− M(M + 1)x2

4k̄2
+

1

4x2k̄2

][
1∓ 1

4k̄2
± 1

4k̄3x

]
.

(E.14)

Note that here we only show terms up to the desired 1/k̄2 order. The terms in the first

brackets come from the corrections to the exponential term in (E.8), the second terms come

from the expansion of the V
−1/4

+ and the last ones from the σ± corrections in (E.8).

The next step is to connect this solution to the region near the boundary at x → ∞
and read off the Green’s function from the coefficients of the near-boundary expansion.

Note that the WKB approximation in the near-boundary limit x → ∞ fails, because in

this region we have an inverse-square potential which does not satisfy the WKB condition

|V ′+(x)/V
3
2 (x)| � 1. Thus, one has to solve the Schrödinger equation with the poten-

tial (E.10) exactly and connect it to the solution (E.12) in the overlapping region k̄/x� 1.

In the latter, we can approximate the potential as

V+(x) ≈ 1

x4
+
M(M + 1)

x2k̄2
, (E.15)

and the exact solution to the Schrödinger equation with this potential is found in terms of

the Bessel functions as

y+(x) =
√
x

[
B1 I− 1

2
−M

(
k̄

x

)
+B2 I 1

2
+M

(
k̄

x

)]
, (E.16)

where B1,2 are coefficients so far undetermined. This solution is also shown in figure 19(e).

In order to connect it to (E.12), we use the well-known asymptotic formula for the Bessel

functions for large values of the variable k̄/x and we find

y+(k̄/x)→ x√
2πk̄

[
B1

(
e
k̄
x + e−iπMe−

k̄
x

)
+B2

(
e
k̄
x − eiπMe− k̄x

)]
+ . . . , (E.17)

from which we obtain

B1 =
A1e

−iπ
4

√
2πk̄

2 cos(πM)

(
i

2
eiπMe−k̄

2
ε− + ek̄

2
ε+

)
. (E.18)

We shall not need the expression for B2, and the constants ε± are defined as follows

ε± = 1± M

2k̄2
log k̄ ∓ 1

4k̄2
. (E.19)

On the other hand, using equation (E.3) together with the series expansion of the Bessel

functions near x→∞ given in (E.16), we find that

u+(x) ≈ Āu+xM + . . . , (E.20)
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where the superscript u denotes that we consider the spin-up component of the spinor Ā+.

This is in accord with the asymptotic solution given in appendix B.2 with

Āu+ = B1
k̄−M2M+ 1

2

Γ
(

1
2 −M

) , (E.21)

where B1 is determined by (E.18).

The next step in the calculation of the Green’s function is to obtain the WKB solution

for the u− component in (E.1). One way would be to apply the same steps as above in

the WKB calculation, however this process is more difficult than the u+ case, since the

potential for u− shown in (E.5) has extra poles at x = 1/k̄. Fortunately, u− is related to

u+ by the first order differential equation (B.5), and so we can use the result for u+ to

obtain u− directly. Equation (B.5), specified to the spin-up component and in the rescaled

variables x and k̄, reads

u− =
i

k̄ + 1
x

(
x2∂x −Mx

)
u+ , (E.22)

which for the solution (E.8) becomes

u− =
i

k̄ + 1
x

[
x2

(
h′+(x)

h+(x)
− 1

4

V ′(x)

V (x)

)
−Mx

]
u+ +A(x) , (E.23)

where the function A(x) is given by

A(x) =
ix2h+

k̄ + 1
x

A1e
−iπ/4

V
1/4

+ (x)

[
e

+k̄
∫ x
xtp

dt
√
V+(t)

(
k̄V

1
2

+ (x)

(
1 +

σ+(x)

k̄

)
+
σ′+(x)

k̄

)
− i

2
e
−k̄

∫ x
xtp

dt
√
V+(t)

(
k̄V

1
2

+ (x)

(
1+

σ−(x)

k̄

)
− σ′−(x)

k̄

)]
.

(E.24)

On the other hand, very close to the boundary, we can approximate the Schrödinger po-

tential as

V−(x) ≈ 1

x4
+
M(M − 1)

x2k̄2
, (E.25)

and again, using this potential in the Schrödinger-like equation for y−, the exact solu-

tion reads

y−(x) =
√
x

[
C1 I− 1

2
+M

(
k̄

x

)
+ C2 I 1

2
−M

(
k̄

x

)]
, (E.26)

with C1,2 some coefficients to be determined. Similarly as above, expanding the Bessel

functions in this solution for large x/k̄, and using u− = h−(x)y−(x) with (E.3), we find

u−(x) ≈ Āu−x−M + . . . , (E.27)

with

Āu− = C1
k̄M 2−M+ 1

2

Γ
(

1
2 +M

) . (E.28)
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Next, we employ the asymptotic formula for the Bessel functions in (E.26) for large k̄/x

to match to the WKB result (E.23). In this matching, we also need to use (E.24), (E.12)

and the relation u±(x) = h±(x)y±(x) with (E.3). The result is

C1 =
A1e

−iπ
4

√
2πk̄

2 cos(πM)

(
1

2
e−iπMe−k̄

2
γ− + iek̄

2
γ+

)
, (E.29)

and we shall not need the expression for C2. The constants γ± read

γ± = 1± M

2k̄2
log k̄ ∓ 3

4k̄2
. (E.30)

Finally, as can be inferred for instance from (2.7), the spin-up eigenvalue of the matrix

ξ is proportional to the ratio of u− and u+. Thus, using its definition from (2.12), the

spin-up component of the self-energy is proportional to the ratio of the constants Āu− and

Āu+. To be more precise,

Σ+ = −i g ωM Āu−
Āu+

= −i g 2−2Mk2M Γ
(

1
2 −M

)
Γ
(

1
2 +M

) C1

B1
. (E.31)

If we then use (E.18), (E.21), (E.28) and (E.29), we obtain the final result for the spin-up

component of the self-energy as it was given in (4.21).

Before closing this appendix, let us remark the following. As explained at the beginning

of section 4.3, the numerical prefactors both of the terms in ε± and γ± and the one in the

exponent, i.e., the number α in the end result Im Σ ∼ exp(−αk2/ω), are difficult to

determine analytically. This is because the integral in (E.8) leading to κ± cannot be done

analytically. In the calculation presented here, we have approximated the potential V+ by

taking into account only the three most relevant terms in the region x > xtp, which leads to

α = 2 as in (E.12). This is reasonable away from the turning point, but close to the lower

integration limit xtp the x−6 term has a considerable contribution not taken into account.

Furthermore, the turning point itself is determined by setting to zero an approximation

to the effective potential. To do better, we should use the full potential everywhere, and

expand the integrand as a series in 1/k̄. However, this series is not uniformly convergent

because the integration limit xtp depends on 1/k̄. In practice we can terminate the series

at some point, which leads to a different approximation of the numerical prefactors. For

example, if the full effective potential is taken into account and the integrand
√
V+ is

expanded in 1/k̄, the next contribution of order k̄2 is −k̄2/6, which results in α = 5/3,

and thus in a decay rate of Γ ∼ exp(−5k2/3ω). Furthermore, we can do the same for the

integral in the σ± from (E.9). Also, in the prefactor V
−1/4

+ the full potential can be taken

into account. Then, the O(1/k̄2) terms in γ± and ε± also receive extra corrections. Still,

we are left with an approximation of the exact numbers, and it is not clear whether there

occur cancellations between terms later on in the 1/k̄ expansion.

The integral over
√
V+ can however be performed numerically. Figure 20 compares

the numerical and analytic values of the number α/2 that appears in the exponent. The

numerical result is approximately π/4, whereas our improved approximated analytic cal-

culation yields 5/6. When we use α = π/2 in the exponent, the resulting self-energy agrees

more accurately with the numerical results, as is shown in figures 15 and 19.
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∫ x

xtp
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√
V+(t)

k̄

Figure 20. Plot of 1
k̄

∫ x

xtp
dt
√
V+(t) as a function of k̄, which appears in the exponents of (E.8)

that determine the quasi-particle decay rate. For large k̄, the k̄2 term in the exponent is dominant

and therefore the curves converge to the numerical prefactor of this term. In this way, the correct

factor can be determined numerically. Here, we have taken M = +1/4 and x = 20 as the upper

integration limit, which is an intermediate value of x. The value of the integral is independent of

M for k̄ →∞.

The solid green curve is the result when the two most relevant terms in the potential are taken

into account, leading to α = 2 (dashed green line). The solid blue curve is the resulting expression

when the integration over the full potential is done analytically before terminating the series in k̄,

leading to the α = 5/3 prefactor of the k̄2 term (the dashed blue line is the number 5/6). The red

dots show the value of the integral when it is performed numerically, and the dashed red line is

the number π/4. The former converge to the latter curve, which is evidence that the value of the

integral is approximately π/4k̄2 + . . .. Thus, the exponent that determines the quasi-particle decay

rate in the final WKB result will be exp(−πk2/2ω).
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