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Abstract

The cross section for dijet production in pp collisions at
√

s = 7 TeV is presented as
a function of ξ̃, a variable that approximates the fractional momentum loss of the
scattered proton in single-diffractive events. The analysis is based on an integrated
luminosity of 2.7 nb−1 collected with the CMS detector at the LHC at low instanta-
neous luminosities, and uses events with jet transverse momentum of at least 20 GeV.
The dijet cross section results are compared to the predictions of diffractive and non-
diffractive models. The low-ξ̃ data show a significant contribution from diffractive
dijet production, observed for the first time at the LHC. The associated rapidity gap
survival probability is estimated.
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1 Introduction
A significant fraction of the total inelastic proton-proton cross section at high energies is at-
tributed to diffractive processes, characterised by the presence of a large rapidity region ∆y
with no hadrons, usually called “rapidity gap” (rapidity is defined as y = (1/2) ln[(E+ pZ)/(E−
pZ)], where E and pZ are the energy and longitudinal momentum of the final-state particle, re-
spectively). Diffractive scattering is described in the framework of Regge theory as mediated
by a strongly interacting colour-singlet exchange with the vacuum quantum numbers, the so-
called “pomeron trajectory” [1]. Diffractive events with a hard parton-parton scattering are
especially interesting because they can be studied in terms of perturbative quantum chromo-
dynamics (pQCD). In diffractive events the proton emitting the pomeron either remains intact,
losing only a few per cent of its momentum, or is found in a low mass excited state. In addi-
tion, since the vacuum quantum numbers are exchanged, no particles are produced in a large
rapidity range adjacent to the scattered proton (or its dissociation products).

Diffraction with a hard scale has been studied in proton-antiproton (pp) and electron-proton
(ep) collisions at CERN [2], Fermilab [3–6], and DESY [7–10]. Such hard diffractive processes
can be described in terms of the convolution of diffractive parton distribution functions (dPDFs)
and hard scattering cross sections, which are calculable in pQCD. In this approach, the pomeron
is treated as a colour-singlet combination of partons with the vacuum quantum numbers. The
dPDFs have been determined by the HERA experiments [7, 9] by means of QCD fits to inclusive
diffractive deep inelastic scattering data, and have been successfully used to describe different
hard diffractive processes in ep collisions. This success is based on the factorisation theorem for
diffractive electron-proton interactions, and on the validity of the QCD evolution equations for
the dPDFs [11–13]. However, in hard diffractive hadron-hadron collisions factorisation does
not hold because of soft scatterings between the spectator partons, leading to the suppression
of the observed diffractive cross section. The suppression is quantified by the so-called “rapid-
ity gap survival probability” [14], which is a non-perturbative quantity with large theoretical
uncertainties [15–18]. It was measured to be about 10% in diffractive dijet production in pp
collisions at the Tevatron [5].

This paper presents a study of dijet production in proton-proton collisions at a centre-of-mass
energy of

√
s = 7 TeV. The data were collected with the Compact Muon Solenoid (CMS) de-

tector at the Large Hadron Collider (LHC) in 2010 and correspond to an integrated luminosity
of 2.7 nb−1. The cross section for production of dijets is presented as a function of ξ̃, a variable
that approximates the fractional momentum loss of the proton, for events in which both jets
have transverse momenta pj1,j2

T > 20 GeV and jet axes in the pseudorapidity range |ηj1,j2| < 4.4.
Pseudorapidity is defined as η = − ln[tan(θ/2)], where θ is the polar angle relative to the anti-
clockwise proton beam direction, and is equal to the rapidity in the limit of a massless particle.
The measurements are compared to the predictions of non-diffractive and diffractive models,
and the rapidity gap survival probability is estimated.

The paper is organised as follows: in Section 2 a brief description of the CMS detector is pro-
vided. The definitions of the kinematic variables are introduced in Section 3. The event selec-
tion is explained in Section 4. Section 5 describes the main features of the Monte Carlo (MC)
generators used in this analysis. The cross section determination for dijets as a function of ξ̃
and the systematic uncertainties of the measurements are discussed in Section 6. The results
are presented in Section 7, and the summary is given in Section 8.



2 3 Kinematics and cross sections

2 Experimental setup
A detailed description of the CMS detector can be found elsewhere [19]. The central feature of
the CMS apparatus is a superconducting solenoid, of 6 m internal diameter. Within the field
volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL)
and the brass-scintillator hadronic calorimeter (HCAL). The tracker measures charged particles
within the pseudorapidity range |η| < 2.4. ECAL and HCAL provide coverage in pseudorapid-
ity up to |η| < 3 in the barrel region and two endcap regions. The HCAL, when combined with
the ECAL, measures jets with an energy resolution ∆E/E ≈ 100%/

√
E (GeV)⊕ 5%. The calor-

imeter cells are grouped in projective towers, of granularity ∆η× ∆φ = 0.087× 0.087 at central
rapidities and 0.175× 0.175 at forward rapidities, where φ is the azimuthal angle in radians. In
addition to the barrel and endcap detectors, CMS has extensive forward calorimetry. The for-
ward part of the hadron calorimeter, HF, consists of steel absorbers and embedded radiation-
hard quartz fibers, which provide a fast collection of Cherenkov light. The pseudorapidity
coverage of the HF is 2.9 < |η| < 5.2. In the current analysis only the range 3.0 < |η| < 4.9 was
used, thus restricting the data to a region of well understood reconstruction efficiency. The first
level of the CMS trigger system, composed of custom hardware processors, uses information
from the calorimeters and muon detectors to select the most interesting events in a fixed time
interval of less than 4 µs. The High Level Trigger processor farm further decreases the event
rate from around 100 kHz to around 300 Hz, before data storage.

3 Kinematics and cross sections
Diffractive dijet production (Fig. 1) is characterised by the presence of a high-momentum pro-
ton (or a system Y with the same quantum numbers as the proton) with fractional momentum
loss smaller than a few per cent and a system X, which contains high-pT jets and is separated
from the proton by a large rapidity gap, with ∆y ≥ 3 or 4 units. The kinematics of this reac-
tion is described by the masses of the systems X and Y, MX and MY, and the squared four-
momentum transfer t at the proton vertex. For the events selected in this analysis both MX and
MY are much smaller than

√
s.

p

p

t

jet

jet

Y

X

IP

Figure 1: Schematic diagram of diffractive dijet production. The diagram shows the example
of the gg→ jet jet process; the qq and gq initial states also contribute.

The cross section for single-diffractive (SD) dijet production (i.e. when the forward-going sys-
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tem Y is a proton) is usually expressed in terms of the variable ξ = M2
X/s, which approximates

the fractional momentum loss of the scattered proton. Under the assumption of QCD factori-
sation, the cross section can be written as

dσ

dξ dt
= ∑

∫
dx1 dx2 dt̂ f (ξ, t) fP(x1, µ) fp(x2, µ)

dσ̂(ŝ, t̂)
dt̂

, (1)

where the sum is over all parton flavours. The variables x1,2 are the parton momentum fractions
in the pomeron and proton, the scale at which the PDFs are evaluated is indicated with µ, and
σ̂(ŝ, t̂) is the hard-scattering subprocess cross section, which is a function of the partonic centre-
of-mass energy squared ŝ and momentum transfer squared t̂. The function fp(x2, µ) is the
inclusive PDF of the proton that breaks up, while the dPDF of the surviving proton is written
as fdiff(ξ, t, x1, µ) = f (ξ, t) fP(x1, µ), where f (ξ, t) is the so-called pomeron flux and fP(x1, µ)
is the pomeron structure function. The cross section dependence on ξ and t is driven by the
pomeron flux, usually parameterised according to Regge theory as

f (ξ, t) =
eBt

ξ2αP(t)−1
, (2)

where αP(t) is the pomeron trajectory and B is the slope parameter. This ansatz is consistent
with the HERA ep data [7–9], but is known not to hold between the ep and the Tevatron (pp)
data [3–6], where an extra suppression (gap survival probability) factor is needed.

In this analysis ξ is approximated by the variables ξ̃+ (system X going in the -z direction) and
ξ̃− (system X going in the +z direction) defined at the level of stable particles as

ξ̃± =
∑ (Ei ± pi

z)√
s

, (3)

where Ei and pi
z are the energy and longitudinal momentum of the ith final-state particle with

−∞ < η < 4.9 for ξ̃+ and −4.9 < η < +∞ for ξ̃−. In the region of low ξ̃±, this variable is a
good approximation of ξ for single-diffractive events. This is illustrated for single-diffractive
dijet events simulated by PYTHIA8 [20] in Fig. 2, where the correlations between the values of
ξ and ξ̃+, determined at generated and reconstructed (see Section 4) are shown. The mass of
the forward-going system Y, which includes all particles with η > 4.9 (or η < −4.9), was also
estimated with the PYTHIA8 generator; the mass is limited by the pseudorapidity range and is
typically smaller than 30–40 GeV, with average ∼5 GeV.

4 Event selection
The data were collected with the CMS detector in 2010 at low luminosities. The average number
of extra pp interactions for any given event (the so called pile-up interactions) in the data is
0.09. The low number of pile-up interactions simplified the extraction of the diffractive signal,
since the particles produced in such interactions may fill the rapidity gap and hence reduce the
visible diffractive cross section. However, the requirement of low pile-up limits the available
data sample since only a small amount of low-luminosity runs was collected.

At the trigger level events were selected by requiring at least one jet with uncorrected trans-
verse momentum greater than 6 GeV. The efficiency of the trigger, estimated using a minimum-
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Figure 2: The generated ξ versus generated (left) and reconstructed (right) ξ̃+ correlations for
single-diffractive dijet events simulated by PYTHIA8; events in the right panel are those passing
the selection described in Section 4.

bias data sample, was found to be greater than 95% for the dijet events considered in this anal-
ysis.

Offline, the jets were reconstructed with the anti-kT inclusive jet finding algorithm [21] with dis-
tance parameter of 0.5. The jet clustering algorithm was used to reconstruct jets from particle-
flow (PF) objects [22], which are particle candidates obtained by combining the information of
the tracking system and of the calorimeters in an optimal way. The reconstructed jet momenta
were fully corrected to the level of stable particles (with lifetime τ such that cτ > 10 mm, here-
after referred to as “particle level”), by means of a procedure partially based on MC simulation
and partially on data [23].

The quantities ξ̃+ and ξ̃− were reconstructed using Eq. (3) from the energies and longitudinal
momenta of all PF objects measured in the |η| < 4.9 range. For charged PF objects (|η| < 2.4,
the region covered by the tracker) a minimum transverse momentum of 0.2 GeV was required.
In the forward region, 3.0 < |η| < 4.9, particularly relevant for this analysis, PF candidates
were selected with energy greater than 4 GeV. A constant scale factor C = 1.45± 0.04, deter-
mined from the MC simulation by comparing the generated and reconstructed values of ξ̃±, is
applied to the measured ξ̃±. The error on the correction factor C is estimated by changing the
MC models used to evaluate it. The value of C reflects the fact that not all final-state particles
are detected because of the limited acceptance and imperfect response of the detector. It also
takes into account the inefficiency of PF object reconstruction. In practice, C acts as a scale cali-
bration for ξ̃±; it depends only slightly on the value of ξ̃± and on the MC generator used. This
dependence, of the order of a few per cent, is included in the systematic uncertainty. The res-
olution of ξ̃±, in the region of the present measurement, is ∼25%, and practically independent
of ξ̃±.

Events were selected offline by applying the following requirements:

• the jets should pass the standard CMS quality criteria [23];

• events should have at least two jets, each with transverse momentum, corrected to
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particle level, greater than 20 GeV. This requirement ensures high trigger efficiency;

• the axes of the two leading jets (jets were ordered in pT with the first, leading jet
having the highest pT) should be in the pseudorapidity region |ηj1,j2| < 4.4 so that
the reconstructed jets are fully contained in the detector;

• a primary vertex should be within a longitudinal distance |z| < 24 cm of the centre
of CMS;

• beam-scraping events, in which long horizontal sections of the pixel tracker are hit
by charged particles travelling parallel to the beam, were rejected with a special
algorithm [24];

• to enhance the diffractive contribution, the requirements ηmax < 3 (ηmin > −3) were
also applied. Here ηmax (ηmin) is the pseudorapidity of the most forward (backward)
PF object. The ηmax (ηmin) selection together with the pseudorapidity coverage of
the detector, |η| < 4.9, is equivalent to imposing a pseudorapidity gap of at least 1.9
units, with no PF objects with energy greater than 4 GeV in the HF calorimeter.

The number of selected events before the ηmax (ηmin) requirement is 277 953. The number of
events passing also the ηmax < 3 (ηmin > −3) selection is 804 (774); of these, 222 (220) have ξ̃+ <

0.01 (ξ̃− < 0.01). The differential cross section for dijet production was calculated separately
as a function of ξ̃+ and ξ̃−. The final results were averaged, and the average is presented as a
function of ξ̃.

The ηmax, ηmin requirements reject most pile-up interactions. The remaining pile-up back-
ground was estimated with minimum-bias MC samples (PYTHIA6 Z1 and PYTHIA8, see next
Section) and was found to be less than 2%.

5 Monte Carlo simulation
The simulation of non-diffractive (ND) dijet events was performed with the PYTHIA6 (version
6.422) [25] and PYTHIA8 (version 8.135) [20] generators; the events were generated in PYTHIA6
with tunes Z2 [26] and D6T [27], and in PYTHIA8 with tune 1 [20]. The more recent PYTHIA8
tune 4C [28] yields similar results as the tune 1 used here. Minimum-bias events were generated
with PYTHIA6 tune Z1 [26] and with PYTHIA8 tune 1.

Diffractive dijet events were simulated with the POMPYT [29], POMWIG [30], and PYTHIA8 gen-
erators. The PYTHIA8 generator can simulate inclusive, non-diffractive as well as diffractive di-
jet events; separate samples were produced for the two processes. The modelling of diffractive
events in these generators is based on the Ingelman and Schlein approach [31], which consid-
ers the diffractive reaction as a two-step process: one proton emits a pomeron with fractional
momentum ξ and then the pomeron interacts with the other proton. All three diffractive gen-
erators were used with dPDFs from the same fit to diffractive deep inelastic scattering data (H1
fit B [7]). The parameterisation of the pomeron flux in POMPYT and POMWIG is also based on
the QCD fits to the HERA data [7], while it is different in PYTHIA8 [32]. This leads to different
predictions for the diffractive cross sections calculated by PYTHIA8 and POMPYT or POMWIG

(notably in their normalisation). The effect of the rapidity gap survival probability is not simu-
lated in any of the three diffractive generators.

The main difference between POMPYT and POMWIG is that POMPYT uses the PYTHIA framework
while POMWIG is based on HERWIG [33]. Both programmes generate single-diffractive dissocia-
tion. In PYTHIA8 double-diffractive dissociation (DD), in which both protons dissociate, is also
included. The contribution from central diffractive dissociation, in which both protons stay



6 5 Monte Carlo simulation

intact, was estimated with POMWIG. It amounts to ∼1% of the diffractive contribution in the
ξ̃ region used in the analysis and was neglected. Only pomeron exchange was assumed; the
Reggeon exchange contribution in the region ξ̃ < 0.01 was estimated with POMPYT and was
found to be less than 2%, and less than 1% in the lowest ξ̃ bin used in the analysis.

The diffractive component of the dijet cross section was also computed at next-to-leading
(NLO) accuracy with the POWHEG [34] framework using the CTEQ6M PDF for the proton that
breaks up and H1 fit B for the dPDF. The parton shower and hadronisation were carried out
with PYTHIA8 (tune 1).

Table 1: Monte Carlo generators used in this work with details on their model ingredients.

Model PDF dPDF Parameter tune Process
PYTHIA6 CTEQ6L1 none Z2, D6T Non-diffractive jets
PYTHIA8 CTEQ5L H1 fit B Tune 1 Diffractive plus non-diffractive jets
POMPYT CTEQ6L1 H1 fit B PYTHIA6 D6T Diffractive jets only
POMWIG CTEQ6L1 H1 fit B HERWIG Diffractive jets only
POWHEG CTEQ6M H1 fit B PYTHIA8 tune1 Diffractive jets only

The generators used are listed in Table 1 along with some of their features. All generated
events were processed through the simulation of the CMS detector, based on GEANT4 [35]
and reconstructed in the same manner as the data. All samples were generated without pile-
up. The measurements were corrected for detector acceptance and resolution with a suitable
combination of non-diffractive (PYTHIA6 Z2) and diffractive (POMPYT) models (see Section5.1).

Figure 3 shows the comparison between the uncorrected data and detector-level MC simula-
tions for the reconstructed pT distributions of the leading and second-leading jets with axes in
the range |ηj1,j2| < 4.4. The simulated distributions are normalised to the number of events in
the corresponding distributions for the data. The data and MC simulations are in agreement,
for both PYTHIA6 Z2 and PYTHIA8 tune 1.
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Figure 3: Reconstructed transverse-momentum distributions of the leading (left) and second-
leading (right) jets (black dots) compared to detector-level MC simulations (histograms) gener-
ated with two non-diffractive models (PYTHIA6 Z2 and PYTHIA8 tune 1). The error bars indicate
the statistical uncertainty. The MC distributions are normalised to the number of events in the
corresponding distributions for the data. The ratios of the data and MC distributions are also
shown.

Figure 4 presents the comparison between data and MC simulations for the reconstructed
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(detector-level) pseudorapidity distributions of the leading and second-leading jets. Also here,
the MC distributions are normalised to the number of events in the data. Data are better de-
scribed by PYTHIA6 tune Z2 than by PYTHIA8 tune 1.
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Figure 4: Reconstructed pseudorapidity distributions of the leading (top) and second leading
(bottom) jets (black dots) compared to detector-level MC simulations (histograms) generated
with two non-diffractive models (PYTHIA6 Z2 and PYTHIA8 tune 1). The statistical uncertainties
are smaller than the data points. The MC distributions are normalised to the number of events
in the corresponding distributions for the data.

The pseudorapidity distributions of the two leading jets for events selected with the ηmax < 3
requirement are presented in Fig. 5. Events with the ηmin > −3 condition are also included
in Fig. 5 with ηj1,j2 → −ηj1,j2. The pseudorapidity gap condition enhances the diffractive com-
ponent in the data, and selects events with the jets mainly in the hemisphere opposite to that
of the gap. A combination of PYTHIA6 Z2 and POMPYT events reproduces the data reasonably
well; the relative normalisation of the models is optimised with the procedure described in
Section 5.1.
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Figure 5: Reconstructed pseudorapidity distributions of the leading (top) and second-leading
(bottom) jets after the ηmax < 3 selection (black dots) compared to three detector-level MC
simulations (histograms). Events with the ηmin > −3 condition are also included in the figure
with ηj1,j2 → −ηj1,j2. The error bars indicate the statistical uncertainty. The predictions of
the non-diffractive (PYTHIA6 Z2) and diffractive (POMPYT, scaled by the value quoted in the
legend) contributions and their sum are also shown. The sum of the predictions of the two MC
simulations is normalised to the number of events in the corresponding distributions for the
data.
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5.1 Reconstructed ξ̃ distributions and determination of the relative POMPYT
and PYTHIA6 normalisation

The reconstructed ξ̃ distribution is shown in Fig. 6 before the ηmax, ηmin selections. Here
again, the shape of the distribution can be described by the combination of diffractive and
non-diffractive MC models. The best combination was obtained by minimising the difference
between the ξ̃ distributions of the data and of the sum of non-diffractive and diffractive mod-
els. The relative contribution of diffractive dijets production and the overall normalisation of
the sum were found in this fit, and the diffractive contribution was scaled accordingly. The
overall normalisation of the fit result is not relevant. The effect of the calorimeter energy scale
uncertainty, estimated by varying by ±10% the energy of all PF objects not associated with the
leading jets, is shown by the band. The solid line in Fig. 6(a) indicates the result of the fit, ac-
cording to which the diffractive dijet cross section predicted by POMPYT should be multiplied
by a factor '0.23 to match the data. The uncertainty of this correction factor was estimated
by changing the fitting procedure and was found to be ∼20%. Figure 6(b) presents the same
data compared to PYTHIA6 D6T + POMPYT; here the fit requires the POMPYT normalisation to
be scaled by a factor of '0.17.
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Figure 6: Reconstructed ξ̃ distribution compared to detector-level MC predictions with and
without diffractive dijet production. The predictions of (a) PYTHIA6 Z2 + POMPYT, (b) PYTHIA6
D6T + POMPYT, and (c) PYTHIA8 tune 1 are shown (in all the cases the relative diffractive con-
tributions from the MC simulation are scaled by the values given in the legend). The error bars
indicate the statistical uncertainty, the band represents the calorimeter energy scale uncertainty.
The sum of the predictions of the two MC simulations is normalised to the number of events
in the corresponding distributions for the data.

Figure 6(c) compares the data to PYTHIA8 tune 1; both the single-diffractive and the double-
diffractive components are added to the non-diffractive part, all simulated by PYTHIA8. The
result of the fit is very different from that for POMWIG and PYTHIA6: the normalisation of the
diffractive components of PYTHIA8 needs to be multiplied by a factor '2.5 to match the data.
This large difference is a consequence of the different implementation of the pomeron flux in
PYTHIA8 and POMPYT.

In all three cases, after normalisation, the shape of the reconstructed ξ̃ distribution in the data
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is described satisfactorily by the MC models (PYTHIA6 Z2 + POMPYT resulting in the best de-
scription). However, the predicted non-diffractive component in the lowest ξ̃ bin varies from
about 0.1% for PYTHIA6 D6T to as much as 10–20% for PYTHIA6 Z2 and PYTHIA8.

The effect of the ηmax < 3 (ηmin > −3) requirement is illustrated in Fig. 7, where the recon-
structed ξ̃ distributions with and without the ηmax < 3 (ηmin > −3) condition are compared
to MC simulations. These pseudorapidity gap selections reject events at high values of ξ̃. The
region of low ξ̃, where the diffractive contribution dominates, is only marginally affected. The
data and MC simulations are in agreement at low ξ̃. The relative normalisation of PYTHIA6 Z2
and POMPYT in the figure is the same as in Fig. 6.
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Figure 7: Reconstructed ξ̃ distributions with (open symbols) and without (closed symbols) the
ηmax < 3 (or ηmin > −3) condition are compared to detector-level MC predictions including
diffractive dijet production (PYTHIA6 Z2 + POMPYT). The error bars indicate the statistical un-
certainty, the band represents the calorimeter energy scale uncertainty. The relative diffractive
dijet contribution from the MC simulation has been scaled by the factor 0.23. The sum of the
predictions of the two MC simulations is normalised to the number of events in the correspond-
ing distributions for the data.

6 Cross section determination and systematic uncertainties

The differential cross section for dijet production as a function of ξ̃ is evaluated as

dσjj

dξ̃
=

Ni
jj

L · ε · Ai · ∆ξ̃ i
, (4)

where Ni
jj is the measured number of dijet events in the i-th ξ̃ bin, Ai is the correction factor de-

fined as the number of reconstructed MC events in that bin divided by the number of generated
events in the same bin, ∆ξ̃ i is the bin width, L is the integrated luminosity and ε is the trigger
efficiency. The factors Ai include the effects of the geometrical acceptance of the apparatus, that
of all the selections listed in Section 4, as well as the unfolding corrections to account for the fi-
nite resolution of the reconstructed variables used in the analysis. Various unfolding techniques
(bin-by-bin, SVD [36] and Bayesian [37]) yield consistent results and the bin-by-bin correction
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was kept. In addition, the measured number of events, Ni
jj, is corrected for the effect of pile-up.

This correction takes into account the probability of single pp interactions, evaluated on a run-
by-run basis, as well as the probability that pile-up interactions do not destroy the visible gap,
estimated with the minimum-bias MC samples (PYTHIA6 Z1 and PYTHIA8 tune 1); the average
correction is 1.07. The cross section is measured for dijets with the axes in the pseudorapidity
range |ηj1,j2| < 4.4 and pj1,j2

T > 20 GeV in the ξ̃ bins 0.0003 < ξ̃ < 0.002, 0.002 < ξ̃ < 0.0045,
and 0.0045 < ξ̃ < 0.01. The cross section results for ξ̃+ and ξ̃− are averaged, yielding the cross
section as a function of ξ̃.

The systematic uncertainties are estimated by varying the selection criteria and by modifying
the analysis procedure as follows:

1. The uncertainty on the jet energy scale varies between 2% and 9% depending on the jet
pT and η [23]. It decreases with the jet pT and is typically higher at high η. The energy of
the reconstructed jets is varied accordingly.

2. The effect of the uncertainty on the jet energy resolution is studied by changing the reso-
lution by up to ±10% in the central region (|η| < 2.3) and by up to ±20% in the forward
regions (|η| > 2.3) [23].

3. The systematic uncertainty related to the ξ̃ reconstruction is determined as follows: (i) the
effect of the calorimeter energy scale uncertainty is estimated by varying the energy of all
PF objects not associated with the leading jets by ±10%; (ii) the pT threshold for tracks is
increased from 200 to 250 MeV; (iii) the correction factor C is varied by ±3%, i.e. by its
uncertainty (as discussed in Section 4).

4. The uncertainty on the correction factor Ai in Eq. (4) is estimated by changing the MC
models used to evaluate it. In addition, the relative fraction of diffraction is changed
by ±20%, i.e. by the uncertainty of the scaling factors obtained in the fits discussed in
Section 5.1.

5. The sensitivity to pile-up is studied by restricting the analysis to events with only one
reconstructed vertex.

6. The sensitivity to the jet reconstruction procedure is studied by repeating the analysis
with jets reconstructed only with calorimetric information instead of particle-flow objects.
This affects the results by 4% at most.

7. The difference in the results obtained for the cross section as a function of ξ̃+ and ξ̃− is
found to be less than 11% and is included in the systematic uncertainty.

8. The uncertainty on the trigger efficiency is estimated from the comparison of the turn-on
curves as a function of the jet pT in the minimum-bias data and the MC simulation. The
resulting uncertainty is 3%.

9. The uncertainty on the integrated luminosity is estimated to be 4% [38, 39].

The total systematic uncertainty is calculated as the quadratic sum of the individual contribu-
tions. The resulting uncertainty of the cross section measurement is ∼30%, dominated by the
jet energy scale. The effect of each systematic check on the cross section uncertainty is given in
Table 2.
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Table 2: Contributions to the systematic uncertainty on the dijet cross section in the three lowest
ξ̃ bins considered. The total systematic uncertainty calculated as the quadratic sum of the
individual contributions is given in the last row.

Uncertainty source 0.0003 < ξ̃ < 0.002 0.002 < ξ̃ < 0.0045 0.0045 < ξ̃ < 0.01

1. Jet energy scale (+26;−19)% (+21;−20)% (+28;−16)%

2. Jet energy resolution (+6;−4)% (+4;−3)% (+3;−2)%

3. PF energy, pT threshold, C (+7;−15)% (+14;−8)% (+12;−11)%

4. MC model uncertainty (+5;−3)% (+2;−14)% (+3;−1)%

5. One-vertex selection (+6;−0)% (+0;−1)% (+1;−0)%

6. Jet objects (Calorimeter, PF) (+0;−4)% (+0;−4)% (+2;−4)%

7. ξ̃+, ξ̃− difference ±8% ±8% ±11%

8. Trigger efficiency ±3% ±3% ±3%

9. Luminosity ±4% ±4% ±4%

Total error (+30;−26)% (+27;−29)% (+33;−23)%

7 Results
Table 3 and Fig. 8 present the differential cross section for dijet production as a function of ξ̃.
The data are compared to the predictions of non-diffractive (PYTHIA6 Z2 and PYTHIA8 tune
1) and diffractive (POMPYT SD, POMWIG SD, PYTHIA8 SD+DD, and POWHEG) models. The
normalisation of the predictions is absolute, unlike in Fig. 6.

Table 3: Differential cross section for inclusive dijet production as a function of ξ̃ for jets with
pj1,j2

T > 20 GeV and jet-axes in the pseudorapidity range |ηj1,j2| < 4.4.

ξ̃ bin dσjj/dξ̃ (µb)

0.0003 < ξ̃ < 0.002 5.0± 0.9 (stat.) +1.5
−1.3 (syst.)

0.002 < ξ̃ < 0.0045 8.2± 0.9 (stat.) +2.2
−2.4 (syst.)

0.0045 < ξ̃ < 0.01 13.5± 0.9 (stat.) +4.5
−3.1 (syst.)

The following conclusions can be drawn from Fig. 8:

• The generators PYTHIA6 Z2 and PYTHIA8 tune 1, without hard diffraction, cannot by
themselves describe the low-ξ̃ data, especially in the first bin, 0.0003 < ξ̃ < 0.002.

• It was noted already in Section 5.1 that the contribution of SD MC models, e.g.
POMWIG and POMPYT, is needed to describe the low-ξ̃ data, reflecting the presence
of hard diffractive events in this region. However, these MC models predict more
events than are observed, by a factor of about 5 in the lowest ξ̃ bin.

• The ratio of the measured cross section to that expected from the POMPYT and POMWIG

simulations is 0.21± 0.07 in the first ξ̃ bin, where the non-diffractive contribution is
small. This ratio can be taken as an upper limit of the rapidity gap survival prob-
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Figure 8: The differential cross section for inclusive dijet production as a function of ξ̃ for
jets with axes in the range |ηj1,j2| < 4.4 and pj1,j2

T > 20 GeV. The points are plotted at the
centre of the bins. The error bars indicate the statistical uncertainty and the band represents
the systematic uncertainties added in quadrature. The predictions of non-diffractive (PYTHIA6
Z2 and PYTHIA8 tune 1) and diffractive (POMPYT SD, POMWIG SD and PYTHIA8 SD+DD) MC
generators are also shown, along with that of the NLO calculation based on POWHEG (first bin
only). The predictions of POMPYT and POMWIG in the first ξ̃ bin are identical.

ability (not simulated by the event generators considered). This is an upper limit
because the measured cross section includes a contribution from proton-dissociative
events in which the scattered proton is excited into a low mass state, which escapes
undetected in the forward region; the dPDFs also include a proton-dissociative con-
tribution. If the amount of proton-dissociative events in the data is assumed to be
41%, as estimated at particle level with PYTHIA8, and that in the dPDFs is taken to
be 23% [7], then this upper limit can be turned into an estimate of the rapidity gap
survival probability of 0.12± 0.05.

• POMPYT and POMWIG are leading-order (LO) MC generators. If POWHEG is used
to predict the diffractive cross section at NLO in the first ξ̃ bin and PYTHIA8 tune
1 is used for hadronisation, the ratio between data and predictions becomes 0.14±
0.05. With the assumptions just discussed on the proton-dissociative contribution,
the rapidity gap survival probability becomes 0.08± 0.04.

• Figure 8 also shows that the normalisation of the SD+DD PYTHIA8 prediction dis-
agrees with that of POMPYT and POMWIG, and would have to be scaled up by a
factor about two to match the data. This is a consequence of the different modelling
of diffraction in these generators: while they all use the same H1 dPDFs, the param-
eterisation of the pomeron flux in PYTHIA8 is different – and notably not that used
in the H1 fit. Because of this, PYTHIA8 (version 8.135) cannot be used to extract the
rapidity gap survival probability.

While the rapidity gap survival probability measured at the Tevatron [5, 6] is close to that
found in the present analysis, the two measurements cannot be directly compared because of
the different kinematic regions they cover: 0.035 < ξ < 0.095 for the CDF data and 0.0003 <

ξ̃ < 0.002 for the present CMS data. This difference is relevant because the rapidity gap survival
probability depends on the parton momentum x and is expected to increase with decreasing x
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(and hence ξ): from about 0.05 at x = 10−1 to about 0.3 for x = 10−3 according to Ref. [40].

8 Summary

The differential cross section for dijet production as a function of ξ̃, a variable that approximates
the fractional momentum loss of the proton in single-diffractive processes, has been measured
with the CMS detector for events with at least two jets with pj1,j2

T > 20 GeV in the pseudorapid-
ity region |ηj1,j2| < 4.4. The results are compared to diffractive (POMPYT, POMWIG, and PYTHIA8
SD+DD) and non-diffractive (PYTHIA6 Z2, D6T, and PYTHIA8 tune 1) MC models. The low-ξ̃
data show a significant contribution from diffractive dijet production, observed for the first
time at the LHC. The associated rapidity gap survival probability is estimated. Leading-order
diffractive generators (POMPYT and POMWIG), based on dPDFs from the HERA experiments,
overestimate the measured cross section and their normalisation needs to be scaled down by a
factor of ∼5. This factor can be interpreted as the effect of the rapidity gap survival probability.
The results are also compared with NLO predictions. The rapidity gap survival probability, es-
timated from the comparison of the cross section measured in the first bin, 0.0003 < ξ̃ < 0.002,
with LO and NLO diffractive MC models, ranges from 0.08± 0.04 (NLO) to 0.12± 0.05 (LO).
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Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage,
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INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
P. Azzurria ,c, G. Bagliesia, T. Boccalia, G. Broccoloa,c, R. Castaldia, R.T. D’Agnoloa ,c,
R. Dell’Orsoa, F. Fioria ,b ,5, L. Foàa ,c, A. Giassia, A. Kraana, F. Ligabuea ,c, T. Lomtadzea,
L. Martinia,28, A. Messineoa ,b, F. Pallaa, A. Rizzia ,b, A.T. Serbana,29, P. Spagnoloa,
P. Squillaciotia ,5, R. Tenchinia, G. Tonellia ,b ,5, A. Venturia ,5, P.G. Verdinia
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Laboratório de Instrumentação e Fı́sica Experimental de Partı́culas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Seixas,
J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin,
G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov,
A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov,
V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev,
A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov5, N. Lychkovskaya, V. Popov, G. Safronov,
S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin4, A. Ershov, A. Gribushin, L. Khein, V. Klyukhin, O. Kodolova,
I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, A. Popov, A. Proskuryakov,
L. Sarycheva†, V. Savrin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov,
A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino,
Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin5, V. Kachanov, D. Konstantinov, A. Korablev,
V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin,
A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade,
Serbia
P. Adzic30, M. Djordjevic, M. Ekmedzic, D. Krpic30, J. Milosevic
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26: Also at Università della Basilicata, Potenza, Italy
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