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Abstract

A sample of 114± 11 B0
s → J/ψK−π+ signal events obtained with 0.37 fb−1 of pp

collisions at
√
s = 7 TeV collected by the LHCb experiment is used to measure the

branching fraction and polarization amplitudes of the B0
s → J/ψK∗0 decay, with

K∗0 → K−π+. The K−π+ mass spectrum of the candidates in the B0
s peak is dom-

inated by the K∗0 contribution. Subtracting the non-resonant K−π+ component,
the branching fraction of B0

s → J/ψK∗0 is
(
4.4+0.5
−0.4 ± 0.8

)
×10−5, where the first un-

certainty is statistical and the second is systematic. A fit to the angular distribution
of the decay products yields the K∗0 polarization fractions fL = 0.50± 0.08± 0.02
and f‖ = 0.19+0.10

−0.08 ± 0.02.
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D. Pinci22, S. Playfer47, M. Plo Casasus34, F. Polci8, G. Polok23, A. Poluektov45,31,
E. Polycarpo2, D. Popov10, B. Popovici26, C. Potterat33, A. Powell52, J. Prisciandaro36,
V. Pugatch41, A. Puig Navarro33, W. Qian53, J.H. Rademacker43, B. Rakotomiaramanana36,
M.S. Rangel2, I. Raniuk40, N. Rauschmayr35, G. Raven39, S. Redford52, M.M. Reid45,
A.C. dos Reis1, S. Ricciardi46, A. Richards50, K. Rinnert49, D.A. Roa Romero5, P. Robbe7,
E. Rodrigues48,51, F. Rodrigues2, P. Rodriguez Perez34, G.J. Rogers44, S. Roiser35,
V. Romanovsky32, A. Romero Vidal34, M. Rosello33,n, J. Rouvinet36, T. Ruf35, H. Ruiz33,
G. Sabatino21,k, J.J. Saborido Silva34, N. Sagidova27, P. Sail48, B. Saitta15,d, C. Salzmann37,
B. Sanmartin Sedes34, M. Sannino19,i, R. Santacesaria22, C. Santamarina Rios34,
R. Santinelli35, E. Santovetti21,k, M. Sapunov6, A. Sarti18,l, C. Satriano22,m, A. Satta21,
M. Savrie16,e, D. Savrina28, P. Schaack50, M. Schiller39, H. Schindler35, S. Schleich9,
M. Schlupp9, M. Schmelling10, B. Schmidt35, O. Schneider36, A. Schopper35, M.-H. Schune7,
R. Schwemmer35, B. Sciascia18, A. Sciubba18,l, M. Seco34, A. Semennikov28, K. Senderowska24,
I. Sepp50, N. Serra37, J. Serrano6, P. Seyfert11, M. Shapkin32, I. Shapoval40,35, P. Shatalov28,
Y. Shcheglov27, T. Shears49, L. Shekhtman31, O. Shevchenko40, V. Shevchenko28, A. Shires50,
R. Silva Coutinho45, T. Skwarnicki53, N.A. Smith49, E. Smith52,46, M. Smith51, K. Sobczak5,
F.J.P. Soler48, A. Solomin43, F. Soomro18,35, D. Souza43, B. Souza De Paula2, B. Spaan9,
A. Sparkes47, P. Spradlin48, F. Stagni35, S. Stahl11, O. Steinkamp37, S. Stoica26, S. Stone53,35,

iv



B. Storaci38, M. Straticiuc26, U. Straumann37, V.K. Subbiah35, S. Swientek9,
M. Szczekowski25, P. Szczypka36, T. Szumlak24, S. T’Jampens4, M. Teklishyn7,
E. Teodorescu26, F. Teubert35, C. Thomas52, E. Thomas35, J. van Tilburg11, V. Tisserand4,
M. Tobin37, S. Tolk39, S. Topp-Joergensen52, N. Torr52, E. Tournefier4,50, S. Tourneur36,
M.T. Tran36, A. Tsaregorodtsev6, N. Tuning38, M. Ubeda Garcia35, A. Ukleja25, U. Uwer11,
V. Vagnoni14, G. Valenti14, R. Vazquez Gomez33, P. Vazquez Regueiro34, S. Vecchi16,
J.J. Velthuis43, M. Veltri17,g, G. Veneziano36, M. Vesterinen35, B. Viaud7, I. Videau7,
D. Vieira2, X. Vilasis-Cardona33,n, J. Visniakov34, A. Vollhardt37, D. Volyanskyy10,
D. Voong43, A. Vorobyev27, V. Vorobyev31, C. Voß55, H. Voss10, R. Waldi55, R. Wallace12,
S. Wandernoth11, J. Wang53, D.R. Ward44, N.K. Watson42, A.D. Webber51, D. Websdale50,
M. Whitehead45, J. Wicht35, D. Wiedner11, L. Wiggers38, G. Wilkinson52, M.P. Williams45,46,
M. Williams50, F.F. Wilson46, J. Wishahi9, M. Witek23, W. Witzeling35, S.A. Wotton44,
S. Wright44, S. Wu3, K. Wyllie35, Y. Xie47, F. Xing52, Z. Xing53, Z. Yang3, R. Young47,
X. Yuan3, O. Yushchenko32, M. Zangoli14, M. Zavertyaev10,a, F. Zhang3, L. Zhang53,
W.C. Zhang12, Y. Zhang3, A. Zhelezov11, L. Zhong3, A. Zvyagin35.

1Centro Brasileiro de Pesquisas F́ısicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
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54Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2

55Institut für Physik, Universität Rostock, Rostock, Germany, associated to 11

aP.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
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Interpretations of measurements of time-dependent CP violation in B0
s → J/ψφ and

B0
s → J/ψf0(980) decays have thus far assumed the dominance of the colour-suppressed

tree-level process. However, there are contributions from higher order (penguin) processes
(see Fig. 1) that cannot be calculated reliably in QCD and could be large enough to
affect the measured asymmetries. It has been suggested that the penguin effects can be
determined by means of an analysis of the angular distribution of B0

s → J/ψK∗(892)0,
where the penguin diagram is not suppressed relative to the tree-level one, and SU(3)
flavour symmetry arguments can be used to determine the hadronic parameters entering
the B0

s → J/ψφ observables [1].
In this paper the K∗(892)0 meson will be written as K∗0, while for other K∗ resonances

the mass will be given in parentheses. Furthermore, mention of any specific mode implies
the use of the charge conjugated mode as well, and K−π+ pairs will be simply written
as Kπ. The decay B0

s → J/ψK∗0 has already been observed by the CDF experiment [2],
which reported B(B0

s → J/ψK∗0) = (8.3 ± 3.8) × 10−5. Under the assumption that
the light quark (s,d) is a spectator of the b quark decay, the branching fraction can be
approximated as

B(B0
s → J/ψK∗0) ∼ |Vcd|

2

|Vcs|2
× B(B0 → J/ψK∗0) = (6.5± 1.0)× 10−5, (1)

with |Vcd| = 0.230 ± 0.011, |Vcs| = 1.023 ± 0.036 [3], and B(B0 → J/ψK∗0) = (1.29 ±
0.05± 0.13)× 10−3 [4]. The measurement in Ref. [4], where the Kπ S-wave contribution
is subtracted, is used instead of the PDG average.

In this paper, 0.37 fb−1 of data taken in 2011 are used to determine B(B0
s → J/ψK∗0),

to study the angular properties of the decay products of the B0
s meson, and to measure

the resonant contributions to the Kπ spectrum in the region of the K∗0 meson. The
measurement of the branching fraction uses the decay B0 → J/ψK∗0 as a normalization
mode.

The LHCb detector [5] is a single-arm forward spectrometer covering the pseudo-
rapidity range 2 < η < 5. The detector includes a high precision tracking system con-
sisting of a silicon-strip vertex detector located around the interaction point, a large-area
silicon-strip detector located upstream of a dipole magnet with a bending power of about
4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed down-

W+

s s

d̄(s̄)

b̄ c̄

c

}
J/ψ

}
K∗0(φ)

ū, c̄, t̄

W+

s s

b̄

d̄(s̄)

c

c̄
}
J/ψ

}
K∗0(φ)

Figure 1: Tree and penguin decay topologies contributing to the decays B0
s → J/ψK∗0 and

B0
s → J/ψφ. The dashed line indicates a colour singlet exchange.
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stream. The combined tracking system has a momentum resolution ∆p/p that varies
from 0.4 % at 5 GeV/c to 0.6 % at 100 GeV/c. Two ring-imaging Cherenkov detectors
(RICH) are used to determine the identity of charged particles. The separation of pions
and kaons is such that, for efficiencies of ∼ 75% the rejection power is above 99%. Pho-
ton, electron and hadron candidates are identified by a calorimeter system consisting of
scintillating-pad and pre-shower detectors, an electromagnetic calorimeter and a hadronic
calorimeter. Muons are identified by alternating layers of iron and multiwire proportional
chambers.

The trigger consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage called High Level Trigger (HLT) that
applies a full event reconstruction. Events with muon final states are triggered using two
hardware trigger decisions: the single-muon decision (one muon candidate with transverse
momentum pT > 1.5 GeV/c), and the di-muon decision (two muon candidates with pT,1

and pT,2 such that
√
pT,1 pT,2 > 1.3 GeV/c). All tracks in the HLT are required to have

a pT > 0.5 GeV/c. The single muon trigger decision in the HLT selects events with at
least one muon track with an impact parameter IP > 0.1 mm with respect to the primary
vertex and pT > 1.0 GeV/c. The di-muon trigger decision, designed to select J/ψ mesons,
also requires a di-muon mass (Mµµ) 2970 < Mµµ < 3210 MeV/c2.

Simulated events are used to compute detection efficiencies and angular acceptances.
For this purpose, pp collisions are generated using Pythia 6.4 [6] with a specific LHCb
configuration [7]. Decays of hadronic particles are described by EvtGen [8] in which final
state radiation is generated using Photos [9]. The interaction of the generated particles
with the detector and its response are implemented using the Geant4 toolkit [10] as
described in Ref. [11].

The selection of B0
(s) → J/ψ

(–)

K∗0 decays first requires the reconstruction of a J/ψ →
µ+µ− candidate. The J/ψ vertex is required to be separated from any primary vertex
(PV) by a distance-of-flight significance greater than 13. Subsequently, the muons from
the J/ψ decay are combined with the K and π candidates to form a good vertex, where the
di-muon mass is constrained to the J/ψ mass. A pT > 0.5 GeV/c is required for each of the
four daughter tracks. Positive muon identification is required for the two tracks of the J/ψ
decay, and the kaons and pions are selected using the different hadron probabilities based
on combined information given by the RICH detectors. The candidate B0

(s) momentum
is required to be compatible with the flight direction as given by the vector connecting
the PV with the candidate vertex. An explicit veto to remove B+ → J/ψK+ events is
applied, as they otherwise would pollute the upper sideband of the B0

(s) mass spectrum.
Following this initial selection, several geometrical variables are combined into a single

discriminant geometrical likelihood variable (GL). This multivariate method is described
in Refs. [12,13]. The geometrical variables chosen to build the GL are: the B0

(s) candidate
minimum impact parameter with respect to any PV in the event, the decay time of the
B0

(s) candidate, the minimum impact parameter χ2 of the four daughter tracks with respect

to all PV in the event (defined as the difference between the χ2 of the PV built with and
without the considered track), the distance of closest approach between the J/ψ and K∗0

2



trajectories reconstructed from their decay products, and the pT of the B0
(s) candidate.

The GL was tuned using simulated B0 → J/ψK∗0 signal passing the selection criteria,
and background from data in the B0

(s) mass sidebands with a value for the kaon particle
identification variable in a range which does not overlap with the one used to select the
data sample for the final analysis.

The Kπ mass spectrum in the B0 → J/ψKπ channel is dominated by the K∗0 reso-
nance but contains a non-negligible S-wave contribution, originating from K∗0(1430)0 and
non-resonant Kπ pairs [14]. To determine B(B0

s → J/ψK∗0) it is therefore important to
measure the S-wave magnitude in both B0

(s) → J/ψKπ channels. The Kπ spectrum is
analyzed in terms of a non-resonant S-wave and several Kπ resonances parameterized us-
ing relativistic Breit-Wigner distributions with mass-dependent widths, following closely
[14]. The considered waves are: a non-resonant S-wave amplitude interfering with the
K∗0(1430)0 resonance, K∗0 for the P-wave and K∗2(1430)0 for the D-wave. F-wave and
G-wave components are found to be negligible in the B0 fit. In bins of the Kπ mass, a
fit is made to the B0

(s) candidate mass distribution to determine the yield. As shown in

Fig. 2, a fit is then made to the B0 and B0
s yields as a function of the Kπ mass without

any efficiency correction. The S and P-wave components dominate in the ±40 MeV/c2

window around the K∗0 mass, where the K∗0 contribution is above 90%. A more exact
determination of this contribution using this method would require Kπ mass-dependent
angular acceptance corrections. For the branching fraction calculation, the fraction of K∗0

candidates is determined from a different full angular and mass fit, which is described next.
The angular and mass analysis is based on an unbinned maximum likelihood fit which

handles simultaneously the mass (MJ/ψKπ) and the angular parameters of the B0
(s) decays

and the background. Each of these three components is is modelled as a product of
probability density functions (PDF), P(MJ/ψKπ, ψ, θ, ϕ) = P(MJ/ψKπ)P(ψ, θ, ϕ), with ψ
the angle between the kaon momentum in the rest frame of the K∗0 and the direction
of motion of the K∗0 in the rest frame of the B. The polar and azimuthal angles (θ, ϕ)
describe the direction of the µ+ in the coordinate system defined in the J/ψ rest frame,
where the x axis is the direction of motion of the B0

(s) meson, the z axis is normal to the
plane formed by the x axis and the kaon momentum, and the y axis is chosen so that the
y component of the kaon momentum is positive.

The function describing the mass distribution of both B0
(s) signal peaks is the sum of

two Crystal Ball (CB) functions [16], which are a combination of a Gaussian and a power
law function to describe the radiative tail at low masses,

P(MJ/ψKπ) = f CB(MJ/ψKπ, µB, σ1, α1) + (1− f) CB(MJ/ψKπ, µB, σ2, α2). (2)

The starting point of the radiative tail is governed by a transition point parameter α(1,2).
The mean and width of the Gaussian component are µB and σ(1,2). The values of the f ,
σ1, σ2, α1 and α2 parameters are constrained to be the same for the B0

s and B0 peaks.
The difference in the means between the B0

s and the B0 distributions, (µB0
s
− µB0), is

fixed to the value taken from Ref. [17]. The mass PDF of the background is described by
an exponential function.
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Figure 2: Fit to the Kπ mass spectrum for (a) B0 → J/ψKπ events, and (b) B0
s → J/ψKπ

events. The B0
(s) → J/ψKπ yields in each bin of Kπ mass are determined from a fit to the

J/ψKπ mass spectrum. The pink dashed-dotted line represents the K∗0, the red short-dashed
line is the S-wave and the black dotted line is the K∗2 (1430). The black solid line is their sum.

Assuming that direct CP violation and the B0
(s) − B0

(s) production asymmetry are

insignificant, the differential decay rate is [1, 15]

d3Γ

dΩ
∝ 2|A0|2 cos2 ψ(1− sin2 θ cos2 ϕ)

+ |A‖|2 sin2 ψ(1− sin2 θ sin2 ϕ)

+ |A⊥|2 sin2 ψ sin2 θ

+
1√
2
|A0||A‖| cos(δ‖ − δ0) sin 2ψ sin2 θ sin 2ϕ (3)

+
2

3
|AS|2

[
1− sin2 θ cos2 ϕ

]

+
4
√

3

3
|A0||AS| cos(δS − δ0) cosψ

[
1− sin2 θ cos2 ϕ

]

+

√
6

3
|A‖||AS| cos(δ‖ − δS) sinψ sin2 θ sin 2ϕ,

where A0, A‖ and A⊥ are the decay amplitudes corresponding to longitunally and trans-
versely polarized vector mesons. AS = |AS|eiδS is the Kπ S-wave amplitude and (δ‖ − δ0)
the relative phase between the longitudinal and parallel amplitudes. The convention
δ0 = 0 is used hereafter. The Ω differential is dΩ ≡ d cosψ d cos θ dϕ. The polarization
fractions are normalized according to

fL,‖,⊥ =
|A0,‖,⊥|2

|A0|2 + |A‖|2 + |A⊥|2
, (4)

which satisfy fL + f‖ + f⊥ = 1.
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The parameters fL, f‖ and δ‖ describing the P-wave are left floating in the fit. The
|AS| amplitude and the δS phase depend on MKπ, but this dependence is ignored in
the fit, which is performed in a Kπ mass window of ±40 MeV/c2, and they are just
treated also as floating parameters. A systematic uncertainty is later associated with
this assumption. The angular distribution of observed events is parameterized as a
product of the expression in Eq. 3 and a detector acceptance function, Acc(Ω), which
describes the efficiency to trigger, reconstruct and select the events. Simulation stud-
ies have shown almost no correlation between the three one-dimensional angular accep-
tances Accψ(ψ), Accθ(θ) and Accϕ(ϕ). Therefore the global acceptance factorizes as
Acc(Ω) = Accψ(ψ) Accθ(θ) Accϕ(ϕ), where Accψ(ψ) is parameterized as a fifth degree
polynomial, Accθ(θ) as a second degree polynomial and Accφ(φ) as a sinusoidal function.
A systematic uncertainty due to this factorization hypothesis is later evaluated. The an-
gular distribution for the background component is determined using the upper sideband
of the B0

s mass spectrum, defined as the interval [5417, 5779] MeV/c2.
Figure 3 shows the projection of the fit in the MJ/ψKπ mass axis, together with the

projections in the angular variables in a window of ±25 MeV/c2 around the B0
s mass. The

number of candidates corresponding to B0 and B0
s decays is found to be 13,365±116 and

114± 11, respectively.

Table 1: Summary of the measured B0
s → J/ψK∗0 angular properties and their statistical and

systematic uncertainties.

Parameter name |AS|2 fL f‖

Value and statistical error 0.07+0.15
−0.07 0.50± 0.08 0.19+0.10

−0.08

Systematic uncertainties

Angular acceptance 0.044 0.011 0.016

Background angular model 0.038 0.017 0.013

Assumption δS(MKπ) = constant 0.026 0.005 0.002

B0 contamination 0.036 0.004 0.007

Fit bias − − 0.005

Total systematic error 0.073 0.021 0.022

Tables 1 and 2 summarize the measurements of the B0
(s) → J/ψ

(–)

K∗0 angular parame-
ters, together with their statistical and systematic uncertainties. The correlation coeffi-
cient given by the fit between fL and f‖ is ρ = −0.44 for B0

s decays. The results for the
B0 → J/ψK∗0 decay are in good agreement with previous measurements [4, 15, 18, 19].
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Figure 3: Projections of the fit in MJ/ψKπ and in the angular variables for the mass range
indicated by the two dashed vertical lines in the mass plot. The red dashed, pink long-dashed,
and blue dotted lines represent the fitted contributions from B0 → J/ψK∗0, B0

s → J/ψK∗0 and
background. The black solid line is their sum.

Based on this agreement, the systematic uncertainties caused by the modelling of the
angular acceptance were evaluated by summing in quadrature the statistical error on

Table 2: Angular parameters of B0 → J/ψK∗0 needed to compute B(B0
s → J/ψK∗0). The

systematic uncertainties from background modelling and the mass PDF are found to be negligible
in this case.

Parameter name |AS|2 fL f‖

Value and statistical error 0.037± 0.010 0.569± 0.007 0.240± 0.009

Systematic uncertainties

Angular acceptance 0.044 0.011 0.016

Assumption δS(MKπ) = constant 0.026 0.005 0.002

Total systematic error 0.051 0.012 0.016
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the measured B0 → J/ψK∗0 parameters with the uncertainties on the world averages
(fL = 0.570± 0.008 and f⊥ = 0.219± 0.010) [3]. The angular analysis was repeated with
two additional acceptance descriptions, one which uses a three-dimensional histogram to
describe the efficiency avoiding any factorization hypothesis, and another one based on a
method of normalization weights described in Ref. [20]. A very good agreement was found
in the values of the polarization fractions computed with all the three methods. For the
parameter |AS|2, uncertainties caused by the finite size of the simulation sample used for
the acceptance description, as well as from the studies with several acceptance models,
are included. The systematic uncertainty caused by the choice of the angular PDF for
the background is shown for the B0

s → J/ψK∗0 decay but it was found to be negligible
for B0 → J/ψK∗0.

Also included in Tables 1 and 2 is the uncertainty from the assumption of a constant δS

as a function ofMKπ. This assumption can be relaxed by adding an extra free parameter to
the angular PDF. This addition makes the fit unstable for the small size of the B0

s sample,
but can be used in the control channel B0 → J/ψK∗0. The differences found in the B0

parameters with the two alternate parameterizations are used as systematic uncertainties.
The parameters δ‖ fit to cos(δ‖) = −0.960+0.021

−0.017 for the B0 and to cos(δ‖) = −0.93± 0.31
(where the error corresponds to the positive one, being symmetrized) for the B0

s . These
parameters could in principle affect the efficiency corrections, but it was found that the
effect of different values of δ‖ on the overall efficiency is negligible. A simulation study of
the fit pulls has shown that the errors on fL and f‖ of the B0

s decays are overestimated
by a small amount (∼ 10%) since they do not follow exactly a Gaussian distribution,
therefore the decision was taken to quote an uncertainty which corresponds to an interval
containing 68% of the generated experiments, rather than giving an error corresponding
to a log-likelihood interval of 0.5. A slight bias observed in the pulls of f‖ in B0

s decays was
accounted for by adding a systematic uncertainty corresponding to 6% of the statistical
error.

The ratio of the two branching fractions is obtained from

B(B0
s → J/ψK∗0)

B(B0 → J/ψK∗0)
=
fd
fs

εtot
B0

εtot
B0

s

λB0

λB0
s

f
(d)

K∗0

f
(s)

K∗0

NB0
s

NB0

, (5)

where fd (fs) is the probability of the b quark to hadronize to B0 (B0
s ) mesons, εtot

B0/εtot
B0

s
is

the efficiency ratio, λB0/λB0
s

is the ratio of angular corrections, f
(s)

K∗0/f
(d)

K∗0 is the ratio of
K∗0 fractions and NB0

s
/NB0 is the ratio of signal yields. The value of fd/fs has been taken

from Ref. [21]. The efficiencies in the ratio εtot
B0/εtot

B0
s

are computed using simulation and

receive two contributions: the efficiency of the offline reconstruction (including geometrical
acceptance) and selection cuts, and the trigger efficiency on events that satisfy the analysis
offline selection criteria. The systematic uncertainty in the efficiency ratio is negligible
due to the similarity of the final states. Effects due to possible differences in the decay
time acceptance between data and simulation were found to affect the efficiency ratio by
less than 1 per mille. On the other hand, since the efficiency depends on the angular
distribution of the decay products, correction factors λB0 and λB0

s
are applied to account
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Table 3: Parameter values and errors for B(B0
s→J/ψK∗0)

B(B0→J/ψK∗0)
.

Parameter Name Value

Hadronization fractions fd/fs 3.75± 0.29

Efficiency ratio εtot
B0/εtot

B0
s

0.97± 0.01

Angular corrections λB0/λB0
s

1.01± 0.04

Ratio of K∗0 fractions f
(s)

K∗0/f
(d)

K∗0 1.09± 0.08

B signal yields NB0
s
/NB0

(
8.5+0.9
−0.8 ± 0.8

)
× 10−3

for the difference between the angular amplitudes used in simulation and those measured
in the data. The observed numbers of B0 and B0

s decays, denoted by NB0 and NB0
s
,

correspond to the number of B0
s → J/ψKπ and B0 → J/ψKπ decays with a Kπ mass

in a ±40 MeV/c2 window around the nominal K∗0 mass. This includes mostly the K∗0

meson, but also an S-wave component and the interference between the S-wave and P-
wave components. The fraction of candidates with a K∗0 meson present is then

fK∗0 =

∫

Ω

Acc(Ω)
d3Γ

dΩ

∣∣∣∣
|AS|=0

dΩ

∫

Ω

Acc(Ω)
d3Γ

dΩ
dΩ

, (6)

from which the ratio f
(s)

K∗0/f
(d)

K∗0 = 1.09±0.08 follows. Table 3 summarizes all the numbers
needed to compute the ratio of branching fractions

B(B0
s → J/ψK∗0)

B(B0 → J/ψK∗0)
=
(
3.43+0.34

−0.36 ± 0.50
)
%.

The contributions to the systematic uncertainty are also listed in Table 3 and their
relative magnitudes are: 1.2% for the error in the efficiency ratio; 2.5% for the uncertainty
on the transition point (α) of the Crystal Ball function; 8.6% for the parameterization of
the upper tail of the B0 peak; 3.9% for the angular correction of the efficiencies; 7.3% for
the uncertainty on the ratio f

(s)

K∗0/f
(d)

K∗0 and 7.7% for the uncertainty on fd/fs. The errors
are added in quadrature.

Taking the value B(B0 → J/ψK∗0) = (1.29 ± 0.05 ± 0.13) × 10−3 from Ref. [4] the
following branching fraction is obtained,

B(B0
s → J/ψK∗0) =

(
4.4+0.5
−0.4 ± 0.8

)
× 10−5.

This value is compatible with the CDF measurement [2] and is similar to the naive quark
spectator model prediction of Eq. (1), although it is closer to the estimation in Ref. [1],
B(B0

s → J/ψK∗0) ∼ 2 × B(B0
d → J/ψρ0) = (4.6 ± 0.4) × 10−5. The branching fraction

measured here is in fact the average of the B0
s → J/ψK∗0 and B0

s → J/ψK∗0 branching
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fractions and corresponds to the time integrated quantity, while theory predictions usually
refer to the branching fraction at t = 0 [22]. In the case of B0

s → J/ψK∗0, the two differ
by (∆Γs/2Γs)

2 = (0.77± 0.25)%, where ∆Γs = ΓL − ΓH, Γs = (ΓL + ΓH)/2, and ΓL(H) is
the decay width of the light (heavy) B0

s -mass eigenstate.
In conclusion, using 0.37 fb−1 of pp collisions collected by the LHCb detector at

√
s =

7 TeV, a measurement of the B0
s → J/ψK∗0 branching fraction yields B(B0

s → J/ψK∗0) =(
4.4+0.5
−0.4 ±0.8

)
×10−5. In addition, an angular analysis of the decay products is presented,

which provides the first measurement of the K∗0 polarization fractions in this decay,
giving fL = 0.50 ± 0.08 ± 0.02, f‖ = 0.19+0.10

−0.08 ± 0.02, and an S-wave contribution of
|AS|2 = 0.07+0.15

−0.07 in a ±40 MeV/c2 window around the K∗0 mass.
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