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This Letter reports a search for a heavy particle that decays to WW using events produced in pp
collisions at

√
s = 7 TeV. The data were recorded in 2011 by the ATLAS detector and correspond

to an integrated luminosity of 4.7 fb−1. WW → ℓνℓ′ν′ (ℓ, ℓ′ = e or µ) final states are considered
and the distribution of the transverse mass of the WW candidates is found to be consistent with
Standard Model expectations. Upper limits on the production cross section times branching ratio
into W boson pairs are set for Randall-Sundrum and bulk Randall-Sundrum gravitons, which result
in observed 95% CL lower limits on the masses of the two particles of 1.23 TeV and 0.84 TeV,
respectively.
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The existence of new phenomena can be probed by
studying heavy gauge boson pair production. Heavy par-
ticles that can decay to gauge boson pairs are predicted
in many scenarios of physics beyond the Standard Model
(SM), including the Extended Gauge Model (EGM) [1],
Extra Dimensions [2–6], and Technicolor models [7–9].
This paper describes a search for resonant WW produc-
tion in the WW → ℓνℓ′ν′ (ℓ, ℓ′ = e or µ) decay channel
using a data sample corresponding to an integrated lu-
minosity of 4.7 fb−1, collected by the ATLAS detector
during 2011 at a center-of-mass energy of 7 TeV. A spin-
2 Randall-Sundrum (RS) graviton model [2] and one of
its extensions, the bulk RS graviton model [10], are used
as benchmarks to interpret the analysis result.

The original RS model (RS1) was proposed to solve the
hierarchy problem. It postulates a warped 5-dimensional
universe, where the SM particles are localized on the TeV
brane and the graviton is located on the Planck brane.
In this model gravitons can propagate in the extra di-
mension, leading to a Kaluza-Klein tower of states which
can be detected as massive spin-2 resonances that cou-
ple to all SM particles. The resonance with the lowest
mass is known as the RS graviton G∗. The model has
two parameters: the graviton mass mG∗ , and the dimen-
sionless coupling κ/M̃pl, where κ is the curvature of the

warped fifth dimension and M̃pl = Mpl/
√
8π is the re-

duced Planck mass.

The RS1 model introduces higher-dimensional opera-
tors that give excessively large contributions to flavour
changing neutral current (FCNC) processes and to ob-
servables related to SM electroweak precision tests. An
extension of the RS1 model, the bulk RS model, has
been proposed to address this issue. In this model, the
SM fields are also allowed to propagate in the extra di-
mension: the first and second generation fermions are
chosen to be localized near the Planck brane, while the
top-quark and the Higgs boson are localized near the
TeV brane to account for the large top-quark Yukawa
coupling. In this scenario, FCNCs and contributions
to electroweak observables from higher-dimensional op-

erators are suppressed, the graviton (here denoted by
G∗

bulk) production and decay via light fermion channels is
highly suppressed, the probability for the graviton to de-
cay into photons is negligible, and the coupling to heavy
particles, such as top-quark, W , Z and Higgs bosons is
strongly enhanced. In this model the branching ratio of
G∗

bulk →WW is about 15%.

Direct searches for a heavy WW resonance have
been performed by the CDF and D0 collaborations at
the Tevatron. The D0 collaboration explored dibo-
son resonant production using the ℓνℓ′ν′ and ℓνjj fi-
nal states [11]; these searches excluded an RS graviton
with a mass between 300 GeV and 754 GeV, assum-
ing κ/M̃pl = 0.1. The CDF collaboration also searched
for resonant WW production in the eνjj final state, re-
sulting in a lower limit of 607 GeV on the mass of an
RS graviton [12], assuming the same coupling strength
κ/M̃pl = 0.1. No previous work on searches for G∗

bulk

has been published.

The ATLAS detector [13] is a multi-purpose parti-
cle physics detector with forward-backward symmetric
cylindrical geometry [14]. The inner tracking detector
(ID) covers the region |η| < 2.5, and consists of a silicon
pixel detector, a silicon microstrip detector, and a straw
tube tracker with transition radiation detection capabil-
ity. The ID is surrounded by a thin superconducting
solenoid providing a 2 T axial magnetic field. A high-
granularity lead/liquid-argon (LAr) sampling calorime-
ter measures the energy and the position of electromag-
netic showers with |η| < 3.2. LAr sampling calorimeters
are also used to measure hadronic showers in the end-
cap (1.5 < |η| < 3.2) and forward (3.1 < |η| < 4.9)
regions, while an iron/scintillator tile calorimeter mea-
sures hadronic showers in the central region (|η| < 1.7).
The muon spectrometer (MS) surrounds the calorime-
ters and consists of three large superconducting air-core
toroids, each with eight coils, a system of precision track-
ing chambers (|η| < 2.7), and fast tracking chambers for
triggering. A three-level trigger system selects events to
be recorded for offline analysis.
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The data used in this analysis were recorded in 2011
at a centre-of-mass energy of 7 TeV, selected by a single-
lepton (e or µ) trigger, with a threshold applied to the
electron transverse energy, ET, and to the muon trans-
verse momentum, pT. The single-muon trigger required a
muon pT > 18 GeV, while for the single-electron trigger
the threshold was raised from 20 GeV to 22 GeV for later
data. The trigger object quality requirements were tight-
ened progressively throughout the data-taking period to
cope with the increasing instantaneous luminosity. After
the application of data-quality requirements, the data set
corresponds to a total integrated luminosity of 4.7 fb−1

with an uncertainty of 3.9% [15, 16].

The search for resonant WW production is performed
in the fully leptonic decay channel. Events are required
to contain two oppositely-charged leptons (either elec-
trons or muons) and large missing transverse momentum
Emiss

T due to the presence of neutrinos in the final state.
Henceforth this final state is denoted by ℓℓ′ + Emiss

T .

Events originating from pp collisions are selected by re-
quiring a reconstructed primary interaction vertex with
at least three tracks with pT > 0.4 GeV. Electron can-
didates are selected from clustered energy deposits in
the electromagnetic calorimeter with ET > 25 GeV and
within the ID fiducial region |η| < 2.47, excluding the
transition region between barrel and endcap calorimeters
1.37 < |η| < 1.52. A set of electron identification criteria
based on the calorimeter shower shape, track quality and
track-matching with the calorimeter cluster, referred to
as tight [17], is applied. Muon candidates must be recon-
structed in both the ID and the MS, and have pT > 25
GeV and |η| < 2.4. A minimum number of silicon strip
and pixel hits associated to the ID muon track is also
required. To ensure good reconstruction quality even for
very high-pT muons, the charge-to-momentum ratio of
the muon tracks reconstructed in the ID and MS have
to be compatible within five standard deviations. Both
electron and muon candidates are required to be isolated:
the transverse energy deposited in the calorimeter in a
∆R =

√

(∆η)2 + (∆φ)2 = 0.3 cone around the lepton
track, excluding the energy associated to the lepton itself,
must be less than 0.14 times the ET (pT) of the electron
(muon); and the scalar sum of the transverse momen-
tum of all tracks with pT > 1 GeV reconstructed within
∆R = 0.3 around the lepton track, must be less than 0.13
(0.15) times the ET (pT) of the electron (muon). Correc-
tions are applied to account for electron energy leakage
and energy deposition inside the isolation cone due to
additional pp collisions occurring in the same or neigh-
bouring bunch crossings. To ensure the leptons originate
from the primary interaction vertex each candidate’s lon-
gitudinal impact parameter is required to be less than 1
mm, and the transverse impact parameter divided by its
resolution is required to be less than ten for electrons and
less than three for muons. Any electron reconstructed in
a ∆R = 0.1 cone around a muon track is discarded.

Jets tagged as originating from a b-quark are used in
this analysis to suppress the top background. Jets are
reconstructed from noise-suppressed three-dimensional
topological clusters of calorimeter cells [18] using the
anti-kt algorithm [19] with radius parameter R = 0.4.
Topological clustering extends up to |η| < 4.9, and clus-
ters are seeded by calorimeter cell deposits exceeding
the cell noise level by at least four standard deviations.
Neighbouring cells exceeding the cell noise level by at
least two standard deviations are then added to the clus-
ters. At least 75% of the scalar sum of the pT of all
the tracks associated to each jet must belong to tracks
associated to the same primary vertex.
Jet energies are calibrated using ET- and η-dependent

correction factors based on Monte Carlo (MC) simula-
tion, and validated by collision data studies [20]. Jets
are identified as originating from b-quarks using an al-
gorithm that combines information about the impact pa-
rameter significance of tracks in the jet with the topology
of semi-leptonic b- and c-hadron decays [21]. The chosen
operating point has an efficiency of 85% for tagging b-jets
in a MC sample of tt̄ events, and a mis-tag rate of less
than 5% for jets from light quarks, c-quarks and gluons.
A scale factor is applied to the b-tagging efficiency and to
the light- and c- to b-quark jets mis-tag rate of the MC
simulation to reproduce the ones measured in the data.
The fiducial kinematic region for well-reconstructed b-
jets is pT > 20 GeV and |η| < 2.5. In order to remove
electrons reconstructed as jets, b-jet candidates that lie
within a ∆R = 0.3 cone around an electron track are
discarded.

The Emiss
T is determined by the energy collected by the

electromagnetic and hadronic calorimeters, and by muon
tracks reconstructed in the MS and the ID [22].

CandidateWW events are required to have exactly two
oppositely-charged leptons with dilepton invariant mass
greater than 106 GeV to reduce the background contam-
ination from Z boson production. Three different final
states are considered based on the lepton flavour, namely
ee, µµ, and eµ. To cope with different background com-
positions, a different requirement on the Emiss

T is applied
to each final state, which is Emiss

T > 30, 60 and 65 GeV
for eµ, ee and µµ, respectively. To reject top-quark back-
grounds, events with any reconstructed b-jets are dis-
carded.

The SM processes that can mimic the ℓℓ′ + Emiss
T sig-

nature are: electroweak diboson pair production, namely
WW , which is an irreducible background,WZ/ZZ when
only two leptons are reconstructed in the final state, and
Wγ when the photon is reconstructed as a lepton; top-
pair and single-top production, when the b-jets in the
final state are not identified; W/Z production in associ-
ation with jets, when either one jet is reconstructed as
a lepton as for W+jets events, or fake Emiss

T is gener-
ated from the mismeasurement of the pT of the leptons
or jets; and QCD multi-jet production, when two jets are
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reconstructed as leptons.

The expected background contributions from SM di-
boson, single-top and tt̄ production are estimated us-
ing the MC simulation [23]. MC samples are generated
at

√
s = 7 TeV using a geant4 [24] simulation of the

ATLAS detector. To improve the agreement between
data and simulation, selection efficiencies are measured
in both data and simulation, and correction factors are
applied to the simulation. Furthermore, the simulation
is tuned to reproduce the muon momentum scale and
the muon momentum and electron energy resolutions ob-
served in data. The MC predictions are normalized to the
data sample integrated luminosity, except for W/Z+jets
processes, whose contributions are estimated from data.
WW and tt̄ production are simulated using the next-to-
leading-order (NLO) generator mc@nlo 3.4 [25], inter-
faced to herwig 6.510 [26] for hadronization and parton
showering. The gg2ww [27] program is used to simu-
late at next-to-next-to-leading order (NNLO) the WW
production via gluon fusion, which is not implemented
in mc@nlo; herwig 6.510 and alpgen 4 [28] are used
to simulate at leading order (LO) the WZ/ZZ and Wγ
processes respectively, and NLO corrections computed
using mcfm [29] are then applied; W/Z+jets processes
are simulated at LO using alpgen 4 and NNLO correc-
tions computed with fewz 2.0 [30] are applied; single-top
production is simulated at LO using acermc [31].

After event selection, top-quark pair production is one
of the dominant backgrounds. In order to ensure that the
MC simulation correctly models the production cross sec-
tion and kinematics of top-quark events, a background
dominated control region (denoted by “top control re-
gion”) is defined using the same selection as for the signal
region, except requiring two reconstructed b-jets, instead
of zero b-jets. This region is kinematically close to the sig-
nal region, and completely dominated by top-quark pair
production. The number of observed events in the top
control region in data is 322 for ee, 370 for µµ and 1303
for eµ channels, to be compared with the MC prediction
of 306±97, 400±120 and 1210±300 events for the three
channels, respectively. Good agreement between data
and MC simulation is observed for the overall normal-
ization and the shapes of various kinematic distributions
for events in this control region, within the statistical and
systematic uncertainties, which are described below.

The Z+jets background is one of the dominant back-
grounds in the ee and µµ channels, and it is estimated
using the data-driven method described below, while its
contribution in the eµ channel is found to be small and
estimated using the MC simulation. This background
is mainly due to mismeasurements of lepton or jet trans-
verse momenta that result in large Emiss

T in the event. Its
contribution is suppressed by the high dilepton invariant
mass and Emiss

T requirements. A control region domi-
nated by Z+jets production (denoted by “Z+jets control
region”) is defined by applying the same set of selection

cuts as for the signal region, but reversing the dilepton
invariant mass cut to 60 < mℓℓ < 106 GeV. Since the
shape of the mℓℓ distribution in data and MC simulation
is in agreement over the full range 60 < mℓℓ < 1000 GeV,
the ratio R of Z+jets events in the signal region to those
in the control region is estimated using the MC simula-
tion. The number of data events observed in the Z+jets
control region, after having subtracted the non-Z+jets
events contribution using MC expectations, is scaled by
R to estimate the Z+jets background contribution in the
signal region. The ratio R from Z+jets events generated
with alpgen, is found to be 0.040+0.005

−0.006 in the ee chan-

nel and 0.046+0.019
−0.015 in the µµ channel. The non-Z+jets

events contribution in the Z+jets control region is 12%
in the ee channel and 16% in the µµ channel.
The W+jets process contributes to the final selected

sample when one or more hadrons in a jet decay to, or are
misidentified as, a charged lepton. Since the probability
for a jet to be identified as a lepton may not be well mod-
elled in the MC simulation, a data-driven method is used
to estimate this contribution. A data control sample is se-
lected by requiring one lepton which passes all the quality
criteria in the lepton selection described above and a sec-
ond lepton-like object. The muon-like objects are those
reconstructed as muons but failing the isolation require-
ment. The electron-like objects are those reconstructed
as loose electrons [17] but failing both the isolation and
the tight quality requirements. These lepton-like objects
are most likely jets reconstructed as leptons. To obtain
the expected number of W+jets events contaminating
the signal region, the number of events in this W+jets
dominated control sample is then scaled by a pass-to-fail
ratio f , defined as the number of lepton-like objects pass-
ing the full lepton selection requirements divided by the
number that fail. The non-W+jets events in the con-
trol region are subtracted using MC expectations. The
factor f is measured from data for electrons and muons
separately, using two control samples dominated by di-
jet events. The di-jet samples are selected by tagging
events with one jet and one back-to-back lepton-like ob-
ject without any isolation requirement (and no tight re-
quirement for the electrons) after suppressing the lepton
contribution from W/Z bosons. The ratio f is measured
as a function of the jet pT, and its value is found to be
between 0.3 and 1.0 for electrons, and between 0.02 and
0.15 for muons.
The background contribution from QCD di-jet events

in the signal region is estimated in a similar way to the
W+jets contribution, but in this case the control sample
is selected by requiring two lepton-like jets, and the ratio
f is applied to both of them. This background contribu-
tion is found to be negligible.
The simulation of the RS G∗ signal is based on the LO

matrix element implemented in pythia [32] 6.421 event
generator, with the modified LO [33] parton distribution
function (PDF) set MRST2007LO∗ [34]. The coupling
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κ/M̄pl = 0.1 is assumed. A separate MC sample is gen-
erated for each of seven graviton masses mG∗ = 200, 350,
500, 750, 1000, 1250 and 1500 GeV. The production cross
section times branching ratio σ(pp → G∗) × BR(G∗ →
WW → ℓνℓ′ν′) (ℓ, ℓ′ = e, µ or τ) decreases from 108
pb to 1.8 fb when the simulated mG∗ increases from
200 GeV to 1500 GeV. The G∗

bulk signal is simulated
at LO using calchep [35] v3.2 using the CTEQ6L1
PDF set [36], interfaced to pythia for parton shower-
ing and hadronization. In order to compensate for the
smaller production cross section with respect to the orig-
inal RS model, a larger coupling κ/M̄pl = 1.0 is as-
sumed when generating these samples. Thirteen signal
samples with G∗

bulk masses between 300 GeV and 1500
GeV in 100 GeV mass steps are generated, with the pre-
dicted σ(pp → G∗

bulk) × BR(G∗

bulk → WW → ℓνℓ′ν′)
(ℓ, ℓ′ = e, µ or τ) decreasing from 8.6 pb to 0.22 fb. The
ATLAS fast simulation [37] is used to simulate the detec-
tor response for both G∗ and G∗

bulk samples. Events with
W bosons decaying to τ leptons are also considered as
part of the signal if electrons or muons are present in the
final state. The overall acceptance times trigger, recon-
struction and selection efficiencies (A× ǫ), defined as the
number of signal events passing the full event selection di-
vided by the number of generated events, increases from
3.0% at mG∗ = 200 GeV to 40.9% at mG∗ = 1500 GeV
for G∗. The corresponding A× ǫ for G∗

bulk increases from
16.8% at mG∗

bulk
= 300 GeV to 50.8% at mG∗

bulk
= 1500

GeV. The difference in A× ǫ between the two models is
due to different production mechanisms and the treat-
ment of the W boson polarization in its decay, which
is properly taken into account by calchep but not by
pythia. pythia is chosen to simulate the RS G∗ sam-
ples, even though it does not properly account for the
W boson polarization, in order to allow direct compar-
ison with previous search results, which used the same
pythia implementation to simulate this process.

Table I shows the number of events selected in data and
the estimated background contributions with combined
statistical and systematic uncertainties. The expected
numbers of events for an RS G∗ with a mass of 750 GeV
and 1000 GeV, and for a G∗

bulk with a mass of 600 GeV
and 1000 GeV are also reported. A total of 1384 ℓℓ′ +
Emiss

T candidates are observed in data, while the expected
number of events from SM processes is 1280± 13(stat)±
200(syst).

Several sources of systematic uncertainty on the sig-
nal and background estimates are considered. The first
is related to the correction scale factors applied to MC
samples in order to account for the difference in the per-
formance of object reconstruction, identification, isola-
tion and trigger efficiency between data and MC simu-
lation. The uncertainty on the single-lepton trigger ef-
ficiency scale factor is 1%, while the electron and muon
reconstruction and identification efficiency scale factor
uncertainties are less than 1.0% and 0.4% respectively,

evaluated with tag-and-probe methods using Z → ℓℓ,
W → ℓν and J/ψ → ℓℓ events. A slight degradation of
the muon reconstruction efficiency is observed at high pT
in simulated MC samples. An uncertainty of the order
1% for muons with pT > 1 TeV, corresponding to the
magnitude of this effect, is included. The lepton isolation
efficiency scale factor is determined with an uncertainty
of 1% and 0.3% for electrons and muons, respectively.
The MC simulation is also corrected to reproduce the lep-
ton energy scale and resolution, with residual uncertain-
ties < 1% and < 0.1% on the energy scale, and < 0.6%
and < 5% on the resolution, for electrons and muons,
respectively. Uncertainties on the jet energy scale and
resolution are found to be typically 3% at high Emiss

T , rel-
evant for this analysis, varying between 2-9% [18]. The
uncertainties on the lepton and jet energy scale and res-
olution are propagated to the Emiss

T , which also receives
contributions from energy deposits due to additional pp
collisions in the same or neighbouring bunch crossings,
and from energy deposits not associated to any recon-
structed object. The total systematic uncertainty on the
Emiss

T energy scale is 3.5% [38]. The uncertainties on the
b-tagging efficiency for heavy-quark jets and mis-tag rate
for light- and c-quark jets are measured in data, and are
6−15% and up to 21%, respectively [21]. The effect of
all these sources of detector uncertainty on the shape of
the distribution used to set the final cross-section limit
is taken into account.

The uncertainty on the normalization of the back-
grounds estimated using MC simulation includes the in-
tegrated luminosity uncertainty of 3.9% [15, 16], and the
theoretical uncertainty on the inclusive cross sections of
SM processes, namely 10% for tt̄ [39], 9% for single-
top [40, 41], 5% for W/Z+jets, 5% for WW , 7% for WZ
and 5% for ZZ [29], which arises from the choice of PDFs,
from factorization and renormalization scale dependence,
and from strong coupling constant (αs) variations.

The uncertainty on the estimate of the W+jets back-
ground includes the uncertainty on the non-W+jets
events subtraction in the control region, and the un-
certainty on the ratio f . The uncertainty on the non-
W+jets background events is 10%. The uncertainty on
f varies between 10% and 30% depending on lepton pT,
and mainly comes from differences in the kinematics and
flavour composition of the di-jet events used to determine
the ratio f with respect to the W+jets events to which
f is applied.

The uncertainty on the data-driven normalization of
the Z+jets background in the ee and µµ due to the
non-Z+jets events subtraction in the control region is
negligible, while the main contribution comes from the
uncertainty on the factor R. This is evaluated account-
ing for possible uncertainties on the dilepton mass shape
due to initial and final state radiation modeling, and on
the Emiss

T shape due to parton shower and hadronization
modeling, both determined using pythia and alpgen
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Z+jets simulations. The effect of lepton scale and reso-
lution, and Emiss

T resolution are also taken into account.
Further systematic uncertainties on the tt̄ background

are estimated, including the difference between event
generators, parton shower models and initial- and final-
state radiation models. The dominant contribution (up
to 40%) is due to the parton shower model, arising from
the b-jet requirement. The systematic uncertainties on
the modelling of the kinematics of the SM WW process
have been evaluated by comparing different MC genera-
tors; the local differences in the distributions are found
to be smaller than 10%.

The effect on the signal acceptance due to the choice
of the PDF set used to simulate the signal samples is
also considered. It is estimated to be 1% by comparing
predictions of the nominal PDF set MRST2007 LO∗ with
those of two NNPDF LO∗ 2.1 [42] sets with values of
αs = 0.119, 0.130, and that of the CT09MCS [43] PDF
set, using the standard LHAPDF framework [44].
No significant excess in the overall number of

selected WW events is observed in data. The trans-
verse mass of the WW candidates, defined as mWW

T =
√

(
2
∑

i=1

pℓiT + Emiss
T )2 − (

2
∑

i=1

pℓix + Emiss
x )2 − (

2
∑

i=1

pℓiy + Emiss
y )2,

is examined for any resonant structure, where pℓiT(x,y) is

the pT (px, py) of the i-th lepton, and Emiss
x(y) is the x(y)

component of the Emiss
T . The mWW

T distribution of the
WW system for the three analysed channels is presented
in Fig. 1, for data and background expectations together
with the expected signal contributions from RS graviton
and bulk RS graviton models. Due to the small numbers
of MC events, a convolution of a Gaussian with an
exponential function is used to fit the mWW

T distribution
of each SM background. The functional form is then
used to predict the background contribution in the
region mWW

T > 300 GeV, and the uncertainty on the
fit parameters is treated as an additional systematic
uncertainty on the final mWW

T shape.
ThemWW

T distribution is used to build a log-likelihood
ratio (LLR) test statistic [45] to assess the compatibility
of the data with the presence of a signal in addition to
the background in a modified frequentist approach [46].
Confidence levels (CL) for the signal plus background hy-
pothesis, CLs+b, and background-only hypothesis, CLb,
are computed by integrating the LLR distributions ob-
tained from simulated pseudo-experiments using Poisson
statistics, and their ratio CLs is used to set the limits.
Systematic uncertainties on the expected numbers of sig-
nal and background events are treated as nuisance pa-
rameters. The three analysed channels are treated sepa-
rately and then combined by summing up the LLR val-
ues over all bins. All correlations are maintained among
channels and between signal and background. Due to the
large residual Z+jets background contamination in the
µµ channel, caused by the worse muon resolution at high

pT, this channel has a poorer sensitivity than the other
two channels.
No excess is observed in data and the p-value of the

background-only hypothesis, defined as the probability
for the background to produce an excess of equal or larger
size than the observed one, is found to be greater than
0.08 in all mWW

T regions. Upper limits are therefore de-
rived on the production cross section times branching ra-
tio (σ×BR) for RS gravitons and bulk RS gravitons de-
caying to WW . The observed (expected) 95% CL upper
limits on σ(pp→ G∗/G∗

bulk)×BR(G∗/G∗

bulk →WW ) as
a function of mG∗ and mG∗

bulk
are shown in Fig. 2 and

reported in Tables II and III, corresponding to an ob-
served (expected) 95% CL lower limit of 1.23 (1.13) TeV
and 0.84 (0.74) TeV on the masses of the G∗ and G∗

bulk,
respectively. Tables II and III also report the A×ǫ values
for each signal sample.
In conclusion, a generic search for resonant production

of a pair of W bosons in two opposite sign leptons and
large Emiss

T final state has been performed using 4.7 fb−1

of data collected with the ATLAS detector in pp colli-
sions at

√
s = 7 TeV at the LHC. No significant excess

of events is observed and upper limits on the production
cross section times branching ratio are set for two bench-
mark models: RS G∗ and bulk RS G∗. The observed
(expected) 95% CL lower limit on the masses of the two
particles is found to be 1.23 (1.13) TeV for G∗ and 0.84
(0.74) TeV for G∗

bulk, assuming the coupling κ/M̄pl = 0.1
and κ/M̄pl = 1.0, respectively.
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Process ee µµ eµ
WW 64.6 ± 6.1 82.3 ± 6.8 433 ± 30
WZ 7.3 ± 0.9 7.7 ± 0.9 28.9 ± 2.7
ZZ 2.7 ± 0.4 3.2 ± 0.4 1.5 ± 0.3
Wγ 1.6 ± 1.0 negl. 7.6 ± 2.4
Single top 12.8 ± 2.4 16.7 ± 2.7 63 ± 12
tt̄ 59 ± 31 76 ± 38 230 ± 120
W+jets 7.5 ± 3.0 4.7 ± 1.9 35.1 ± 7.5
Z+jets 55 ± 10 62 ± 25 22.2 ± 3.3
Sum of all backgrounds 211 ± 33 253 ± 46 820 ± 120
Data 258 249 877

RS G∗ (m = 750 GeV) 28.9 ± 1.7 29.3 ± 1.7 73.0 ± 3.9
RS G∗ (m = 1000 GeV) 6.4 ± 0.4 6.4 ± 0.4 15.3 ± 0.8
Bulk RS G∗ (m = 600 GeV) 26.3 ± 1.5 25.7 ± 1.5 73.6 ± 3.9
Bulk RS G∗ (m = 1000 GeV) 1.4 ± 0.1 1.2 ± 0.1 3.2 ± 0.1

TABLE I: Estimated background yields, observed number of data events, and predicted signal yield for different graviton mass
points for the three analysed channels. The quoted uncertainties are the combined statistical and systematic uncertainties.
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FIG. 1: Observed and predicted mWW

T distribution after event selection in the (a) µµ, (b) ee and (c) eµ channels. For
mWW

T > 300 GeV, the predicted backgrounds are obtained from fits to the MC samples. Predictions for an RS graviton with
a mass of 1000 GeV and a bulk RS graviton with a mass of 600 GeV are also shown. The shaded area represents the total
statistical and systematic uncertainty on the background prediction.
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FIG. 2: The observed and expected 95% CL upper limits on σ ×BR for (a) the RS graviton σ(pp → G∗)×BR(G∗ → WW )
and (b) the bulk RS graviton σ(pp → G∗

bulk) × BR(G∗

bulk → WW ), with the theoretical predictions at LO (dotted line). The
inner and outer bands represent respectively the 1σ and 2σ uncertainty on the expected limit.

mG∗ [GeV] A× ǫ [%] Expected [pb] Observed [pb]
200 3.0 ± 0.1 17.6 20.3
350 16.8 ± 0.5 4.68 5.51
500 24.4 ± 0.7 1.30 1.46
750 30.7 ± 0.9 0.315 0.264
1000 36.3 ± 1.0 0.130 0.084
1250 39.0 ± 1.1 0.085 0.062
1500 40.9 ± 1.1 0.079 0.061

TABLE II: Expected and observed 95% CL upper limits
on the cross section times branching ratio σ(pp → G∗ ) ×
Br(G∗ → WW ) as a function of the RS graviton mass. For
each mass point, A × ǫ is also reported with the combined
statistical and systematic uncertainty.

mG∗

bulk
[GeV] A× ǫ [%] Expected [pb] Observed [pb]

300 16.8 ± 0.5 4.73 5.48
400 26.5 ± 0.8 1.81 2.13
500 33.6 ± 1.0 0.814 0.910
600 39.0 ± 1.1 0.398 0.405
700 42.3 ± 1.2 0.212 0.189
800 44.2 ± 1.2 0.134 0.102
900 46.1 ± 1.3 0.083 0.056
1000 47.3 ± 1.3 0.060 0.040
1100 48.9 ± 1.4 0.044 0.029
1200 49.2 ± 1.4 0.037 0.025
1300 50.1 ± 1.4 0.030 0.022
1400 50.4 ± 1.4 0.028 0.019
1500 50.8 ± 1.4 0.027 0.020

TABLE III: Expected and observed 95% CL upper limits on
the cross section times branching ratio σ(pp → G∗

bulk ) ×
Br(G∗

bulk → WW ) as a function of the bulk RS graviton
mass. For each mass point, A × ǫ is also reported with the
combined statistical and systematic uncertainty.
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I.P. Duerdoth82, L. Duflot115, M-A. Dufour85,
L. Duguid76, M. Dunford30, H. Duran Yildiz4a,
R. Duxfield139, M. Dwuznik38, F. Dydak30, M. Düren52,
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G. Gonzalez Parra12, M.L. Gonzalez Silva27,
S. Gonzalez-Sevilla49, J.J. Goodson148, L. Goossens30,
P.A. Gorbounov95, H.A. Gordon25, I. Gorelov103,
G. Gorfine175, B. Gorini30, E. Gorini72a,72b,
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N. Kerschen30, B.P. Kerševan74, S. Kersten175,
K. Kessoku155, J. Keung158, F. Khalil-zada11,
H. Khandanyan146a,146b, A. Khanov112,
D. Kharchenko64, A. Khodinov96, A. Khomich58a,
T.J. Khoo28, G. Khoriauli21, A. Khoroshilov175,
V. Khovanskiy95, E. Khramov64, J. Khubua51b,
H. Kim146a,146b, S.H. Kim160, N. Kimura171, O. Kind16,
B.T. King73, M. King66, R.S.B. King118, J. Kirk129,
A.E. Kiryunin99, T. Kishimoto66, D. Kisielewska38,
T. Kitamura66, T. Kittelmann123, K. Kiuchi160,
E. Kladiva144b, M. Klein73, U. Klein73,
K. Kleinknecht81, M. Klemetti85, A. Klier172,
P. Klimek146a,146b, A. Klimentov25, R. Klingenberg43,
J.A. Klinger82, E.B. Klinkby36, T. Klioutchnikova30,
P.F. Klok104, S. Klous105, E.-E. Kluge58a, T. Kluge73,
P. Kluit105, S. Kluth99, N.S. Knecht158, E. Kneringer61,
E.B.F.G. Knoops83, A. Knue54, B.R. Ko45,
T. Kobayashi155, M. Kobel44, M. Kocian143,
P. Kodys126, K. Köneke30, A.C. König104, S. Koenig81,
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M. Moreno Llácer167, P. Morettini50a,
M. Morgenstern44, M. Morii57, A.K. Morley30,
G. Mornacchi30, J.D. Morris75, L. Morvaj101,
H.G. Moser99, M. Mosidze51b, J. Moss109, R. Mount143,
E. Mountricha10,z, S.V. Mouraviev94,∗,
E.J.W. Moyse84, F. Mueller58a, J. Mueller123,
K. Mueller21, T.A. Müller98, T. Mueller81,
D. Muenstermann30, Y. Munwes153, W.J. Murray129,
I. Mussche105, E. Musto102a,102b, A.G. Myagkov128,
M. Myska125, J. Nadal12, K. Nagai160, R. Nagai157,
K. Nagano65, A. Nagarkar109, Y. Nagasaka59,
M. Nagel99, A.M. Nairz30, Y. Nakahama30,
K. Nakamura155, T. Nakamura155, I. Nakano110,
G. Nanava21, A. Napier161, R. Narayan58b, M. Nash77,c,
T. Nattermann21, T. Naumann42, G. Navarro162,
H.A. Neal87, P.Yu. Nechaeva94, T.J. Neep82,
A. Negri119a,119b, G. Negri30, M. Negrini20a,
S. Nektarijevic49, A. Nelson163, T.K. Nelson143,
S. Nemecek125, P. Nemethy108, A.A. Nepomuceno24a,
M. Nessi30,aa, M.S. Neubauer165, M. Neumann175,
A. Neusiedl81, R.M. Neves108, P. Nevski25,
P.R. Newman18, V. Nguyen Thi Hong136,
R.B. Nickerson118, R. Nicolaidou136, B. Nicquevert30,
F. Niedercorn115, J. Nielsen137, N. Nikiforou35,
A. Nikiforov16, V. Nikolaenko128, I. Nikolic-Audit78,
K. Nikolics49, K. Nikolopoulos18, H. Nilsen48,
P. Nilsson8, Y. Ninomiya155, A. Nisati132a, R. Nisius99,
T. Nobe157, L. Nodulman6, M. Nomachi116,
I. Nomidis154, S. Norberg111, M. Nordberg30,
P.R. Norton129, J. Novakova126, M. Nozaki65,
L. Nozka113, I.M. Nugent159a, A.-E. Nuncio-Quiroz21,
G. Nunes Hanninger86, T. Nunnemann98, E. Nurse77,
B.J. O’Brien46, S.W. O’Neale18,∗, D.C. O’Neil142,
V. O’Shea53, L.B. Oakes98, F.G. Oakham29,d,
H. Oberlack99, J. Ocariz78, A. Ochi66, S. Oda69,
S. Odaka65, J. Odier83, H. Ogren60, A. Oh82, S.H. Oh45,
C.C. Ohm30, T. Ohshima101, H. Okawa25,
Y. Okumura31, T. Okuyama155, A. Olariu26a,
A.G. Olchevski64, S.A. Olivares Pino32a,
M. Oliveira124a,h, D. Oliveira Damazio25,
E. Oliver Garcia167, D. Olivito120, A. Olszewski39,
J. Olszowska39, A. Onofre124a,ab, P.U.E. Onyisi31,
C.J. Oram159a, M.J. Oreglia31, Y. Oren153,
D. Orestano134a,134b, N. Orlando72a,72b, I. Orlov107,

C. Oropeza Barrera53, R.S. Orr158, B. Osculati50a,50b,
R. Ospanov120, C. Osuna12, G. Otero y Garzon27,
J.P. Ottersbach105, M. Ouchrif135d, E.A. Ouellette169,
F. Ould-Saada117, A. Ouraou136, Q. Ouyang33a,
A. Ovcharova15, M. Owen82, S. Owen139,
V.E. Ozcan19a, N. Ozturk8, A. Pacheco Pages12,
C. Padilla Aranda12, S. Pagan Griso15, E. Paganis139,
C. Pahl99, F. Paige25, P. Pais84, K. Pajchel117,
G. Palacino159b, C.P. Paleari7, S. Palestini30,
D. Pallin34, A. Palma124a, J.D. Palmer18, Y.B. Pan173,
E. Panagiotopoulou10, P. Pani105, N. Panikashvili87,
S. Panitkin25, D. Pantea26a, A. Papadelis146a,
Th.D. Papadopoulou10, A. Paramonov6,
D. Paredes Hernandez34, W. Park25,ac, M.A. Parker28,
F. Parodi50a,50b, J.A. Parsons35, U. Parzefall48,
S. Pashapour54, E. Pasqualucci132a, S. Passaggio50a,
A. Passeri134a, F. Pastore134a,134b,∗, Fr. Pastore76,
G. Pásztor49,ad, S. Pataraia175, N. Patel150,
J.R. Pater82, S. Patricelli102a,102b, T. Pauly30,
M. Pecsy144a, S. Pedraza Lopez167,
M.I. Pedraza Morales173, S.V. Peleganchuk107,
D. Pelikan166, H. Peng33b, B. Penning31, A. Penson35,
J. Penwell60, M. Perantoni24a, K. Perez35,ae,
T. Perez Cavalcanti42, E. Perez Codina159a,
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Z. Zinonos122a,122b, S. Zenz15, D. Zerwas115,
G. Zevi della Porta57, Z. Zhan33d, D. Zhang33b,ak,
H. Zhang88, J. Zhang6, X. Zhang33d, Z. Zhang115,
L. Zhao108, T. Zhao138, Z. Zhao33b, A. Zhemchugov64,
J. Zhong118, B. Zhou87, N. Zhou163, Y. Zhou151,
C.G. Zhu33d, H. Zhu42, J. Zhu87, Y. Zhu33b,
X. Zhuang98, V. Zhuravlov99, D. Zieminska60,
N.I. Zimin64, R. Zimmermann21, S. Zimmermann21,
S. Zimmermann48, M. Ziolkowski141, R. Zitoun5,
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Fisica, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn,
Germany
22 Department of Physics, Boston University, Boston
MA, United States of America
23 Department of Physics, Brandeis University,
Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro
COPPE/EE/IF, Rio de Janeiro; (b) Federal University
of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal
University of Sao Joao del Rei (UFSJ), Sao Joao del
Rei; (d) Instituto de Fisica, Universidade de Sao Paulo,
Sao Paulo, Brazil
25 Physics Department, Brookhaven National
Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear
Engineering, Bucharest; (b) University Politehnica
Bucharest, Bucharest; (c) West University in Timisoara,
Timisoara, Romania
27 Departamento de F́ısica, Universidad de Buenos
Aires, Buenos Aires, Argentina



18

28 Cavendish Laboratory, University of Cambridge,
Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa
ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago,
Chicago IL, United States of America
32 (a) Departamento de F́ısica, Pontificia Universidad
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CNRS/IN2P3, Paris, France
79 Fysiska institutionen, Lunds universitet, Lund,
Sweden
80 Departamento de Fisica Teorica C-15, Universidad
Autonoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz,
Germany
82 School of Physics and Astronomy, University of
Manchester, Manchester, United Kingdom
83 CPPM, Aix-Marseille Université and CNRS/IN2P3,
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113 Palacký University, RCPTM, Olomouc, Czech
Republic
114 Center for High Energy Physics, University of
Oregon, Eugene OR, United States of America
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Fisica, Università La Sapienza, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; (b)

Dipartimento di Fisica, Università di Roma Tor
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