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Abstract

The production of χb(1P ) mesons in pp collisions at a centre-of-mass energy of 7TeV
is studied using 32 pb−1 of data collected with the LHCb detector. The χb(1P )
mesons are reconstructed in the decay mode χb(1P ) → Υ (1S)γ → µ+µ−γ. The
fraction of Υ (1S) originating from χb(1P ) decays in the Υ (1S) transverse momentum
range 6 < pT

Υ (1S) < 15GeV/c and rapidity range 2.0 < yΥ (1S) < 4.5 is measured
to be (20.7 ± 5.7 ± 2.1+2.7

−5.4)%, where the first uncertainty is statistical, the second
is systematic and the last gives the range of the result due to the unknown Υ (1S)
and χb(1P ) polarizations.
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D. Pinci22, S. Playfer47, M. Plo Casasus34, F. Polci8, G. Polok23, A. Poluektov45,31,
E. Polycarpo2, D. Popov10, B. Popovici26, C. Potterat33, A. Powell52, J. Prisciandaro36,
V. Pugatch41, A. Puig Navarro33, W. Qian53, J.H. Rademacker43, B. Rakotomiaramanana36,
M.S. Rangel2, I. Raniuk40, N. Rauschmayr35, G. Raven39, S. Redford52, M.M. Reid45,
A.C. dos Reis1, S. Ricciardi46, A. Richards50, K. Rinnert49, D.A. Roa Romero5, P. Robbe7,
E. Rodrigues48,51, F. Rodrigues2, P. Rodriguez Perez34, G.J. Rogers44, S. Roiser35,
V. Romanovsky32, A. Romero Vidal34, M. Rosello33,n, J. Rouvinet36, T. Ruf35, H. Ruiz33,
G. Sabatino21,k, J.J. Saborido Silva34, N. Sagidova27, P. Sail48, B. Saitta15,d, C. Salzmann37,
B. Sanmartin Sedes34, M. Sannino19,i, R. Santacesaria22, C. Santamarina Rios34,
R. Santinelli35, E. Santovetti21,k , M. Sapunov6, A. Sarti18,l, C. Satriano22,m, A. Satta21,
M. Savrie16,e, D. Savrina28, P. Schaack50, M. Schiller39, H. Schindler35, S. Schleich9,
M. Schlupp9, M. Schmelling10, B. Schmidt35, O. Schneider36, A. Schopper35, M.-H. Schune7,
R. Schwemmer35, B. Sciascia18, A. Sciubba18,l, M. Seco34, A. Semennikov28, K. Senderowska24,
I. Sepp50, N. Serra37, J. Serrano6, P. Seyfert11, M. Shapkin32, I. Shapoval40,35, P. Shatalov28,
Y. Shcheglov27, T. Shears49, L. Shekhtman31, O. Shevchenko40, V. Shevchenko28, A. Shires50,
R. Silva Coutinho45, T. Skwarnicki53, N.A. Smith49, E. Smith52,46, M. Smith51, K. Sobczak5,
F.J.P. Soler48, A. Solomin43, F. Soomro18,35, D. Souza43, B. Souza De Paula2, B. Spaan9,
A. Sparkes47, P. Spradlin48, F. Stagni35, S. Stahl11, O. Steinkamp37, S. Stoica26, S. Stone53,35,

iv



B. Storaci38, M. Straticiuc26, U. Straumann37, V.K. Subbiah35, S. Swientek9,
M. Szczekowski25, P. Szczypka36, T. Szumlak24, S. T’Jampens4, M. Teklishyn7,
E. Teodorescu26, F. Teubert35, C. Thomas52, E. Thomas35, J. van Tilburg11, V. Tisserand4,
M. Tobin37, S. Tolk39, S. Topp-Joergensen52, N. Torr52, E. Tournefier4,50, S. Tourneur36,
M.T. Tran36, A. Tsaregorodtsev6, N. Tuning38, M. Ubeda Garcia35, A. Ukleja25, U. Uwer11,
V. Vagnoni14, G. Valenti14, R. Vazquez Gomez33, P. Vazquez Regueiro34, S. Vecchi16,
J.J. Velthuis43, M. Veltri17,g, G. Veneziano36, M. Vesterinen35, B. Viaud7, I. Videau7,
D. Vieira2, X. Vilasis-Cardona33,n, J. Visniakov34, A. Vollhardt37, D. Volyanskyy10,
D. Voong43, A. Vorobyev27, V. Vorobyev31, C. Voß55, H. Voss10, R. Waldi55, R. Wallace12,
S. Wandernoth11, J. Wang53, D.R. Ward44, N.K. Watson42, A.D. Webber51, D. Websdale50,
M. Whitehead45, J. Wicht35, D. Wiedner11, L. Wiggers38, G. Wilkinson52, M.P. Williams45,46,
M. Williams50, F.F. Wilson46, J. Wishahi9, M. Witek23, W. Witzeling35, S.A. Wotton44,
S. Wright44, S. Wu3, K. Wyllie35, Y. Xie47, F. Xing52, Z. Xing53, Z. Yang3, R. Young47,
X. Yuan3, O. Yushchenko32, M. Zangoli14, M. Zavertyaev10,a, F. Zhang3, L. Zhang53,
W.C. Zhang12, Y. Zhang3, A. Zhelezov11, L. Zhong3, A. Zvyagin35.

1Centro Brasileiro de Pesquisas F́ısicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
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fUniversità di Firenze, Firenze, Italy
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1 Introduction

The production of heavy quarkonium states at hadron colliders is a subject of experimental
and theoretical interest [1]. The non-relativistic QCD (NRQCD) factorization approach
has been developed to describe the inclusive production and decay of quarkonia [2]. The
LHCb experiment has measured the production of inclusive J/ψ → µ+µ− [3], ψ(2S) [4]
and Υ (nS) → µ+µ− (n = 1, 2, 3) [5] mesons in pp collisions as a function of the quarkonium
transverse momentum pT and rapidity y over the range 0 < pT < 15GeV/c and 2.0 <
y < 4.5. A significant fraction of the cross-section for both J/ψ and Υ (nS) production
is expected to be due to feed-down from higher quarkonium states. Understanding the
size of this effect is important for the interpretation of the quarkonia cross-section and
polarization data. A few experimental studies of hadroproduction of P -wave quarkonia
have been reported. In the case of the χcJ states, with spin J = 0, 1, 2, measurements
from the CDF [6, 7], HERA-B [8] and LHCb [9, 10] experiments exist, while χbJ related
measurements have been reported by the CDF [11], ATLAS [12] and D0 [13] experiments.

This paper reports studies of the inclusive production of the P -wave χbJ(1P ) states,
collectively referred to as χb(1P ) throughout the paper. The χb(1P ) mesons are re-
constructed through the radiative decay χb(1P ) → Υ (1S)γ in the Υ (1S) rapidity and
transverse momentum range 2.0 < yΥ (1S) < 4.5 and 6 < pT

Υ (1S) < 15GeV/c. The χb2 and
χb1 states differ in mass by 20MeV/c2 and the χb1 and χb0 states by 33MeV/c2 [14]. Since
these differences are comparable with the experimental resolution, the total fraction of
Υ (1S) originating from χb(1P ) decays is reported. The results presented here use a data
sample collected at the LHC with the LHCb detector at a centre-of-mass energy of 7 TeV
and correspond to an integrated luminosity of 32 pb−1.

2 LHCb detector

The LHCb detector [15] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detec-
tor includes a high precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The combined tracking system has
a momentum resolution ∆p/p that varies from 0.4% at 5GeV/c to 0.6% at 100GeV/c,
and an impact parameter resolution of 20µm for tracks with high transverse momentum
(pT). Charged hadrons are identified using two ring-imaging Cherenkov detectors. Pho-
ton, electron and hadron candidates are identified by a calorimeter system consisting of
scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic
calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers. The nominal detector performance for photons and
muons is described in [15]. The processes of radiative transitions of χcJ → J/ψγ, J = 1, 2
with similar kinematics of the photons are studied in [9, 10]. Another physical analysis
which uses π0 → γγ, η → γγ and η′ → ρ0γ is available as [16].
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The trigger consists of a hardware stage followed by a software stage which applies a
full event reconstruction. The trigger used for this analysis selects a pair of oppositely-
charged muon candidates, where either one of the muons has a pT > 1.8GeV/c or one of
the pair has a pT > 0.56GeV/c and the other has a pT > 0.48GeV/c. The invariant mass
of the pair is required to be greater than 2.9GeV/c2. The photons are not used in the
trigger decision.

For the simulation, pp collisions are generated using Pythia 6.4 [17] with a specific
LHCb configuration [18]. Decays of hadronic particles are described by EvtGen [19]
in which final state radiation is generated using Photos [20]. The interaction of the
generated particles with the detector and its response are implemented using the Geant4

toolkit [21] as described in Ref. [22]. The simulated signal events contain at least one
Υ (1S) → µ+µ− decay with both muons in the LHCb acceptance. In this sample of
simulated events the fraction of Υ (1S) mesons produced in χb(1P ) decays is 47% and
both the χb(1P ) and Υ (1S) mesons are produced unpolarized.

3 Event selection

The reconstruction of the χb(1P ) meson proceeds via the identification of an Υ (1S) meson
combined with a reconstructed photon. The Υ (nS) candidates are formed from a pair of
oppositely-charged tracks that are identified as muons. Each track is required to have a
good track fit quality. The two muons are required to originate from a common vertex
with a distance to the primary vertex less than 1mm.

The invariant mass distribution of the µ+µ− candidates is shown in Fig. 1. It is
modelled with the sum of three Crystal Ball functions [23], describing the Υ (1S), Υ (2S)
and Υ (3S) signals, and an exponential function for the combinatorial background. The
parameters of the Crystal Ball functions that describe the radiative tail of the Υ (1S),
Υ (2S) and Υ (3S) mass distributions are fixed to the values a = 2 and n = 1 [5]. The
measured Υ (1S) signal yield, mass and width are NΥ (1S) = 39 635±252,mΥ (1S) = 9449.2±
0.4MeV/c2 and σΥ (1S) = 51.7± 0.4MeV/c2, where the uncertainties are statistical only.

The Υ (1S) candidates with a pT
Υ (1S) > 6GeV/c and a µ+µ− invariant mass in the

range 9.36 − 9.56GeV/c2 are combined with photons to form χb(1P ) candidates. The
photons are required to have pT

γ > 0.6GeV/c and cos θ∗γ > 0, where θ∗γ is the angle of
the photon direction in the centre-of-mass frame of the µ+µ−γ system with respect to the
momentum of this system in the laboratory frame.

The χb(1P ) signal peak observed in the distribution of the mass difference, x =
m(µ+µ−γ) − m(µ+µ−), is shown in Fig. 2 for the range 6 < pT

Υ (1S) < 15GeV/c. It
is modelled with an empirical function given by

dN

dx
= A1

1√
2πσ

e−
(x−∆M)2

2σ2 + A2(x− x0)
αe−(c1x+c2x

2+c3x
3), (1)

where A1, ∆M , σ, A2, x0, α, c1, c2 and c3 are free parameters. The Gaussian function
describes the signal and the second term models the background. The number of χb(1P )
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Figure 1: Distribution of the µ+µ− mass for selected Υ (nS) candidates (black points), together
with the result of the fit (solid blue curve), including the background (dotted blue curve) and
the signal (dashed magenta curve) contributions.

signal decays obtained from the fit is 201± 55. The mean value of the Gaussian function
is 447±4MeV/c2 and its width is 19.0±4.2MeV/c2. The expected values of the mass dif-
ferences for the three χbJ (1P ) states are ∆M(χb2) = 452MeV/c2, ∆M(χb1) = 432MeV/c2

and ∆M(χb0) = 399MeV/c2 [14]. The peak position in the data lies between ∆M(χb2)
and ∆M(χb0) as expected for any mixture of χbJ (1P ) states.

4 Fraction of Υ (1S) originating from χb(1P ) decays

The fraction of Υ (1S) originating from χb(1P ) decays is determined using the following
assumptions. Firstly, all Υ (1S) originating from χb(1P ) arise from the radiative decay
χb(1P ) → Υ (1S)γ. Secondly, the total efficiency for Υ (1S) → µ+µ− as a function of
pT

Υ (1S) is the same for directly produced Υ (1S) and for those from feed-down from χb(1P ).
The total efficiency includes trigger, detection, reconstruction and selection. Thirdly, the
photon detection, reconstruction and selection are independent of the Υ (1S) → µ+µ−.
Hence the total efficiency for χb(1P ) is factorized as ǫtot(χb) = ǫcond(χb) · ǫtot(Υ ), where
ǫtot(Υ ) is the total efficiency for Υ (1S) and ǫcond(χb) is the conditional efficiency for χb(1P )
reconstruction and selection after the Υ (1S) → µ+µ− candidate has been selected.

The second assumption is tested by comparing the Υ (1S) efficiencies obtained using
simulated events for direct Υ (1S) and for Υ (1S) coming from decays of χb(1P ) states.
These efficiencies for each pT

Υ (1S) interval agree within the statistical error, which is less
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Figure 2: Distribution of the mass difference m(µ+µ−γ)−m(µ+µ−) for selected χb(1P ) candi-
dates (black points), together with the result of the fit (solid blue curve), including background
(dotted blue curve) and signal (dashed magenta curve) contributions. The solid (red) histogram
is an alternative background estimation using simulated events containing a Υ (1S) that does not
originate from a χb(1P ) decay, normalized to the data. It is used for evaluation of the systematic
uncertainty due to the choice of fitting model. The bottom insert shows the pull distribution of
the fit. The pull is defined as the difference between the data and fit value divided by the data
error.

than 0.5%.
The conditional χb(1P ) reconstruction and selection efficiency is estimated from sim-

ulation as

ǫcond(χb) =
ǫtot(χb)

ǫtot(Υ )
=
NMC

rec (χb)

NMC
gen (χb)

·
NMC

gen (Υ )

NMC
rec (Υ )

, (2)

where NMC
rec (χb) and N

MC
rec (Υ ) are the number of χb(1P ) and Υ (1S) mesons obtained from

the fit, and NMC
gen (χb) and N

MC
gen (Υ ) are the number of generated χb(1P ) and Υ (1S) mesons,

respectively. The value obtained is ǫcond(χb) = (9.4 ± 0.1)% for 6 < pT
Υ (1S) < 15GeV/c

and 2.0 < yΥ (1S) < 4.5.
The fraction of Υ (1S) originating from χb(1P ) decays is determined from the ratio
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Table 1: Number of reconstructed χb(1P ) and Υ (1S) signal candidates, conditional efficiency
and fraction of Υ (1S) originating from χb(1P ) decays for different pT

Υ (1S) bins. The uncertain-
ties are statistical only.

pT
Υ (1S)(GeV/c) 6− 7 7− 8 8− 10 10− 15 6− 15

Nrec(χb) 41± 39 35± 22 91± 30 82± 29 201± 55
Nrec(Υ ) 2730± 64 2193± 57 2866± 64 2627± 59 10 345± 123
ǫcond(χb) in % 6.7± 0.2 8.3± 0.2 10.0± 0.2 12.8± 0.2 9.4± 0.1
Fraction in % 23± 22 20± 12 32± 10 25± 9 21± 6

Nprod(χb)

Nprod(Υ )
=
Nrec(χb)/ǫtot(χb)

Nrec(Υ )/ǫtot(Υ)
=
Nrec(χb)/ǫcond(χb)

Nrec(Υ )
, (3)

where Nprod(χb) and Nprod(Υ ) are the total numbers of χb(1P ) → Υ (1S)γ and Υ (1S)
mesons produced, and Nrec(χb) and Nrec(Υ ) are the numbers of reconstructed χb(1P ) and
Υ (1S) mesons obtained from the fits to the data, respectively. As the muons from the
Υ (1S) are explicitly required to trigger the event, the efficiency of the trigger cancels in this
ratio. The fraction of Υ (1S) originating from χb(1P ) decays for 6 < pT

Υ (1S) < 15GeV/c
and 2.0 < yΥ (1S) < 4.5 is found to be (20.7 ± 5.7)%, where the uncertainty is statistical
only.

The procedure is repeated in four bins of pT
Υ (1S), giving the results shown in Table 1

and Fig. 3. No significant pT
Υ (1S) dependence is observed. The mean of the measurements

performed in the individual bins is consistent with the measurement obtained in the whole
pT

Υ (1S) range.

5 Systematic uncertainties

Studies of quarkonium decays to two muons [3–5, 9, 10] show that the total efficiency
depends on the polarization of the vector meson. The effect of the polarization has been
studied by repeating the estimation of the efficiencies ǫtot(χb) and ǫtot(Υ ) for the extreme
χb(1P ) and Υ (1S) polarization scenarios and taking the difference in ǫcond(χb) as the
systematic uncertainty. The largest variation is found for the cases of 100% transverse
and longitudinal polarization of the Υ (1S). We assign this relative variation of +13

−26% as
the range due to the unknown polarizations.

The systematic effect due to the unknown χbJ (1P ), J = 0, 1, 2 relative contributions
is estimated by varying these fractions in the simulation in such a way that the peak
position of the mixture is equal to the peak position observed in the data plus or minus
its statistical uncertainty. The maximal relative variation of the result is found to be 7%.
This value is taken as a systematic uncertainty due to the unknown χbJ(1P ) mixture.

The systematic uncertainty due to the photon reconstruction efficiency is determined
by comparing the relative yields of the reconstructed B+ → J/ψ (K∗+ → K+π0) and

5



Table 2: Relative systematic uncertainties on the fraction of Υ (1S) originating from χb(1P )
decays.

Source Uncertainty (%)
Unknown χbJ(1P ) mixture 7
Photon reconstruction efficiency 6
Signal and background description 5
Quadratic sum of the above 10

B+ → J/ψK+ decays in data and simulated events. It is assumed that the reconstruction
efficiencies of the two photons from the π0 are uncorrelated. The uncertainty on the
photon reconstruction efficiency is studied as a function of pT

γ . The largest systematic
uncertainty is found to be 6% for photons in the range 0.6 < pT

γ < 0.7GeV/c, and is
dominated by the uncertainties of the B+ branching fractions.

The systematic uncertainty due to the choice of the background fit model is estimated
from simulated events containing an Υ (1S) that does not originate from the decay of a
χb(1P ). The distribution of the mass difference obtained with these events, using the same
reconstruction and selection as for data, is shown in Fig. 2, normalized to the data below
0.38GeV/c2. It describes rather well the background contribution above 0.38GeV/c2, both
in shape and level. The difference between the number of data events and the normalized
number of simulated background events in the range 0.38− 0.50GeV/c2 gives an estimate
of the signal yield. For 6 < pT

Υ (1S) < 15GeV/c the signal yield obtained using this
method is 211 to be compared with 201 ± 55 obtained from the fit. The procedure is
repeated in each pT

Υ (1S) bin. We also study the variation of signal yield by changing
the normalization range to 0.0 − 0.3GeV/c2 or 0.7 − 1.0GeV/c2. The maximal relative
difference of 5% is taken as the uncertainty due to the choice of the signal and background
description. Systematic uncertainties are summarized in Table 2.

6 Results and conclusions

The production of χb(1P ) mesons is observed using data corresponding to an integrated
luminosity of 32 pb−1 collected with the LHCb detector in pp collisions at

√
s = 7TeV.

The fraction of Υ (1S) originating from χb(1P ) decays in the kinematic range 6 < pT
Υ (1S) <

15GeV/c and 2.0 < yΥ (1S) < 4.5 is measured to be

(20.7± 5.7± 2.1+2.7
−5.4)%,

where the first uncertainty is statistical, the second is systematic and the last gives the
range of the result due to the unknown polarization of Υ (1S) and χb(1P ) mesons.

This result can be compared with the CDF measurement of (27.1± 6.9± 4.4)% [11],
obtained in pp̄ collisions at

√
s = 1.8TeV in the kinematic range pT

Υ (1S) > 8GeV/c and
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Figure 3: Fraction of Υ (1S) originating from χb(1P ) decays for different pT
Υ (1S) bins, assuming

production of unpolarized Υ (1S) and χb(1P ) mesons, shown with solid circles. The vertical
error bars are statistical only. The result determined for the range 6 < pT < 15GeV/c is shown
with the horizontal solid line, its statistical uncertainty with the dash-dotted lines, and its total
uncertainty (statistical and systematic, including that due to the unknown polarization) with
the shaded (light blue) band.

|ηΥ (1S)| < 0.7.
The χb(1P ) decays are observed to be a significant source of Υ (1S) mesons in pp

collisions. This will need to be taken into account in the interpretation of the measured
Υ (1S) production cross-section and polarization.
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