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Abstract We look for fluctuations expected for the QCD
critical point using an intermittency analysis in the transverse
momentum phase space of protons produced around midra-
pidity in the 12.5 % most central C+C, Si+Si and Pb+Pb col-
lisions at the maximum SPS energy of 158A GeV. We find
evidence of power-law fluctuations for the Si+Si data. The fit-
ted power-law exponent φ2 = 0.96+0.38

−0.25 (stat.) ± 0.16 (syst.)
is consistent with the value expected for critical fluctuations.

a e-mail: nantonio@phys.uoa.gr
b e-mail: ndavis@phys.uoa.gr
c e-mail: fdiakono@phys.uoa.gr

Power-law fluctuations had previously also been observed in
low-mass π+π− pairs in the same Si+Si collisions.

1 Introduction

Theoretical investigations of the phase diagram of strongly
interacting matter suggest the existence of a critical point
(CP) at finite baryochemical potential and temperature. The
prevailing view is that the CP corresponds to a second order
phase transition which is considered as the endpoint of a line
of first order transitions associated with the partial restoration
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of chiral symmetry when the temperature T , for given bary-
ochemical potential μB , increases beyond a critical value Tc
(for a review see [1]). This hypothesis is compatible with
results of lattice QCD calculations [2–11] although a gen-
erally accepted accurate prediction concerning the existence
and location of the CP is not yet available. In current ion
collision experiments at the SPS [12,13] and RHIC [14] an
exploration of the QCD phase diagram is attempted by chang-
ing the energy and size of colliding nuclei. One of the main
goals of this scanning program is to find evidence for the CP
as a maximum of fluctuations in analogy to the phenomenon
of critical opalescence in conventional matter [15]. An exper-
imental estimate of (T, μB) of the freeze-out state formed in
the collisions is usually obtained from the observed particle
yields [16–18].

A prerequisite for the experimental detection of the CP is
to find suitable observables, as attempted in several recent
theoretical studies [15,19–25]. The order parameter of the
phase transition is the chiral condensate 〈q̄q〉 (q is the quark
field). The quantum state carrying the quantum numbers as
well as the critical properties of the chiral condensate is the
isoscalar σ -field. Assuming that this state can be formed in
ion collisions there are two possibilities for its detection:

– Directly from its decay products [25]. The condensate,
being unstable against changes of thermodynamic con-
ditions (freeze-out), will decay mainly into pions at time
scales characteristic of the strong interaction. The critical
properties of the condensate are transferred to detectable
π+π− pairs with invariant mass just above twice the pion
mass [25]. For an analysis of the expected fluctuations it
is necessary to extract the pion pairs (dipions), which
possess the critical correlations. This requires removal
of a large combinatorial background [25,26].

– Through the mixing of the net-baryon density with the
chiral condensate in a finite-density medium. The critical
fluctuations are transferred to the net-baryon density [1,
27–32], which is an equivalent order parameter of the
second order phase transition at the CP, as well as the
net-proton density and the proton and antiproton densities
separately. This is due to the direct coupling of the protons
with the isospin zero σ -field [33]. In contrast to the dipion
case the critical correlations are carried by the observed
protons and no reconstruction is needed. Thus detecting
the QCD CP through fluctuations of the proton density
is a very promising strategy.

The experimental observables proposed for the search of
the CP can be classified into two categories:

– Event-by-event fluctuations of integrated quantities like
multiplicity (variance [34,35], skewness and kurtosis
[36]) and averaged transverse momentum [37,38]. A

maximum of these fluctuation measures as a function of
size and energy of the colliding ions is expected in the
vicinity of the CP. Indications of such a maximum were
observed in Si+Si collisions at 158A GeV [39].

– Local power-law fluctuations [24] directly related to the
critical behaviour of density-density correlations. These
have been shown to be detectable [15,25] in momentum
space within the framework of an intermittency analysis
[40,41] through the measurement of the scaled factorial
moments (SFMs) defined as:

Fq(M) =

〈
1

MD

∑MD

i=1
ni (ni − 1) . . . (ni − q + 1)

〉
〈

1

MD

∑MD

i=1
ni

〉q

(1)

where MD is the number of equally sized cells in which
the D-dimensional (embedding) space is partitioned, ni
is the proton multiplicity in the i-th cell, and q is the order
(rank) of the moments. At the CP, the fluctuations of the
order parameter, being self-similar [42], are described
by a mono-fractal geometry [43] reflected in the behav-

ior Fq(M) ∼ (
MD

)φq of the SFMs for M � 1. The
associated intermittency indices φq are predicted [44] to
follow the pattern:

D · φq = (q − 1)dq , (2)

with dq the so called anomalous fractal dimension of
the set formed by the order parameter density fluctua-
tions. For a mono-fractal set dq is independent of q and is
related to the corresponding fractal dimensiondF through
the relation [44]dq = D−dF . Based on universality class
arguments, the exponents of the expected power-laws in
transverse momentum space (D = 2) were predicted to
have the value φ2,cr = 2

3 in case of the sigma conden-
sate [25] and φ2,cr = 5

6 for the net-baryon density [15].
Since the system we investigate is finite, we expect the
power-law behaviour of the SFMs to hold only between
two scales, dictated by the size of the system and the
minimum distance of two protons in transverse momen-
tum space [45]. Moreover, in the course of intermittency
analysis of experimental data, it was found necessary to
remove a large background, (discussed in Sect. 2) in order
to reveal the predicted power-law exponents.
In our analysis, due to the limited statistics, we will only
consider the second scaled factorial moment (SSFM) in
transverse momentum space obtained by setting q = 2
and D = 2 in Eq. (1). Much larger statistics than available
is required in order to perform an intermittency analysis
of higher than second order and to test the q indepen-
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dence of the anomalous fractal dimensions dq . This is
due to the fact that analyzing quantities related to the
order parameter of the transition in the appropriate phase
space region restricts significantly the mean multiplicity
of the particles carrying the critical fluctuations (protons,
π+-π− pairs close to their production threshold). We use
horizontal moments, which means that in Eq. (1) both
the numerator and the denominator are separately aver-
aged first over cells and then over events, for a given M
value. Thus, the denominator depends trivially on M , as
M−D·q ∼ M−4, playing the role of normalization factor,
with all non-trivial scaling lying in the numerator.
The intermittency analysis reported in this paper differs
from previous studies [44,46,47] in measuring quantities
associated with the order parameter of the phase transi-
tion. In Ref. [46] all charged particles in the entire avail-
able phase space were used, allowing also higher moment
calculations. However, in this case the quantitative rela-
tion with the predicted power law is lost.

In the present work we report on intermittency analy-
sis of protons produced from A+A collisions in the NA49
experiment at the CERN SPS at beam energy of 158A GeV.
This analysis is a continuation of our search for indications
of the CP in local density fluctuations of low-mass π+π−
pairs [26].

2 Intermittency in the presence of background

Following the methodology of Refs. [15,25,40,41] and using
Eq. (1) for q = 2 and D = 2, we calculate for every con-
sidered ensemble of protons the SSFM as a function of the
number M of subdivisions in each transverse momentum
space direction of a rectangular domain D . In Eq. (1) ni is
the number of protons in the cell i and M2 is the total number
of cells. The brackets 〈. . .〉 indicate averaging over events,
however in the following, in order to simplify the notation,
we will use 〈. . .〉 to indicate averaging over both, bins and
events and drop the subscript i referring to individual cells.
For a pure critical system freezing out exactly at the chiral CP
the SSFM (Eq. (1)) of protons emitted into a small window
around midrapidity is expected to possess a 2-D power-law
dependence F2(M) ∼ M2φ2,cr for M � 1, with exponent
(intermittency index) φ2,cr = 5

6 determined by universal-
ity class arguments associated with the critical properties of
QCD [15]. This results from the fact that the density of the
critical system is approximately constant in center of mass
rapidity y whenever sinh y ≈ y, which is valid at midra-
pidity (within a 10 % approximation for |y| ≤ 0.8). Then
the fluctuations in transverse momentum and rapidity space
factorize, becoming statistically independent [15].

In practice the critical system will never be 100 % pure
or complete, for a number of reasons. First of all, there will
always be some non-proton tracks that are misidentified as
protons, as well as true proton tracks erroneously rejected.
Moreover, due to the corona effect only part of the system
may reach the deconfined phase and the freeze-out may be
located at a distance from the CP. Thus, the ensemble of pro-
tons will be contaminated by a percentage of non-critical
protons which will deform F2(M), leading to a decrease
of the value of φ2 and/or a modification of the power-law
behaviour [25,26]. Assuming that the proton multiplicity in
each cell can be divided into background and critical contri-
butions, n = nb + nc one can write the numerator in Eq. (1)
as:

〈n(n − 1)〉 = 〈nc(nc − 1)〉 + 〈nb(nb − 1)〉 + 2〈nbnc〉 (3)

where 〈nc(nc − 1)〉 is the critical component in the phase
space integrated two-particle density, 〈nb(nb − 1)〉 is the
background contribution due to the presence of non-critical
protons and 2〈nbnc〉 is a cross-term. The latter vanishes when
〈nc〉 → 0 or 〈nb〉 → 0. Under general conditions we can
write the cross-term in Eq. (3) as 2〈nbnc〉 = 2〈nb〉〈nc〉 fbc
where fbc is a finite quantity which cannot be further deter-
mined. Dividing both sides of Eq. (3) by 〈n〉2 (which is pro-
portional to (M−2)2 for large M) we obtain the expression:

�F2(M) = F (d)
2 (M) − λ(M)2F (b)

2 (M)

− 2λ(M) (1 − λ(M)) fbc (4)

for the correlator �F2(M) = 〈nc(nc − 1)〉/〈n〉2 containing
the critical contribution. In the right hand side of Eq. (4)
F (d)

2 (M) is the SSFM calculated from the data, λ(M) =
〈nb〉/〈n〉 is a measure of the contamination by non-critical
protons and F (b)

2 (M) = 〈nb(nb − 1)〉/〈nb〉2 is the SSFM of
the background. Note that for M � 1 the ratio λ becomes
independent of M and can be identified as the fraction of non-
critical protons in the considered ensemble. By construction
the correlator �F2(M) possesses the same M2 dependence
as the SSFM of the critical component (�F2(M) ∼ M2φ2,cr )
for M � 1 since the numerator carries the non-trivial scaling
and background contribution to the two-particle correlations
is removed.

Two special cases of Eq. (4) merit discussion:

1. When background dominates, as in the present analysis,
λ � 1. In this case we neglect the third term in the rhs of
Eq. (4) which is equivalent to omitting the cross-term in
Eq. (3). However, the difference of the first two terms in
Eq. (4) can be comparably small, and therefore the jus-
tification of this approximation is non-trivial and will be
provided by model simulations. These will be discussed
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in Sect. 4 together with the presentation of the results
from the data analysis.

2. When the freeze-out of the considered system occurs very
close to the chiral CP, there is a possibility that the back-
ground contribution becomes very small so that λ � 0
for M � 1 and the correlator �F2(M) coincides with
F (d)

2 (M).

In the first case one can use mixed events generated from
the data to simulate the background contribution and estimate
F (b)

2 (M) in Eq. (4), assuming that the background consists
of particles uncorrelated in transverse momentum space. By
construction, 〈n〉mixed = 〈n〉 and F (m)

2 (M) 	 F (b)
2 (M),

since we use scaled factorial moments.

3 Data and methods of analysis

The analysed data were recorded by the NA49 experi-
ment [12] in A+A collisions at maximum CERN SPS energy
of 158A GeV (

√
sNN = 17.3 GeV). For the analysis we

used the most central collisions (12, 12, 10 %) of “C”, “Si”
and Pb nuclei on C (2.4 % interaction length), Si (4.4 %)
and Pb (1 %) targets, respectively. The incident C and Si
nuclei were produced by fragmentation of a Pb beam of
158A GeV beam energy [12] and were selected by magnetic
rigidity (Z/A = 0.5) and by specific energy loss in multi-
wire proportional chambers in the beam line upstream of the
target position. The “C” beam as defined by the online trig-
ger and offline selection was a mixture of ions with charge
Z = 6 and 7 (intensity ratio 69:31); the “Si” beam of ions
with Z = 13, 14 and 15 (intensity ratio 35:41:24) [48]. The
trigger selected the centrality of the collisions based on a
measurement of the energy deposited by projectile specta-
tor nucleons in a downstream calorimeter. The event statis-
tics amounted to 148k events for “C”+C, 166k events for
“Si”+Si, and 330k events for Pb+Pb. The standard event and
track selection cuts of the NA49 experiment were applied as
described in Ref. [49].

Specifically, to avoid double counting of split tracks we
only accepted tracks for which the ratio of number of mea-
sured points to estimated maximum number of points in the
TPCs exceeds 55 %. We made sure that the resulting sample
of particle tracks was not contaminated by fake close-pairs
which could affect the intermittency analysis by examining
the two-track distance distribution and the two-particle cor-
relation function in qinv (discussed below).

Proton identification [49] used the measurements of parti-
cle energy loss dE/dx in the gas of the time projection cham-
bers. The inclusive dE/dx distribution for positively charged
particles in each reaction was fitted in 10 bands of momen-
tum p to a sum of contributions f α(dE/dx, p) from different
particle species α with α = π , K , p, e. The probability P for a

track with energy loss xi and momentum pi of being a proton
is then given by P = f p(xi , pi )/( f π (xi , pi )+ f K(xi , pi )+
f p(xi , pi ) + f e(xi , pi )). The value of P for proton candi-
dates had to exceed 80 % for the “C”+C and “Si”+Si systems
and 90 % for Pb+Pb collisions.

We calculated the SSFMs according to Eq. (1) for the three
considered systems “C”+C, “Si”+Si and Pb+Pb in the domain
D = [−px,max , px,max ] ⊗ [−py,max , py,max ] of the trans-
verse momentum plane (px , py) with px,max = py,max =
1.5 GeV/c. This plane is perpendicular to the beam direc-
tion, px , py being the corresponding horizontal and vertical
transverse momentum components. For the calculations we
selected protons with center of mass rapidity |yCM | ≤ 0.75
in order to restrict the analysis to the midrapidity region
which is a necessary condition for the appearance of power-
law critical fluctuations (see Sect. 2). This selection also
removes those protons which underwent only one diffrac-
tive interaction as is the case for nucleons in the corona.
The mean proton multiplicities in the considered rapidity-
transverse momentum interval were: 〈p〉“C”+C = 1.6 ± 0.8,
〈p〉“Si”+Si = 3.1±1.7 and 〈p〉Pb+Pb = 9.1±3.2, respectively,
where the second set of numbers give the standard deviation
of the multiplicity distributions.

Usually in an intermittency analysis the only change of
the transverse momentum lattice is the decrease of the lattice
constant with increasing M (the lattice becomes finer), keep-
ing the lattice position in transverse momentum space fixed.
However, the lattice bin boundaries may split proton pairs at
distances smaller than the bin size, separating protons into
different bins, which leads to unwanted bin-to-bin fluctua-
tions. When the multiplicity per event is large these fluctua-
tions are not relevant compared to the bin-to-bin fluctuations
generated by the protons within a single bin. Since in our
analysis, especially for the light systems (“C” and “Si”), the
multiplicity per event is small, this splitting effect due to the
boundaries becomes important. To reduce these fluctuations,
we calculated the SSFMs using slightly displaced transverse
momentum lattices and averaged the resulting F2(M) val-
ues over the lattice positions. The displacement of the lat-
tices was chosen small enough in order to avoid significant
changes of the content of the analysed ensemble of protons.
We used 11 differently located lattices shifting their position
from −1.53 GeV/c < px,y < 1.47 GeV/c to −1.47 GeV/c
< px,y < 1.53 GeV/c. This procedure was applied to both
the analysed data and the mixed events generated from the
corresponding data.

Having calculated the SSFMs of the data F (d)
2 (M) and

the associated mixed events F (m)
2 (M) as described above we

subsequently estimated the correlator Eq. (4) by the differ-
ence

�F (e)
2 (M) = F (d)

2 (M) − F (m)
2 (M) (5)
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where we set λ = 1 and thus neglected the third term (cross-
term) in the rhs of Eq. (4). In Sect. 4 we justify this choice by
simulating and analysing data sets consisting of a mixture of
critical protons generated by the critical Monte-Carlo (CMC)
code [15,24] and randomly distributed protons.

We searched for an intermittency effect �F (e)
2 (M) ∼

(M2)φ2 for M2 � 1 [40,41,50]. The intermittency index
φ2 can be determined by a power-law fit (PF) to �F (e)

2 (M)

in the region of sufficiently large M2. Standard error prop-
agation turned out to be inadequate for our intermittency
analysis [51]. We therefore obtained estimates of the statis-
tical uncertainties of the SSFMs as well as of the φ2 val-
ues by using the resampling method [52,53]. This method
involves constructing new sets of events out of the original
one, containing the same number of events as the original.
This is achieved by uniform and random sampling of events,
with replacement, from the original set, so that a given event
may be drawn any number of times. In the new sets, some
events are of necessity omitted and others duplicated. We
then calculate SSFMs as well as �F (e)

2 (M) for each resam-

pled set [51]. In the calculation of �F (e)
2 (M) we used for

all samples the same, very large (of the order of 107) set of
mixed events (one for each considered system), in order to
reduce the statistical fluctuations of the background and the
required computing time. Then we determined through a PF
the intermittency index φ2 for each sample and obtained the
distribution P(φ2).

A comment is now in order. Although the correlator
�F (e)

2 (M) takes care of the background of uncorrelated pro-
tons, proton-proton correlations due to Coulomb repulsion
and Fermi–Dirac statistics, which have nothing to do with
the CP, still remain and must be removed before perform-
ing intermittency analysis. To study the effect of these anti-
correlations we calculated the distribution of the relative four-
momenta of the proton pairs qinv = 1

2

√−(p1 − p2)2 and
the associated correlation function (ratio of true to mixed-
event pairs) for all investigated systems (“C”+C, “Si”+Si,
Pb+Pb). The results of this calculation are shown in Fig. 1.
As expected, the distribution develops a dip in the low qinv

region due to Fermi–Dirac statistics and Coulomb repul-
sion followed by a strong-interaction maximum around 20
MeV/c which, in agreement with theoretical predictions [54],
becomes more pronounced with decreasing size of the col-
liding nuclei. This behaviour suggests the introduction of a
lower qinv-cutoff in the selection of proton tracks for the
intermittency analysis in order to remove the effect of these
unwanted non-critical correlations. In addition we note that
the absence of any peak in the limit qinv → 0 demonstrates
the absence of split tracks in all three reactions which could
compromise the intermittency analysis.

Finally, since we study the correlations of protons in
the transverse momentum space, we looked for evidence of
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Fig. 1 The C(qinv) correlation function of proton pairs (ratio of pairs
from real and mixed events) at midrapidity (−0.75 < yCM < 0.75)
for the most central collisions of a “C”+C (centrality 12 %), b “Si”+Si
(centrality 12 %) and c Pb+Pb (centrality 10 %) at

√
sNN = 17.3 GeV

strong correlations in the low relative pT region, i.e. for pro-
ton tracks that are close in transverse momentum space. To
this end, we calculated the distribution in �pT

�pT = 1

2

√
(pX1 − pX2)2 + (pY1 − pY2)2 (6)

the difference in pT of protons in the pairs, as well as the
associated correlation function. The results of the calcula-
tion are shown in Fig. 2, where we also plotted the �pT
distribution for a simulated CMC data set corresponding to
a critical system mixed with 99 % random proton tracks.
We see from Fig. 2 that “C”+C and Pb+Pb data sets do
not exhibit significant correlations in the low �pT region,
whereas “Si”+Si shows a peak at low �pT , which is compa-
rable to the behaviour of the simulated CMC dataset.

4 Results

The results for the SSFM F2(M) versus M2 of the three
analysed systems are shown with black circles in Fig. 3.
In the same figure we also plot the SSFMs for the corre-
sponding mixed events (red crosses). We used a universal
cut qinv ≥ 25 MeV/c for all analysed proton pairs to take
care of anti-correlations induced by Coulomb repulsion and
Fermi–Dirac statistics, removing both proton tracks when-
ever this criterion was not fulfilled. For the “Si”+Si system
we observe that for large M2 values the SSFMs of the data
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are clearly larger than those of the mixed events. The dif-
ference between the two moments increases with increasing
number of cells M2, a typical characteristic of intermittent
behaviour. This observation is an indication for sizeable cor-
relations among the produced protons. However, due to the
small event ensemble, “Si”+Si F2 values are accompanied
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Fig. 4 a SSFM of the proton density in transverse momentum space
(filled triangles) for 150k events generated by the CMC code to simu-
late central collisions of the “Si”+Si system at

√
sNN = 17.3 GeV. The

critical system is contaminated with probability λ = 99 % with uncor-
related random tracks. For comparison we also show the corresponding
result for the SSFM obtained from the “Si”+Si data (filled circles),
b the SSFM F2(M) of the 150k CMC events without contamination
(open triangles) as well as the estimator �F (e)

2 (M) for the contami-
nated ensemble (filled triangles) and the “Si”+Si system (filled circles)
in double logarithmic scale. Power-laws lines of slope φ2 = 0.84 are
plotted as a visual guide. Only the region M2 > 1000 is displayed in b

by large statistical errors, which are calculated as the resam-
pling method variances of the lattice averaged F2 values. In
the “C”+C and Pb+Pb cases the SSFM values of the data and
the background overlap especially in the region of large M2

values. This suggests the absence of an intermittency effect
in these systems. The maximum number of bins used for
the calculation of the SSFMs is Mmax = 150 per pT direc-
tion leading to a minimum bin size of 20 MeV/c. The latter
is much greater than the experimental resolution δpT in this
phase space region (δpT � 5 MeV/c). Thus systematic errors
due to transverse momentum uncertainties are negligible for
our analysis.

We used a proton generating modification of the CMC
code [15,24] to simulate our experimental results (see Fig. 4)
for the “Si” + Si system employing a stochastic process gen-
erating a random fractal with dimension1 dF = 1

3 , leading
to an intermittency index of φ2 = 5

6 , which is exactly the
value expected for the critical system according to Eq. (2).
The SSFM in transverse momentum space of the pure criti-
cal system attains very large values for M2 � 1 as shown in
Fig. 4b. In order to reduce them to the level of values observed
in Fig. 3 one has to contaminate the critical system with a
dominant random component. In practice we replaced tracks
of the critical ensemble by random tracks with probability
λ. We illustrate this procedure in Fig. 4. The random tracks

1 The dimension dF refers to the geometry in transverse momentum
space, denoted in [15] by d̃F . There is a corresponding fractal in trans-
verse configuration space. The two fractal sets are related by a Fourier
transform.
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were selected to respect the transverse momentum distribu-
tion of the “Si”+Si data. The result of the simulation is shown
by filled triangles in Fig. 4a. For comparison we also plot-
ted the SSFM of the corresponding data (filled circles, data
points from Fig. 3b). The fraction of random protons required
by the data in the simulation turned out to be λ = 0.99
which is very close to one. Actually this λ value coincides
with the asymptotic value (M2 � 1) appearing in Eq. (4).
Thus for the considered system the background contribution
can be well simulated by mixed events justifying the use
of Eq. (5) to estimate the corresponding correlator. This is
clearly illustrated in Fig. 4b where we plot in log-log scale the
SSFM of the pure critical system (open triangles) together
with the estimator of the correlator �F (e)

2 (M) (filled trian-
gles) determined by applying Eq. (5) to the contaminated
CMC data. It is evident that, although the two quantities dif-
fer by orders of magnitude, the exponent of the underlying
power-law is the same, allowing the determination of the
intermittency index φ2,cr through the experimentally acces-
sible �F (e)

2 (M). For comparison we include in Fig. 4b also

the estimated correlator �F (e)
2 (M) for the “Si”+Si system

(filled circles). Good agreement with the result of the con-
taminated CMC is observed also at the level of correlators.
Note that the property of λ being very close to one is robust,
being determined by the order of magnitude of the SSFM
values of the data for large M2. According to the discus-
sion in Sect. 2, one possible scenario for the large back-
ground is that the freeze-out state of “Si” lies at some dis-
tance from the CP within the critical region. In this case,
if one succeeded in further approaching the CP by chang-
ing the energy and the size of the colliding ions, one would
expect a rapid decrease of λ. However, hadronization and
subsequent rescattering may mask this effect in experimen-
tal data.

We also checked our experimental results against simu-
lated events produced by the EPOS event generator [55,56]
which includes high-pT jets, in order to examine whether
the presence of a small number of protons in these jets can
produce an intermittency effect. To this end, we configured
EPOS to generate a set of 630k events corresponding to a
beam of Si nuclei on a Si target (Z = 14, A = 28, for both
beam and target), with a maximum impact parameter of b =
2.6 fm, corresponding to the centrality (12 %) of the “Si”+Si
experimental dataset. The center of mass energy was set at√
sNN = 17.3 GeV, and pT , ptot and rapidity cuts were

applied exactly as in the NA49 data. Finally, we performed
an intermittency analysis of protons in transverse momentum
space for the simulated events, as well as the corresponding
mixed events. Figure 5 compares the correlator �F (e)

2 (M)

of the EPOS events with that from the “Si”+Si data. It is
evident that EPOS, including conventional sources of cor-
relation, for example jet production and resonance decays,

100001000
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F 2
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M2

Si+A,NA49 data
EPOS data for Si+Si

∆

Fig. 5 The estimated correlator �F (e)
2 (M) of protons for the 12 %

most central collisions a from the EPOS event generator (blue triangles),
and b from “Si”+Si data (black circles) at

√
sNN = 17.3 GeV. Error

bars were obtained from the resampling method
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Fig. 6 The estimated correlator �F (e)
2 (M) corresponding to the

moments of Fig. 3, for the most central collisions of a “C”+C (central-
ity 12 %), b “Si”+Si (centrality 12 %) and c Pb+Pb (centrality 10 %)
at

√
sNN = 17.3 GeV. Error bars were obtained from the resampling

method

cannot account for the intermittency observed in “Si”+Si,
since its correlator fluctuates around or below zero.

The panels (a)–(c) in Fig. 6 show the estimator of the cor-
relator �F (e)

2 (M2) as a function of M2 for the original data
sets “C”+C, “Si”+Si and Pb+Pb respectively. For “Si”+Si an
intermittency effect shows up for M2 > 6000 (see Fig. 3b).
Therefore we used this as the lower value of M2 (M2

min) in our
fits. The intermittency index φ2 for the “Si” + Si system was
then determined from a PF to the corresponding correlator
�F (e)

2 (M). For “C”+C and Pb+Pb the values of �F (e)
2 (M2)

scatter around zero. Therefore an intermittency effect is not
present in these two systems.

When applying the resampling method we constructed
1000 samples for “Si”+Si and calculated for each sample
the correlator �F (e)

2 as well as the corresponding φ2 value.
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Fig. 7 The distribution P(φ2) obtained applying the resampling
method to calculate φ2 for a protons produced in the 12.5 % most
central collisions of “Si”+Si at

√
sNN = 17.3 GeV, and b protons gen-

erated by the CMC code (λ = 99 % contamination level). Ns = 1000
samples were produced for both cases

The obtained distribution P(φ2), shown in Fig. 7a, is highly
asymmetric. Using the resampling technique we also calcu-
lated the P(φ2) distributions for a noise contaminated CMC
data set with mean multiplicity equal to that of the “Si”+Si
system. In the simulation we can evaluate Eq. (4) directly.
When the cross-term in Eq. (4) is taken into account, the
corresponding φ2 distribution of the CMC model becomes a
delta-like function centered at 0.8382(6). This is very close
to the theoretically predicted value of 5

6 which was used in the
simulation. Omitting the cross-term results in a spread of the
φ2 values around this central value. In fact using Eq. (5) for
the correlator of the contaminated CMC data set we find the
estimated (median) φ2 value 0.80+0.19

−0.15 for the “Si”+Si sim-
ulation. The corresponding distribution P(φ2) is shown in
Fig. 7b. The distance of the median from the expected value
is much smaller than the spread of values, i.e. the median is
almost unbiased. The use of the estimator (5) in our analysis
therefore allows us to determine the intermittency index φ2

in a noise dominated data set.
Due to the skewness of P(φ2), the appropriate estima-

tor of φ2 is the median, and the measure of the associated
statistical uncertainty is a confidence interval between two
quantiles cutting off an equal lower and upper percentage of
the distribution [57]. We chose the sextiles (partitioning the
distribution into sixths), which correspond to a 67 % confi-
dence interval, as well as roughly one standard deviation, in

the case of a symmetric distribution. We obtained the result
φ2 = 0.96+0.38

−0.25.
The fitting procedure is influenced by several systematic

uncertainties due to:

(i) The correlation among �F (e)
2 (M) values for consecu-

tive M2s. This is in fact taken into account by the resam-
pling method. However, since this treatment is implicit,
we employed also the sparse binning (SB) method2 as
an additional estimator of the systematic error, using in
the PF only �F (e)

2 (M) values for Ms that are widely
apart in order to avoid strong bin correlations. In this
case we used only one sample (the original data set) in
the calculations. Changing the distance δM between
the subsequent Ms of the �F (e)

2 (M) values used in
the fit, one obtains a set of φ2 values which leads to
a mean value φ2,SB = 0.87 and a standard deviation
δφ2,SB = 0.08. We used spacings of δM = 2 . . . 8.

(ii) The M2
min-value. We checked the sensitivity of the fitted

value of φ2 to M2
min . Similarly as in the SB case, we

considered only the original data set and we obtained a
set of φ2 values (one for each M2

min , from 6000 to 12000
in steps of 1000) leading to a mean value φ2,M2 = 0.82
and a standard deviation δφ2,M2 = 0.14.

(iii) The qinv-cutoff value. We performed the intermittency
analysis changing the minimum of qinv used in the
selection of proton pairs in the range [10, 30] MeV/c.
The corresponding change in the median value of φ2

was less than 8 % indicating that the obtained intermit-
tency result remains practically unaffected by this cut.

(iv) The proton purity level. Due to insufficient statistics it
was not possible to increase the purity of the proton
tracks used in the intermittency analysis of the “Si”+Si
system without increasing significantly the errors of
the correlator �F (e)

2 (M). Thus in our analysis we opti-
mized the choice of the purity level (80 %) taking into
account the two competing factors (statistics vs. purity).

According to the preceding discussion the total systematic
error, using an euclidean sum of all contributions, was esti-
mated to be δφ2,sys = 0.16. For the performed PFs the χ2 per
degree of freedom was below 1.0 (range [0.09, 0.51] ) owing
to the correlations between the �F2(M) values of successive
M.

5 Summary and conclusions

In summary, NA49 performed a search for critical fluctua-
tions employing an intermittency analysis in central “C”+C,
“Si”+Si and Pb+Pb collisions using second scaled facto-

2 N. Davis and F. K. Diakonos, in preparation.
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rial moments of the proton density in transverse momen-
tum space. Our analysis demonstrates the presence of non-
Poissonian fluctuations in the “Si”+Si freeze-out state at√
sNN = 17.3 GeV (T ≈ 162 MeV, μB ≈ 260 MeV) [18],

consistent with a power-law behaviour, as expected for the
emergence of self-similar structured fluctuations [42] char-
acteristic of the approach to the critical point. No traces of
critical correlations were found in the freeze-out states of
“C” + C (T ≈ 166 MeV, μB ≈ 262 MeV) and Pb+Pb inter-
actions (T ≈ 155 MeV, μB ≈ 240 MeV) [18] at the same
collision energy. The power-law exponent

φ2 = 0.96+0.38
−0.25 (stat.) ± 0.16 (syst.)

for the “Si”+Si system approaches in size the QCD prediction
(5/6). An analogous intermittency effect was found recently
[26] in central “Si”+Si collisions at

√
sNN = 17.3 GeV for

π+π− pairs with invariant mass close to twice the pion mass
(σ -field configurations). Although the freeze-out states of
“C”+C and Pb+Pb are close to that of “Si”+Si, the critical
fluctuation pattern probably cannot develop in “C”+C due
to the small size [58] and the diluteness of the system and
may be erased in Pb+Pb during the longer evolution of the
hadron phase. The large statistical errors in “Si”+Si, do not
allow a conclusive statement concerning the location of the
CP. Nevertheless, the presented intermittency results favour
the neighbourhood of the “Si”+Si freeze-out state for a fur-
ther detailed search for the CP. Such a program is currently
pursued by the NA61 experiment studying A+A collisions
with small and intermediate size nuclei.

The beam energy scan (BES) program at RHIC [36,59–
61] covers the region 205 MeV < μB < 420 MeV of
the phase diagram and searches for the CP by studying
higher moments of the net-proton multiplicity distribution.
The expected signal of the CP is a maximum of the kurtosis
times the variance (Kσ 2) of the net-proton multiplicity dis-
tribution (a global observable). Our approach here is different
since we search for power-law fluctuations of the proton den-
sity (a local observable) with a predicted exponent φ2 	 5

6 as
a signature of the CP. Certainly, within both approaches, pre-
cision measurements are needed in order to reach conclusive
results.
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