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Abstract

We look for fluctuations expected for the QCD critical point using an intermittency analysis in the
transverse momentum phase space of protons produced around midrapidity in the 12.5% most central
C+C, Si+Si and Pb+Pb collisions at the maximum SPS energy of 158A GeV. We find evidence of
power-law fluctuations for the Si+Si data. The fitted power-law exponent φ2 = 0.96+0.38

−0.25 (stat.)
±0.16 (syst.) is consistent with the value expected for critical fluctuations. Power-law fluctuations
had previously also been observed in low-mass π+π− pairs in the same Si+Si collisions.

Keywords: quark gluon plasma, QCD critical point, proton density fluctuations, transverse
momentum, intermittency analysis, NA49 experiment
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1 Introduction

Theoretical investigations of the phase diagram of strongly interacting matter suggest the existence of a
critical point (CP) at finite baryochemical potential and temperature. The prevailing view is that the
CP corresponds to a second order phase transition which is considered as the endpoint of a line of first
order transitions associated with the partial restoration of chiral symmetry when the temperature T ,
for given baryochemical potential µB, increases beyond a critical value Tc (for a review see [1]). This
hypothesis is compatible with results of Lattice QCD calculations [2, 3] although a generally accepted
accurate prediction concerning the existence and location of the CP is not yet available. In current
ion collision experiments at the SPS [4, 5] and RHIC [6] an exploration of the QCD phase diagram is
attempted by changing the energy and size of colliding nuclei. One of the main goals of this scanning
program is to find evidence for the CP as a maximum of fluctuations in analogy to the phenomenon of
critical opalescence in conventional matter [7]. An experimental estimate of (T, µB) of the freeze-out
state formed in the collisions is usually obtained from the observed particle yields [8–10].

A prerequisite for the experimental detection of the CP is to find suitable observables, as attempted
in several recent theoretical studies [7, 11–13]. The order parameter of the phase transition is the chiral
condensate 〈q̄q〉 (q is the quark field). The quantum state carrying the quantum numbers as well as
the critical properties of the chiral condensate is the isoscalar σ-field. Assuming that this state can be
formed in ion collisions there are two possibilities for its detection:

• Directly from its decay products [13]. The condensate, being unstable against changes of thermo-
dynamic conditions (freeze-out), will decay mainly into pions at time scales characteristic of the
strong interaction. The critical properties of the condensate are transferred to detectable π+π−

pairs with invariant mass just above twice the pion mass [13]. For an analysis of the expected fluc-
tuations it is necessary to extract the pion pairs (dipions), which possess the critical correlations.
This requires removal of a large combinatorial background [13, 14].

• Through the mixing of the net-baryon density with the chiral condensate in a finite-density medium.
The critical fluctuations are transferred to the net-baryon density [1,15,16], which is an equivalent
order parameter of the second order phase transition at the CP, as well as the net-proton density
and the proton and antiproton densities separately. This is due to the direct coupling of the protons
with the isospin zero σ-field [17]. In contrast to the dipion case the critical correlations are carried
by the observed protons and no reconstruction is needed. Thus detecting the QCD CP through
fluctuations of the proton density is a very promising strategy.

The experimental observables proposed for the search of the CP can be classified into two categories:

• Event-by-event fluctuations of integrated quantities like multiplicity (variance [18], skewness and
kurtosis [19]) and averaged transverse momentum [20]. A maximum of these fluctuation measures
as a function of size and energy of the colliding ions is expected in the vicinity of the CP. Indications
of such a maximum were observed in Si+Si collisions at 158A GeV [21].

• Local power-law fluctuations [12] directly related to the critical behaviour of density-density corre-
lations. These have been shown to be detectable [7,13] in momentum space within the framework
of an intermittency analysis [22] through the measurement of the scaled factorial moments (SFMs)
defined as:

Fq(M) =

〈 1

MD

MD

∑

i=1

ni(ni − 1)..(ni − q + 1)〉

〈 1

MD

MD

∑

i=1

ni〉q
(1)

where MD is the number of equally sized cells in which the D-dimensional (embedding) space is
partitioned, ni is the proton multiplicity in the i-th cell, and q is the order (rank) of the moments.
At the CP, the fluctuations of the order parameter, being self-similar [23], are described by a mono-

fractal geometry [24] reflected in the behavior Fq(M) ∼
(

MD
)φq

of the SFMs for M ≫ 1. The
associated intermittency indices φq are predicted [25] to follow the pattern:

D · φq = (q − 1)dq, (2)
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with dq the so called anomalous fractal dimension of the set formed by the order parameter density
fluctuations. For a mono-fractal set dq is independent of q and is related to the corresponding fractal
dimension dF through the relation [25] dq = D − dF . Based on universality class arguments, the
exponents of the expected power-laws in transverse momentum space (D = 2) were predicted to
have the value φ2,cr = 2

3 in case of the sigma condensate [13] and φ2,cr = 5
6 for the net-baryon

density [7]. Since the system we investigate is finite, we expect the power-law behaviour of the SFMs
to hold only between two scales, dictated by the size of the system and the minimum distance of
two protons in transverse momentum space [26]. Moreover, in the course of intermittency analysis
of experimental data, it was found necessary to remove a large background, (discussed in section
2) in order to reveal the predicted power-law exponents.

In our analysis, due to the limited statistics, we will only consider the second scaled factorial
moment (SSFM) in transverse momentum space obtained by setting q = 2 and D = 2 in Eq. (1).
Much larger statistics than available is required in order to perform an intermittency analysis of
higher than second order and to test the q independence of the anomalous fractal dimensions dq.
This is due to the fact that analyzing quantities related to the order parameter of the transition
in the appropriate phase space region restricts significantly the mean multiplicity of the particles
carrying the critical fluctuations (protons, π+-π− pairs close to their production threshold). We
use horizontal moments, which means that in Eq.(1) both the numerator and the denominator
are separately averaged first over cells and then over events, for a given M value. Thus, the
denominator depends trivially on M , as M−D·q ∼ M−4, playing the role of normalization factor,
with all non-trivial scaling lying in the numerator.

The intermittency analysis reported in this paper differs from previous studies [25,27,28] in measur-
ing quantities associated with the order parameter of the phase transition. In Ref. [27] all charged
particles in the entire available phase space were used, allowing also higher moment calculations.
However, in this case the quantitative relation with the predicted power law is lost.

In the present work we report on intermittency analysis of protons produced from A+A collisions in
the NA49 experiment at the CERN SPS at beam energy of 158A GeV. This analysis is a continuation
of our search for indications of the CP in local density fluctuations of low-mass π+π− pairs [14].

2 Intermittency in the presence of background

Following the methodology of Refs. [7, 13, 22] and using Eq. (1) for q = 2 and D = 2, we calculate for
every considered ensemble of protons the SSFM as a function of the number M of subdivisions in each
transverse momentum space direction of a rectangular domain D. In Eq. (1) ni is the number of protons
in the cell i and M2 is the total number of cells. The brackets 〈...〉 indicate averaging over events,
however in the following, in order to simplify the notation, we will use 〈...〉 to indicate averaging over
both, bins and events and drop the subscript i referring to individual cells. For a pure critical system
freezing out exactly at the chiral CP the SSFM (Eq. (1)) of protons emitted into a small window around
midrapidity is expected to possess a 2-D power-law dependence F2(M) ∼ M2φ2,cr for M ≫ 1, with
exponent (intermittency index) φ2,cr = 5

6 determined by universality class arguments associated with
the critical properties of QCD [7]. This results from the fact that the density of the critical system is
approximately constant in center of mass rapidity y whenever sinh y ≈ y, which is valid at midrapidity
(within a 10% approximation for |y| ≤ 0.8). Then the fluctuations in transverse momentum and rapidity
space factorize, becoming statistically independent [7].

In practice the critical system will never be 100% pure or complete, for a number of reasons. First of
all, there will always be some non-proton tracks that are misidentified as protons, as well as true proton
tracks erroneously rejected. Moreover, due to the corona effect only part of the system may reach the
deconfined phase and the freeze-out may be located at a distance from the CP. Thus, the ensemble of
protons will be contaminated by a percentage of non-critical protons which will deform F2(M), leading
to a decrease of the value of φ2 and/or a modification of the power-law behaviour [13,14]. Assuming that
the proton multiplicity in each cell can be divided into background and critical contributions, n = nb+nc

one can write the numerator in Eq. (1) as:

〈n(n− 1)〉 = 〈nc(nc − 1)〉+ 〈nb(nb − 1)〉+ 2〈nbnc〉 (3)
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where 〈nc(nc−1)〉 is the critical component in the phase space integrated two-particle density, 〈nb(nb−1)〉
is the background contribution due to the presence of non-critical protons and 2〈nbnc〉 is a cross-term.
The latter vanishes when 〈nc〉 → 0 or 〈nb〉 → 0. Under general conditions we can write the cross-term
in Eq. (3) as 2〈nbnc〉 = 2〈nb〉〈nc〉fbc where fbc is a finite quantity which cannot be further determined.
Dividing both sides of Eq. (3) by 〈n〉2 (which is proportional to (M−2)2 for large M) we obtain the
expression:

∆F2(M) = F
(d)
2 (M)− λ(M)2F

(b)
2 (M)− 2λ(M) (1− λ(M)) fbc (4)

for the correlator ∆F2(M) = 〈nc(nc − 1)〉/〈n〉2 containing the critical contribution. In the right hand

side of Eq. (4) F
(d)
2 (M) is the SSFM calculated from the data, λ(M) = 〈nb〉/〈n〉 is a measure of the

contamination by non-critical protons and F
(b)
2 (M) = 〈nb(nb−1)〉/〈nb〉2 is the SSFM of the background.

Note that for M ≫ 1 the ratio λ becomes independent of M and can be identified as the fraction of
non-critical protons in the considered ensemble. By construction the correlator ∆F2(M) possesses the
same M2 dependence as the SSFM of the critical component (∆F2(M) ∼ M2φ2,cr ) for M ≫ 1 since the
numerator carries the non-trivial scaling and background contribution to the two-particle correlations is
removed.

Two special cases of Eq. (4) merit discussion:

1. When background dominates, as in the present analysis, λ . 1. In this case we neglect the third
term in the rhs of Eq. (4) which is equivalent to omitting the cross-term in Eq. (3). However, the
difference of the first two terms in Eq.(4) can be comparably small, and therefore the justification
of this approximation is non-trivial and will be provided by model simulations. These will be
discussed in Section 4 together with the presentation of the results from the data analysis.

2. When the freeze-out of the considered system occurs very close to the chiral CP, there is a possibility
that the background contribution becomes very small so that λ & 0 for M ≫ 1 and the correlator

∆F2(M) coincides with F
(d)
2 (M).

In the first case one can use mixed events generated from the data to simulate the background contri-

bution and estimate F
(b)
2 (M) in Eq. (4), assuming that the background consists of particles uncorrelated

in transverse momentum space. By construction, 〈n〉mixed = 〈n〉 and F
(m)
2 (M) ≃ F

(b)
2 (M), since we use

scaled factorial moments.

3 Data and methods of analysis

The analysed data were recorded by the NA49 experiment [4] in A+A collisions at maximum CERN
SPS energy of 158A GeV (

√
sNN = 17.3 GeV). For the analysis we used the most central collisions

(12%, 12%, 10%) of “C”, “Si” and Pb nuclei on C (2.4% interaction length), Si (4.4%) and Pb (1%)
targets, respectively. The incident C and Si nuclei were produced by fragmentation of a Pb beam of
158A GeV beam energy [4] and were selected by magnetic rigidity (Z/A = 0.5) and by specific energy
loss in multiwire proportional chambers in the beam line upstream of the target position. The “C”
beam as defined by the online trigger and offline selection was a mixture of ions with charge Z = 6 and
7 (intensity ratio 69:31); the “Si” beam of ions with Z = 13, 14 and 15 (intensity ratio 35:41:24) [29].
The trigger selected the centrality of the collisions based on a measurement of the energy deposited by
projectile spectator nucleons in a downstream calorimeter. The event statistics amounted to 148k events
for “C”+C, 166k events for “Si”+Si, and 330k events for Pb+Pb. The standard event and track selection
cuts of the NA49 experiment were applied as described in Ref. [30].

Specifically, to avoid double counting of split tracks we only accepted tracks for which the ratio of
number of measured points to estimated maximum number of points in the TPCs exceeds 55%. We made
sure that the resulting sample of particle tracks was not contaminated by fake close-pairs which could
affect the intermittency analysis by examining the two-track distance distribution and the two-particle
correlation function in qinv (discussed below).

Proton identification [30] used the measurements of particle energy loss dE/dx in the gas of the time
projection chambers. The inclusive dE/dx distribution for positively charged particles in each reaction
was fitted in 10 bands of momentum p to a sum of contributions fα(dE/dx, p) from different particle
species α with α = π, K, p, e. The probability P for a track with energy loss xi and momentum pi
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of being a proton is then given by P = fp(xi, pi)/(f
π(xi, pi) + fK(xi, pi) + fp(xi, pi) + f e(xi, pi)). The

value of P for proton candidates had to exceed 80% for the “C”+C and “Si”+Si systems and 90% for
Pb+Pb collisions.

We calculated the SSFMs according to Eq. (1) for the three considered systems “C”+C, “Si”+Si
and Pb+Pb in the domain D = [−px,max, px,max]⊗ [−py,max, py,max] of the transverse momentum plane
(px, py) with px,max = py,max = 1.5 GeV/c. This plane is perpendicular to the beam direction, px, py
being the corresponding horizontal and vertical transverse momentum components. For the calculations
we selected protons with center of mass rapidity |yCM | ≤ 0.75 in order to restrict the analysis to the
midrapidity region which is a necessary condition for the appearance of power-law critical fluctuations (see
Section 2). This selection also removes those protons which underwent only one diffractive interaction
as is the case for nucleons in the corona. The mean proton multiplicities in the considered rapidity-
transverse momentum interval were: 〈p〉“C”+C = 1.6±0.8, 〈p〉“Si”+Si = 3.1±1.7 and 〈p〉Pb+Pb = 9.1±3.2,
respectively, where the second set of numbers give the standard deviation of the multiplicity distributions.

Usually in an intermittency analysis the only change of the transverse momentum lattice is the
decrease of the lattice constant with increasing M (the lattice becomes finer), keeping the lattice position
in transverse momentum space fixed. However, the lattice bin boundaries may split proton pairs at
distances smaller than the bin size, separating protons into different bins, which leads to unwanted
bin-to-bin fluctuations. When the multiplicity per event is large these fluctuations are not relevant
compared to the bin-to-bin fluctuations generated by the protons within a single bin. Since in our
analysis, especially for the light systems (“C” and “Si”), the multiplicity per event is small, this splitting
effect due to the boundaries becomes important. To reduce these fluctuations, we calculated the SSFMs
using slightly displaced transverse momentum lattices and averaged the resulting F2(M) values over the
lattice positions. The displacement of the lattices was chosen small enough in order to avoid significant
changes of the content of the analysed ensemble of protons. We used 11 differently located lattices shifting
their position from −1.53 GeV/c < px,y < 1.47 GeV/c to −1.47 GeV/c < px,y < 1.53 GeV/c. This
procedure was applied to both the analysed data and the mixed events generated from the corresponding
data.

Having calculated the SSFMs of the data F
(d)
2 (M) and the associated mixed events F

(m)
2 (M) as

described above we subsequently estimated the correlator Eq. (4) by the difference

∆F
(e)
2 (M) = F

(d)
2 (M)− F

(m)
2 (M) (5)

where we set λ = 1 and thus neglected the third term (cross-term) in the rhs of Eq. (4). In section 4
we justify this choice by simulating and analysing data sets consisting of a mixture of critical protons
generated by the Critical Monte-Carlo (CMC) code [7, 12] and randomly distributed protons.

We searched for an intermittency effect ∆F
(e)
2 (M) ∼ (M2)φ2 for M2 ≫ 1 [22,31]. The intermittency

index φ2 can be determined by a power-law fit (PF) to ∆F
(e)
2 (M) in the region of sufficiently large M2.

Standard error propagation turned out to be inadequate for our intermittency analysis [32]. We therefore
obtained estimates of the statistical uncertainties of the SSFMs as well as of the φ2 values by using the
resampling method [33]. This method involves constructing new sets of events out of the original one,
containing the same number of events as the original. This is achieved by uniform and random sampling
of events, with replacement, from the original set, so that a given event may be drawn any number of
times. In the new sets, some events are of necessity omitted and others duplicated. We then calculate

SSFMs as well as ∆F
(e)
2 (M) for each resampled set [32]. In the calculation of ∆F

(e)
2 (M) we used for all

samples the same, very large (of the order of 107) set of mixed events (one for each considered system),
in order to reduce the statistical fluctuations of the background and the required computing time. Then
we determined through a PF the intermittency index φ2 for each sample and obtained the distribution
P (φ2).

A comment is now in order. Although the correlator ∆F
(e)
2 (M) takes care of the background of

uncorrelated protons, proton-proton correlations due to Coulomb repulsion and Fermi-Dirac statistics,
which have nothing to do with the CP, still remain and must be removed before performing intermittency
analysis. To study the effect of these anti-correlations we calculated the distribution of the relative four-
momenta of the proton pairs qinv = 1

2

√

−(p1 − p2)2 and the associated correlation function (ratio of
true to mixed-event pairs) for all investigated systems (“C”+C, “Si”+Si, Pb+Pb). The results of this
calculation are shown in Fig. 1. As expected, the distribution develops a dip in the low qinv region due
to Fermi-Dirac statistics and Coulomb repulsion followed by a strong-interaction maximum around 20
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MeV/c which, in agreement with theoretical predictions [34], becomes more pronounced with decreasing
size of the colliding nuclei. This behaviour suggests the introduction of a lower qinv-cutoff in the selection
of proton tracks for the intermittency analysis in order to remove the effect of these unwanted non-critical
correlations. In addition we note that the absence of any peak in the limit qinv → 0 demonstrates the
absence of split tracks in all three reactions which could compromise the intermittency analysis.

Finally, since we study the correlations of protons in the transverse momentum space, we looked
for evidence of strong correlations in the low relative pT region, i.e. for proton tracks that are close in
transverse momentum space. To this end, we calculated the distribution in ∆pT

∆pT =
1

2

√

(pX1 − pX2)2 + (pY 1 − pY 2)2 (6)

the difference in pT of protons in the pairs, as well as the associated correlation function. The results
of the calculation are shown in Fig. 2, where we also plotted the ∆pT distribution for a simulated CMC
data set corresponding to a critical system mixed with 99% random proton tracks. We see from Fig. 2
that “C”+C and Pb+Pb data sets do not exhibit significant correlations in the low ∆pT region, whereas
“Si”+Si shows a peak at low ∆pT , which is comparable to the behaviour of the simulated CMC dataset.

4 Results

The results for the SSFM F2(M) versus M2 of the three analysed systems are shown with black circles
in Fig. 3. In the same figure we also plot the SSFMs for the corresponding mixed events (red crosses).
We used a universal cut qinv ≥ 25 MeV/c for all analysed proton pairs to take care of anti-correlations
induced by Coulomb repulsion and Fermi-Dirac statistics, removing both proton tracks whenever this
criterion was not fulfilled. For the “Si”+Si system we observe that for large M2 values the SSFMs of
the data are clearly larger than those of the mixed events. The difference between the two moments
increases with increasing number of cells M2, a typical characteristic of intermittent behaviour. This
observation is an indication for sizeable correlations among the produced protons. However, due to the
small event ensemble, “Si”+Si F2 values are accompanied by large statistical errors, which are calculated
as the resampling method variances of the lattice averaged F2 values. In the “C”+C and Pb+Pb cases
the SSFM values of the data and the background overlap especially in the region of large M2 values.
This suggests the absence of an intermittency effect in these systems. The maximum number of bins
used for the calculation of the SSFMs is Mmax = 150 per pT direction leading to a minimum bin size of
20 MeV/c. The latter is much greater than the experimental resolution δpT in this phase space region
(δpT . 5 MeV/c). Thus systematic errors due to transverse momentum uncertainties are negligible for
our analysis.

We used a proton generating modification of the CMC code [7,12] to simulate our experimental results
(see Fig. 4) for the “Si” + Si system employing a stochastic process generating a random fractal with
dimension1 dF = 1

3 , leading to an intermittency index of φ2 = 5
6 , which is exactly the value expected for

the critical system according to Eq.(2). The SSFM in transverse momentum space of the pure critical
system attains very large values for M2 ≫ 1 as shown in Fig. 4 b. In order to reduce them to the
level of values observed in Fig. 3 one has to contaminate the critical system with a dominant random
component. In practice we replaced tracks of the critical ensemble by random tracks with probability
λ. We illustrate this procedure in Fig. 4. The random tracks were selected to respect the transverse
momentum distribution of the “Si”+Si data. The result of the simulation is shown by filled triangles
in Fig. 4a. For comparison we also plotted the SSFM of the corresponding data (filled circles, data
points from Fig. 3 b). The fraction of random protons required by the data in the simulation turned out
to be λ = 0.99 which is very close to one. Actually this λ value coincides with the asymptotic value
(M2 ≫ 1) appearing in Eq. (4). Thus for the considered system the background contribution can be
well simulated by mixed events justifying the use of Eq. (5) to estimate the corresponding correlator.
This is clearly illustrated in Fig. 4b where we plot in log-log scale the SSFM of the pure critical system

(open triangles) together with the estimator of the correlator ∆F
(e)
2 (M) (filled triangles) determined by

applying Eq. (5) to the contaminated CMC data. It is evident that, although the two quantities differ by
orders of magnitude, the exponent of the underlying power-law is the same, allowing the determination

1The dimension dF refers to the geometry in transverse momentum space, denoted in [7] by d̃F . There is a corresponding
fractal in transverse configuration space. The two fractal sets are related by a Fourier transform.
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Figure 1: (Color online) The C(qinv) correlation function of proton pairs (ratio of pairs from real and
mixed events) at midrapidity (−0.75 < yCM < 0.75) for the most central collisions of (a) “C”+C
(centrality 12%), (b) “Si”+Si (centrality 12%) and (c) Pb+Pb (centrality 10%) at

√
sNN = 17.3 GeV.
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Figure 2: (Color online) The C(∆pT ) correlation function of proton pairs (ratio of pairs from real
and mixed events) at midrapidity (−0.75 < yCM < 0.75) for the most central collisions of (a) “C”+C
(centrality 12%), (b) Pb+Pb (centrality 10%), (c) “Si”+Si (centrality 12%) at

√
sNN = 17.3 GeV, as

well as for (d) CMC simulated Si+Si events (99% noise).
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Figure 3: (Color online) SSFMs of the proton density in transverse momentum space at midrapidity
(−0.75 < yCM < 0.75) for the most central collisions of (a) “C”+C (12%), (b) “Si”+Si (12%), and (c)
Pb+Pb (10%) at

√
sNN = 17.3 GeV. The circles (crosses) represent the SSFM F2(M) of the data (mixed

events) respectively. Error bars were obtained from the resampling method.
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Figure 4: (Color online) (a) SSFM of the proton density in transverse momentum space (filled triangles)
for 150k events generated by the CMC code to simulate central collisions of the “Si”+Si system at√
sNN = 17.3 GeV. The critical system is contaminated with probability λ = 99% with uncorrelated

random tracks. For comparison we also show the corresponding result for the SSFM obtained from
the “Si”+Si data (filled circles), (b) The SSFM F2(M) of the 150k CMC events without contamination

(open triangles) as well as the estimator ∆F
(e)
2 (M) for the contaminated ensemble (filled triangles) and

the “Si”+Si system (filled circles) in double logarithmic scale. Power-laws lines of slope φ2 = 0.84 are
plotted as a visual guide. Only the region M2 > 1000 is displayed in (b).

of the intermittency index φ2,cr through the experimentally accessible ∆F
(e)
2 (M). For comparison we

include in Fig. 4b also the estimated correlator ∆F
(e)
2 (M) for the “Si”+Si system (filled circles). Good

agreement with the result of the contaminated CMC is observed also at the level of correlators. Note
that the property of λ being very close to one is robust, being determined by the order of magnitude
of the SSFM values of the data for large M2. According to the discussion in Section 2, one possible
scenario for the large background is that the freeze-out state of “Si” lies at some distance from the CP
within the critical region. In this case, if one succeeded in further approaching the CP by changing the
energy and the size of the colliding ions, one would expect a rapid decrease of λ. However, hadronization
and subsequent rescattering may mask this effect in experimental data.

We also checked our experimental results against simulated events produced by the EPOS event
generator [35] which includes high-pT jets, in order to examine whether the presence of a small number
of protons in these jets can produce an intermittency effect. To this end, we configured EPOS to generate
a set of 630k events corresponding to a beam of Si nuclei on a Si target (Z=14, A=28, for both beam and
target), with a maximum impact parameter of b = 2.6 fm, corresponding to the centrality (12%) of the
“Si”+Si experimental dataset. The center of mass energy was set at

√
sNN = 17.3 GeV, and pT , ptot and

rapidity cuts were applied exactly as in the NA49 data. Finally, we performed an intermittency analysis
of protons in transverse momentum space for the simulated events, as well as the corresponding mixed

events. Figure 5 compares the correlator ∆F
(e)
2 (M) of the EPOS events with that from the “Si”+Si

data. It is evident that EPOS, including conventional sources of correlation, for example jet production
and resonance decays, cannot account for the intermittency observed in “Si”+Si, since its correlator
fluctuates around or below zero.
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Figure 6: (Color online) The estimated correlator ∆F
(e)
2 (M) corresponding to the moments of Fig. 3, for

the most central collisions of (a) “C”+C (centrality 12%), (b) “Si”+Si (centrality 12%) and (c) Pb+Pb
(centrality 10%) at

√
sNN = 17.3 GeV. Error bars were obtained from the resampling method.

The panels (a),(b),(c) in Fig. 6 show the estimator of the correlator ∆F
(e)
2 (M2) as a function of M2

for the original data sets “C”+C, “Si”+Si and Pb+Pb respectively. For “Si”+Si an intermittency effect
shows up for M2 > 6000 (see Fig. 3b). Therefore we used this as the lower value of M2 (M2

min) in
our fits. The intermittency index φ2 for the “Si” + Si system was then determined from a PF to the

corresponding correlator ∆F
(e)
2 (M). For “C”+C and Pb+Pb the values of ∆F

(e)
2 (M2) scatter around

zero. Therefore an intermittency effect is not present in these two systems.
When applying the resampling method we constructed 1000 samples for “Si” +Si and calculated

for each sample the correlator ∆F
(e)
2 as well as the corresponding φ2 value. The obtained distribution

P (φ2), shown in Fig. 7a, is highly asymmetric. Using the resampling technique we also calculated the
P (φ2) distributions for a noise contaminated CMC data set with mean multiplicity equal to that of the
“Si”+Si system. In the simulation we can evaluate Eq. (4) directly. When the cross-term in Eq. (4) is
taken into account, the corresponding φ2 distribution of the CMC model becomes a delta-like function
centered at 0.8382(6). This is very close to the theoretically predicted value of 5

6 which was used in the
simulation. Omitting the cross-term results in a spread of the φ2 values around this central value. In
fact using Eq. (5) for the correlator of the contaminated CMC data set we find the estimated (median)
φ2 value 0.80+0.19

−0.15 for the “Si”+Si simulation. The corresponding distribution P (φ2) is shown in Fig. 7b.
The distance of the median from the expected value is much smaller than the spread of values, i.e. the
median is almost unbiased. The use of the estimator (5) in our analysis therefore allows us to determine
the intermittency index φ2 in a noise dominated data set.
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Due to the skewness of P (φ2), the appropriate estimator of φ2 is the median, and the measure of
the associated statistical uncertainty is a confidence interval between two quantiles cutting off an equal
lower and upper percentage of the distribution [36]. We chose the sextiles (partitioning the distribution
into sixths), which correspond to a 67% confidence interval, as well as roughly one standard deviation,
in the case of a symmetric distribution. We obtained the result φ2 = 0.96+0.38

−0.25.
The fitting procedure is influenced by several systematic uncertainties due to:

(i) The correlation among ∆F
(e)
2 (M) values for consecutive M2s. This is in fact taken into account

by the resampling method. However, since this treatment is implicit, we employed also the sparse
binning (SB) method2 as an additional estimator of the systematic error, using in the PF only

∆F
(e)
2 (M) values for Ms that are widely apart in order to avoid strong bin correlations. In this

case we used only one sample (the original data set) in the calculations. Changing the distance

δM between the subsequent Ms of the ∆F
(e)
2 (M) values used in the fit, one obtains a set of φ2

values which leads to a mean value φ2,SB = 0.87 and a standard deviation δφ2,SB = 0.08. We used
spacings of δM = 2 . . . 8.

(ii) The M2
min-value. We checked the sensitivity of the fitted value of φ2 to M2

min. Similarly as in the
SB case, we considered only the original data set and we obtained a set of φ2 values (one for each
M2

min, from 6000 to 12000 in steps of 1000) leading to a mean value φ2,M2 = 0.82 and a standard
deviation δφ2,M2 = 0.14.

(iii) The qinv-cutoff value. We performed the intermittency analysis changing the minimum of qinv
used in the selection of proton pairs in the range [10, 30] MeV/c. The corresponding change in
the median value of φ2 was less than 8% indicating that the obtained intermittency result remains
practically unaffected by this cut.

(iv) The proton purity level. Due to insufficient statistics it was not possible to increase the purity
of the proton tracks used in the intermittency analysis of the “Si”+Si system without increasing

significantly the errors of the correlator ∆F
(e)
2 (M). Thus in our analysis we optimized the choice

of the purity level (80%) taking into account the two competing factors (statistics vs. purity).

According to the preceding discussion the total systematic error, using an euclidean sum of all contri-
butions, was estimated to be δφ2,sys = 0.16. For the performed PFs the χ2 per degree of freedom was
below 1.0 (range [0.09, 0.51] ) owing to the correlations between the ∆F2(M) values of successive M.

5 Summary and conclusions

In summary, NA49 performed a search for critical fluctuations employing an intermittency analysis in cen-
tral “C”+C, “Si”+Si and Pb+Pb collisions using second scaled factorial moments of the proton density
in transverse momentum space. Our analysis demonstrates the presence of non-Poissonian fluctuations
in the “Si”+Si freeze-out state at

√
sNN = 17.3GeV (T ≈ 162 MeV, µB ≈ 260 MeV) [10], consistent

with a power-law behaviour, as expected for the emergence of self-similar structured fluctuations [23]
characteristic of the approach to the critical point. No traces of critical correlations were found in the
freeze-out states of “C” + C (T ≈ 166 MeV, µB ≈ 262 MeV) and Pb + Pb interactions (T ≈ 155 MeV,
µB ≈ 240 MeV) [10] at the same collision energy. The power-law exponent

φ2 = 0.96+0.38
−0.25 (stat.)± 0.16 (syst.)

for the “Si”+Si system approaches in size the QCD prediction (5/6). An analogous intermittency effect
was found recently [14] in central “Si”+Si collisions at

√
sNN = 17.3GeV for π+π− pairs with invariant

mass close to twice the pion mass (σ-field configurations). Although the freeze-out states of “C”+C and
Pb+Pb are close to that of “Si”+Si, the critical fluctuation pattern probably cannot develop in “C”+C
due to the small size [37] and the diluteness of the system and may be erased in Pb+Pb during the
longer evolution of the hadron phase. The large statistical errors in “Si”+Si, do not allow a conclusive
statement concerning the location of the CP. Nevertheless, the presented intermittency results favour the

2N. Davis and F. K. Diakonos, in preparation.

14



neighbourhood of the “Si”+Si freeze-out state for a further detailed search for the CP. Such a program
is currently pursued by the NA61 experiment studying A+A collisions with small and intermediate size
nuclei.

The Beam Energy Scan (BES) program at RHIC [19, 38, 39] covers the region 205 MeV < µB <
420 MeV of the phase diagram and searches for the CP by studying higher moments of the net-proton
multiplicity distribution. The expected signal of the CP is a maximum of the kurtosis times the variance
(Kσ2) of the net-proton multiplicity distribution (a global observable). Our approach here is different
since we search for power-law fluctuations of the proton density (a local observable) with a predicted
exponent φ2 ≃ 5

6 as a signature of the CP. Certainly, within both approaches, precision measurements
are needed in order to reach conclusive results.
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