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constants. The theory, named Freudenthal Gauge Theory (FGT ), is invariant under two

(off-shell) symmetries: the gauge Lie algebra constructed from the FTS triple product and

a novel global non-polynomial symmetry, the so-called Freudenthal duality.

Interestingly, a broad class of FGT gauge algebras is provided by the Lie algebras “of

type e7” which occur as conformal symmetries of Euclidean Jordan algebras of rank 3, and

as U -duality algebras of the corresponding (super)gravity theories in D = 4.

We prove a No-Go Theorem, stating the incompatibility of the invariance under Freud-

enthal duality and the coupling to space-time vector and/or spinor fields, thus forbidding

non-trivial supersymmetric extensions of FGT.

We also briefly discuss the relation between FTS and the triple systems occurring in

BLG-type theories, in particular focusing on superconformal Chern-Simons-matter gauge

theories in D = 3.
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1 Introduction

The idea that a ternary algebra might be an essential structure of physical theories has a

long history.

In the early 70’s, Nambu [1] proposed a generalized Hamiltonian system based on a

ternary product, the Nambu-Poisson bracket. Despite some partial results (see e.g. [2]

for a comprehensive review), the quantization of the Nambu-Poisson bracket remains a

long-term puzzle.

However, ternary algebras and their applications to theoretical physics have been ob-

ject of intense study over the last four decades. The Jordan triple product was exploited

by Günaydin and Gürsey in their quest for a formulation of quantum mechanics over dif-

ferent division algebras, including octonions; this investigation led to the quadratic Jordan
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formulation of quantum mechanics in terms of Jordan triple product [3, 4] that extends to

the octonionic quantum mechanics of [5], which has no formulation over an Hilbert space.

Later on, a unified construction of Lie algebras and Lie superalgebras over triple systems

was achieved by Bars and Günaydin in [6], and in [7] various composite models based on

ternary algebras were investigated. Two-dimensional superconformal algebras over triple

systems were then constructed in [8]; in particular, Freudenthal triple systems were applied

to N = 4 superconformal algebras and gauged WZW models in [9].

Recently, ternary algebras re-appeared in the study of M -theory by Bagger and Lam-

bert [10] and by Gustavsson [11], in which a ternary Lie-3 algebra is proposed as the

underlying gauge symmetry structure on a stack of supersymmetric M2-branes; this is the

famous BLG theory (for a recent review and list of refs., see e.g. [12]). When taking the

Nambu-Poisson bracket as an infinite-dimensional generalization of the Lie-3 bracket, one

gets from the BLG theory a novel six-dimensional field theory, which can be interpreted

as a non-commutative version of the M5-brane theory [13].

In the present paper, we propose a novel gauge field theory, based on another ternary

algebra: the Freudenthal Triple System1 (FTS ). We call this theory “Freudenthal Gauge

Theory” (FGT). In its simplest setup, FGT contains a bosonic scalar field φ(x) valued in

the FTS K together with a gauge field Aµ(x) taking values in the symmetric product K⊗sK.

Similar to the BLG theory, the gauge transformation is constructed from a triple product

defined over the FTS K. However, unlike the totally anti-symmetric Lie-3 bracket used in

the BLG theory, in general the FTS triple product does not have a simple symmetry struc-

ture with respect to the exchange of a pair of its arguments. Nevertheless, one can still prove

that the gauge invariance of FGT is guaranteed by the algebraic properties of the FTS.

Besides the off-shell gauge symmetry, FGT also possesses a novel global (off-shell) sym-

metry, the so-called Freudenthal duality (F-duality). This is a non-linear, non-polynomial

mapping from K to K, relying on non-linear identities which can be traced back to the

early days of the mathematical investigation of FTS ’s [22]. The name Freudenthal duality

is much more recent, and it was introduced within physical literature in [23], in the study

of Maxwell-Einstein supergravity theories (MESGT’s) in D = 4 space-time dimensions

based on symmetric scalar manifolds and with non-degenerate groups of type E7 [22–28] as

generalized electric-magnetic (U -)duality2 symmetries. In such a framework, F-duality was

observed as a non-polynomial, anti-involutive mapping on K-valued black hole charges (i.e.

1Historically, there are several different notions of Freudenthal Triple System, which differ by the

symmetry structure of their triple product. They were introduced in mathematics in order to address

different algebraic properties of the triple system. Although simply related, different definitions of FTS

have different properties, which of course can be translated from one to another. In the physics literature,

the FTS we focus on in this paper is sometimes also called generalized Freudenthal Triple System, which

makes the derivation property more transparent.

Since there is no general agreement on the definition, we will simple denote the triple system in this

paper by Freudenthal Triple System (FTS). The FTS introduced in N = 2 Maxwell-Einstein supergravity

and its N > 2 generalizations [14, 15] (see also e.g. [19] and [20, 21] for recent reviews) can be regarded as

some special cases of it.
2Here U -duality is referred to as the “continuous” symmetries of [29, 30]. Their discrete versions are

the U -duality non-perturbative string theory symmetries introduced in [31].
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fluxes of the Abelian 2-form field strengths) which keeps the Bekenstein-Hawking [32, 33]

black hole entropy invariant [23]. Further generalization to a generic N = 2 special Kähler

geometry, to its N > 2 generalization and to the so-called effective black hole potential

governing the scalar flows has been discussed in [24].

At any rate, FGT, in its simplest setup presented in this paper, can be regarded as the

simplest gauge theory admitting F-duality as global symmetry. Despite the No-Go theorem

proved in section 4.2, a slight generalization of the FGT will be presented in a companion

paper [34].

Intriguingly, as discussed in section 5, FGT shares the same symmetry structures as

the “quaternionic level” of Faulkner’s construction [35], which relates triple systems to

pairs (g,V) of a metric Lie algebra g and a suitable representation V. After the treat-

ment [36, 37], an interesting similarity between FGT and the bosonic sector of N = 3,

D = 3 superconformal (SC) Chern-Simons-matter (CSM) gauge theories can be envisaged.

An important difference relies in supersymmetry, which in FGT, as discussed in section 4,

is essentially spoiled by the enforcement of global invariance under F-duality ; this affects

also other terms in the Lagrangian, e.g. the scalar potential (quartic in FGT, sextic in

BLG-type theories).

All in all, we can observe that, with some important differences pointed out along the

present investigation, the same symmetry structures are shared (with different implemen-

tations and physical meanings) by three (a priori very different) classes of theories, namely:

(D = 3) FGT (non-supersymmetric), D = 4 MESGT (with various amounts of local super-

symmetry) and D = 3 SC CSM gauge theory (with N = 3 global supersymmetry). Further

details and results will be reported in a companion paper [34].

This paper is organized as follows.

We start by recalling the relation between FTS, rank-3 Euclidean Jordan algebras and

exceptional Lie algebras (section 2.1); the treatment is then generalized in section 2.2. The

axiomatic definition of a FTS and the general symmetry of its structure constants are then

discussed in sections 2.3 and 2.4. The Freudenthal duality for a generic FTS is introduced

in section 2.5, along with a discussion of its basic properties.

The global transformation constructed from the FTS triple product is introduced in

section 3.1, and its gauging is discussed in section 3.2. Then, in section 3.3 we propose a

bosonic Lagrangian density that exhibits both FTS gauge transformations and (global) F-

duality as off-shell symmetries, and we provide a detailed proof of its invariance under such

symmetries. The class of FGT gauge Lie algebras of type e7 is considered in section 3.4,

and the intriguing relation between the corresponding FGT and D = 4 MESGT’s with

U -duality symmetry given by such Lie algebras of type e7 is discussed in section 3.5.

The possible generalization of the simplest FGT Lagrangian introduced in section 3.3

is discussed in section 4, in which the FTS K is coupled to the most general algebraic

system, and the mathematical structure required for a consistent definition of F-duality is

investigated (section 4.1); a No-Go theorem is proved in section 4.2.

The intriguing similarities (and important differences) between FGT and (the bosonic

sector of) N = 3 SC CSM gauge theories in D = 3 are discussed in section 5.
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The concluding section 6 contains a summary, along with some remarks and an outlook

of further developments.

Three appendices conclude the paper. Appendices A and B respectively contain de-

tails on the F-duality and on the FGT scalar kinetic term, whereas appendix C lists the

induced axioms needed for the discussion of the generalization of FGT and in the proof of

the No-Go theorem of section 4.2.

As mentioned above, further results and more detailed analysis of some topics men-

tioned along the paper will be reported in a companion work [34].

2 Freudenthal Triple Systems (FTS ’s)

2.1 Rank-3 Jordan algebras and Lie algebras

The Freudenthal Triple System (FTS ) K was first introduced by Freudenthal in his study

of exceptional Lie algebras [38–40] (see also [41]). In the original construction, K is defined

to be the direct sum of two copies of a Jordan Triple System (JTS ) J and two copies of

real numbers3 R:

K(J) ≡ J⊕ J⊕ R⊕ R. (2.1)

Over the vector space K(J), one can introduce a symplectic invariant 2-form, as well as

a triple product. The latter is defined via the completely symmetric tri-linear form (also

known as cubic norm) of the JTS J, and it can be re-interpreted as a linear map LφIφJ

over K parametrized by a pair of elements φI , φJ ∈ K (cfr. definition (2.13)).

In Freudenthal’s construction of exceptional Lie algebras, the JTS J is restricted to

a rank-3 simple Euclidean Jordan algebra Ĵ, namely Ĵ = R or Ĵ = JA
3 ≡ H3(A), where

H3(A) stands for the algebra of Hermitian 3 × 3 matrices with entries taking values in

one of the four normed division algebras A = R (real numbers), C (complex numbers), H

(quaternions), O (octonions) (see e.g. [42]). Then, by introducing in K(Ĵ) the submanifold

M
Ĵ
≡
{
φI ∈ K(Ĵ) | LφIφI

φJ = 0, ∀φJ ∈ K(Ĵ)
}
, (2.2)

the five exceptional (finite-dimensional) Lie algebras G = g2, f4, e6, e7, e8 arise as the the

direct sum of the algebra Inv(M
Ĵ
) that keeps M

Ĵ
invariant, together with a copy of su(2)

and two copies (namely, an su(2)-doublet) of K(Ĵ) [38, 43]:

G = Inv(M
Ĵ
)⊕ su(2)⊕ K(Ĵ)⊕ K(Ĵ). (2.3)

As a vector space, K
(
Ĵ
)
may be regarded as the representation space of a non-trivial4

symplectic representation R of the algebra Inv(M
Ĵ
) itself, introduced in (2.3):

K
(
Ĵ
)
∼ R

(
Inv(M

Ĵ
)
)
. (2.4)

3Namely, the ground field was chosen to be R. Other choices are of course possible (such as Z or C),

but we will not deal with them in the present investigation.
4Such a representation is not necessarily the smallest one. A counter-example is provided e.g. by

sp(6) = Inv(MJR

3

), whose smallest non-trivial symplectic irrep. is the fundamental 6. However, K(JR

3 )

has dimension 14, and it is based on the rank-3 completely antisymmetric irrep. 14
′, which exhibits a

completely symmetric rank-4 invariant structure.

However, a suitable FTS K on the 6 can also be constructed; see point 2 in section 5.
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At least for R irreducible, Inv(M
Ĵ
) is maximally (and non-symmetrically) embedded into

the symplectic algebra sp
(
K
(
Ĵ
))

through the Gaillard-Zumino (GZ) embedding [44] (see

also e.g. [78] for a recent review)

sp
(
K
(
Ĵ
))

⊃ Inv(M
Ĵ
);

Fund
(
sp
(
K
(
Ĵ
)))

= R
(
Inv(M

Ĵ
)
)
.

(2.5)

This can be regarded as a consequence of the following Theorem by Dynkin (Th. 1.5 of [45],

more recently discussed e.g. in [46]): every irreducible group of unimodular linear trans-

formations of the N-dimensional complex space (namely, a group of transformations which

does not leave invariant a proper subspace of such a space) is maximal either in SL(N)

(if the group does not have a bilinear invariant), or in Sp(N) (if it has a skew-symmetric

bilinear invariant), or in O(N) (if it has a symmetric bilinear invariant). Exceptions to

this rule are listed in table VII of [46].

For later convenience, we introduce the number f as (cfr. (2.4))

dimRFund
(
sp
(
K
(
Ĵ
)))

= dimRR
(
Inv(M

Ĵ
)
)
= dimRK

(
Ĵ
)
≡ f, (2.6)

which is even whenever the symplectic 2-form on K
(
Ĵ
)
is non-degenerate (as we will as-

sume throughout).

From (2.3) and (2.5), it thus follows that the invariance subalgebra Inv(M
Ĵ
) can be

equivalently defined as the intersection of two Lie algebras: the symplectic one sp
(
K
(
Ĵ
))

in (2.5) and the exceptional one G(= g2, f4, e6, e7, e8) in (2.3):

Inv(M
Ĵ
) = sp

(
K
(
Ĵ
))

∩G. (2.7)

2.2 General case

Within Freudenthal’s formulation, the above construction can be repeated for a generic

FTS K , by generalizing (2.2) to the submanifold

MJ ≡
{
φI ∈ K(J) | LφIφI

φJ = 0, ∀φJ ∈ K(J)
}
, (2.8)

and thus introducing its invariance algebra Inv(MJ).

It is however worth remarking that, in this general case, neither Inv(MJ) nor

G = Inv(MJ)⊕ su(2)⊕ K(J)⊕ K(J) (2.9)

(this latter generalizing (2.3) to a generic JTS J), along with their possible non-compact

real forms, are necessarily simple.

Nonetheless, it still holds that, as a vector space, K (J) may be regarded as the rep-

resentation space of the relevant symplectic representation R of the invariance subalgebra

Inv(MJ) of MJ (2.8):

K (J) ∼ R (Inv(MJ)) . (2.10)
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Before proceeding to analyze the axiomatic definition of FTS, we remark that, as men-

tioned in footnote 1, in the mathematics literature there are several different notions of

FTS, which differ by the symmetry structure of the corresponding triple product (see for

instance [22, 41, 47]). All of these “FTS ’s” are closely inter-related by simple redefinitions;

however, because they exhibit different symmetry properties, some algebraic properties of

the FTS are manifest only within a specific formulation.

2.3 Axiomatic definition

We define an FTS to be a particular Symplectic Triple System [48, 49], which is a symplectic

vector space K equipped with a (not necessarily completely symmetric) triple product

T :





K⊗ K⊗ K → K;

φI , φJ , φK 7→ T (φI , φJ , φK) .

(2.11)

In the following, for brevity’s sake, we will denote T (φI , φJ , φK) ≡ φIφJφK .

By introducing the symplectic form as5

〈·, ·〉 :





K⊗a K → R;

φI , φJ 7→ 〈φI , φJ〉,
(2.12)

in an FTS the triple product (2.11) satisfies the following axioms:

(i) φIφJφK = φJφIφK ;

(ii) φIφJφK = φIφKφJ + 2λ 〈φJ , φK〉φI + λ 〈φI , φK〉φJ − λ 〈φI , φJ〉φK ;

(iii) φLφM (φIφJφK) = (φLφMφI)φJφK + φI(φLφMφJ)φK + φIφJ(φLφMφK);

(iv) 〈φLφMφI , φJ〉+ 〈φI , φLφMφJ〉 = 0,

where λ is an arbitrary (real) constant.6

By introducing, for any pair φL, φM ∈ K, a linear operator LφLφM
∈ gl(K) acting on

φK ∈ K as

LφIφJ
:





K⊗s K → K;

φI , φJ 7→ LφIφJ
φK ≡ φIφJφK ,

(2.13)

axiom (iii) yields that LφIφJ
is a derivation with respect to the FTS triple product T (2.11).

5Subscripts “s” and “a” respectively stand for symmetric and antisymmetric.
6Axioms (i)-(iv) define the most general FTS K, which does not necessarily enjoys the decomposi-

tion (2.1) in terms of an underlying JTS J (as in the original Freudenthal’s construction).

A counterexample is provided by Example 1 of [41], in which g = sp (2l). In N = 1, D = 4 supergravity,

this corresponds to a theory in which the scalar fields parametrize the upper Siegel half-plane; see e.g. a

recent treatment in [53].

– 6 –



J
H
E
P
0
3
(
2
0
1
3
)
1
3
2

On the other hand, axiom (i) implies

LφIφJ
= LφJφI

, (2.14)

which justifies the symmetric tensor product of K’s in the definition (2.13) itself.

By virtue of the definition (2.13), one can reformulate axioms (iii) and (iv) as follows:

(iii′) LφLφM
(φIφJφK) = (LφLφM

φI)φJφK + φI(LφLφM
φJ)φK + φIφJ(LφLφM

φK);

(iv′) LφLφM
〈φI , φJ〉 = 〈LφLφM

φI , φJ〉+ 〈φI ,LφLφM
φJ〉 = 0.

In particular, the reformulation (iv′) of axiom (iv) makes manifest the fact the symplec-

tic form 〈·, ·〉 (2.12) is invariant under LφIφJ
. Thus, LφIφJ

is valued in a certain Lie algebra

g, which exhibits a symplectic bilinear invariant structure in the relevant representation R

to which φI belongs. At least when such a representation space is irreducible, through the

GZ embedding [44], or equivalently through the abovementioned Dynkin Theorem [45]

g
GZ⊂ sp(K) ⊂ gl(K) : R (g) = Fund (sp) = Fund (gl) , (2.15)

one has

LφIφJ
∈ g

GZ⊂ sp(K) ⊂ gl(K). (2.16)

Within Freudenthal’s construction, an important class of algebras is given by g = Inv(M
Ĵ
)

introduced above. The Lie algebra g will be identified below as the gauge Lie algebra of

the Freudenthal gauge theory.

It is worth remarking here that for λ 6= 0 axiom (iv) can actually be derived from ax-

ioms (i)-(iii). Mathematically, whenever λ 6= 0 axiom (ii) yields a compatibility condition

that constrains the structure of the triple product (2.11) and the symplectic form (2.12),

and hence the non-trivial algebraic structure of the FTS itself. We anticipate that axiom

(iii) can be regarded as the “FTS counterpart” of the so-called “fundamental identity” of

Lie-3 algebras (see section 5). On the other hand, for λ = 0 axioms (i)-(iii) reduce to

the defining properties of a Lie-3 algebra over Grassmannian numbers, which in general

is not a FTS. And hence, in order to restore the algebraic structure of the FTS K, one

has to further impose axiom (iv) as a compatibility condition between the (now totally

symmetric) triple product (2.11) and the symplectic form (2.12).

At any rate, in the present investigation we regard an FTS K as a Symplectic Triple

System [48, 49] with λ 6= 0, and we include (iv) (or equivalently (iv′)) as part of the defining

axioms, so that the most generic situation will be considered.

2.4 FTS structure constants and their invariance

In order to make our treatment more explicit yet basis-dependent, it is convenient to in-

troduce a basis {ea} of K, such that φ = φaea (a = 1, . . . , f ; f = dimR(K), (2.6)). Thus,

one can define the symplectic metric ωab and the FTS (triple product) structure constants

fabc
d respectively as

〈ea, eb〉 ≡ ωab = −ωba;
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eaebec ≡ fabc
ded. (2.17)

As mentioned above, ωab is invariant under g (recall (2.15) and (2.16)). Furthermore,

when ωab is non-degenerate (which we will always assume to hold true in this paper), an

isomorphism is defined between the vector space K and its dual space, and hence one can

lower7 the last index of the FTS structure constants as follows:

fabcd ≡ fabc
eωed. (2.18)

By virtue of definitions (2.17), the defining axioms (i)-(iv) of the FTS K can be rewritten

as follows:

(i) fabcd = fbacd;

(ii) fabcd = facbd + 2λωadωbc − λωcaωbd − λωabωcd;

(iii) f d
abc f g

efd = f d
efc f g

abd + f d
ecf f g

adb + f d
fce f g

bda ;

(iv) fabcd = fabdc.

It is worth stressing here that the non-complete symmetry of the FTS triple product

T (2.11) (as yielded by axioms (i) and (ii)) implies the non-complete symmetry of the

rank-4 tensor of FTS structure constants fabcd (2.18). However, note that axioms (i), (ii),

and (iv) imply the structure constants to be symmetric also under exchange of the first

and last pair of its indices:

fabcd = fcdab, (2.19)

a property which will be important in the construction of a Chern-Simons action for the

gauge fields of the “Freudenthal gauge theory” (see next sections).

Summarizing, the general symmetry properties of fabcd, as implied by axioms (i), (ii)

and (iv), are given by

fabcd = f((ab),(cd)). (2.20)

fabc
d and fabcd are rank-4 invariant tensors of the Lie algebra g (2.15)–(2.16). Under cer-

tain further restrictions (see point 2 in section 5), the symmetry can be extended to sp(K)

itself. It is here worth recalling that Kantor gave a complete classification of the finite

dimensional triple systems that can arise in Lie algebras [50] (see also [51]); in particular,

Kantor and Skopets showed that there is a one-to-one correspondence between simple Lie

algebras and simple FTS ’s with a non-degenerate bilinear form [52].

2.5 Freudenthal duality

Whenever the completely symmetric part of fabcd is non-vanishing, from the definition of

the FTS triple product (2.11) and of the symplectic form (2.12) one can define a quartic

7We adopt the NE-WS convention when raising or lowering the indices using the symplectic metric.
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g-invariant structure ∆(φ) for any φ ∈ K, as follows8 (cfr. (25c) of [23]; T (φ) ≡ φφφ):

∆ :





K → R;

φ 7→ ∆(φ) ≡ 1
2〈φφφ, φ〉 = 1

2fabcdφ
aφbφcφd.

(2.21)

Such a quartic form has appeared in physical literature e.g. in the formula for the

Bekenstein-Hawking [32, 33] entropy of spherically symmetric, asymptotically flat, static,

extremal black hole solutions of D = 4 supergravity theories whose U -duality Lie alge-

bra is a particular non-compact, real form of Inv(M
Ĵ
), namely the conformal Lie algebra

g = conf(Ĵ) of Ĵ itself (see e.g. [19] and [54] for a review, and a list of refs.).

Interestingly, ∆ also occurs in the duality-invariant expression of the cosmological con-

stant of some AdS4 vacua (and of the corresponding central charge of the dual CFT’s) of

general N = 2 gauged supergravities underlying flux compactifications of type II theo-

ries [79].

The fact that f(abcd) 6= 0 which allows for the existence of (primitive) quartic g-invariant

structure ∆(φ) characterizes the pair
(
g = conf(Ĵ),R

)
as a (non-degenerate) Lie algebra

of type e7, defined axiomatically by the axioms (a)-(c) of [22]: R is a representation space

of g such that

(a) R possesses a non-degenerate, skew-symmetric bilinear g-invariant form (cfr. (2.12)

and (2.17));

(b) R possesses a completely symmetric, rank-4 g-invariant structure f(abcd) ( given by the

completely symmetric part of (2.18)), which allows to define

q (x, y, z, w) ≡ f(abcd)x
aybzcwd = 2∆(x, y, z, w) ; (2.22)

(c) by defining a ternary product T (x, y, z) on R as

〈T (x, y, z) , w〉 ≡ q (x, y, z, w) , (2.23)

then one has

3 〈T (x, x, y) ,T (y, y, y)〉 = 〈x, y〉 q (x, y, y, y) . (2.24)

Note that, from (2.22) and (2.23), T (x, y, z) is the the completely symmetric part of

the triple product T (2.11) on K ∼ R.

Recently, the role of Lie algebras of type e7 was investigated in supergravity in some

detail (see section 3.5). In section 5 Brown’s definition of Lie algebras of type e7 [22] will

be discussed in relation to FTS and Freudenthal gauge theory.

8Even if here fabcd is not (necessarily) completely symmetric in the present framework, we adopt the

same normalization of [23] and [24].
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From the FTS axioms discussed in subsections 2.3 and 2.4, one can show that ∆(φ) is

invariant under the following transformation:

F :





K → K;

φ 7→ F (φ) ≡ sgn (∆(φ)) T (φ)√
6 |λ∆(φ)|

≡ φ̃,

(2.25)

namely that

∆(φ) = ∆(φ̃), (2.26)

The proof can be found in appendix A (which generalizes the treatment of [23], in turn

referring to [22], to FTS defined by axioms (i)-(iv); see also [24]). In the physics literature,

the map F (2.25) has been called “Freudenthal Duality” (or F-duality for short); it was first

observed in [23] as a symmetry of the Bekenstein-Hawking [32, 33] entropy-area formula

for black holes, and then further generalized9 in [24].

In the rest of this subsection, we list some brief remarks; further details will be reported

in a forthcoming paper [34].

(I) Anti-involutivity. The F-duality F (2.25) is an anti-involution in K [22–24]:

F ◦ F = −Id;

˜̃
φ = −φ.

(2.27)

This holds whenever φ is an element in Mc
J, which is the complement in K of the

submanifold (recall (2.8))

MJ|I=J ≡ {φ ∈ K | Lφφφ ≡ T (φ) = 0} ⊂ K. (2.28)

In addition to this, for λ 6= 0 and for any φ ∈ K, the F-duality map and its image φ̃

(namely, the “F-dual” scalar field) are defined iff ∆(φ) 6= 0. Whenever Inv(MJ) is

non-empty and thus its corresponding action determines a stratification of the sym-

plectic vector space K (J) ∼ R (Inv(MJ)) (cfr. (2.10)), this can also be equivalently

stated as the requirement that φ belongs to the rank-4 orbit of K under the action

of Inv(MJ) itself.

(II) Z4-grading. The anti-involutivity (2.27) of F yields a Z4-grading of the symplectic

vector space K. This interesting property will be investigated in [34].

(III) F-duality is not an FTS derivation. The non-linear map over K provided by

F-duality (2.25) is not a derivation with respect to the triple product (2.11) over

K. Thus, such a mathematical structure cannot be consistently used to define an

infinitesimal transformation. This means that the invariance (2.26) is rather a global

symmetry (“duality”) of K, and thus a global (off-shell) symmetry of the correspond-

ing gauge theory; see next sections.

9In the nomenclature introduced in [24], (2.25) (which preserves the homogeneity in φ) defines the non-

polynomial “on-shell” version of F-duality ; other possible versions and generalizations are discussed therein.
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3 Freudenthal Gauge Theory (FGT)

In the present section, we will introduce the gauge theory based on the FTS discussed in

section 2. As anticipated, this theory, whose consistent (bosonic) Lagrangian density is

proposed in subsection 3.3, will be named “Freudenthal Gauge Theory” (FGT ).

As it will become clear, our construction resembles very much the one of BLG the-

ory [10, 11]. However, we present here a detailed analysis, also in order to make several

remarks addressing the differences between FGT (and thus FTS ) and the triple systems-

related gauge theories, especially in D = 3 (see the discussion in section 5).

3.1 From global symmetry...

We consider a real scalar field φ(x) valued in a FTS K over R, and we aim at constructing

a Lagrangian density functional L [φ(x)] with the desired symmetry.

Clearly, L [φ(x)] must be a K-scalar, and thus all its terms must be of the form

L [φ(x)] ∼ α(φ) 〈f(φ), g(φ)〉, (3.1)

α :

{
K → R;

φ (x) 7→ α (φ(x)) ;
(3.2)

f, g :

{
K → K;

φ (x) 7→ f (φ(x)) ; φ (x) 7→ g (φ(x)) .
(3.3)

At each point x in space-time, f (φ(x)) and g (φ(x)) are elements of the subalgebra Kφ(x) ⊂
K generated by the element φ(x) ∈ K. More precisely, elements of Kφ(x) are homogeneous

polynomials of odd degree in φ(x), with the multiplication defined by the non-associative

(cfr. axiom (iii)) triple product T (2.11) over K.

The FTS axiom (iii) (or equivalently (iii′)), along with the definition (2.13), allow for a

consistent definition of an infinitesimal transformation LΛ ∈ sp(K) (recall (2.16)), such that

[f ((Id+ LΛ)φ(x))− f (φ(x))]linear order = LΛf (φ(x)) , (3.4)

where the parameters of the transformation are denoted by

Λ ∈ K⊗s K. (3.5)

Note that only elements in the symmetric tensor product K ⊗s K can generate a trans-

formation LΛ, because the antisymmetric part K ⊗a K is projected out by the symmetry

property under the exchange of the first two entries of the triple product T (cfr. axiom (i)).

Crucially, axiom (iv) (or equivalently (iv′)) states that for any f(φ), g(φ) ∈ K, the

symplectic product 〈f(φ), g(φ)〉 (defined in (2.12) and in (2.17)) is invariant under LΛ:

LΛ〈f(φ), g(φ)〉 = 〈LΛf(φ), g(φ)〉+ 〈f(φ),LΛg(φ)〉 = 0. (3.6)

By the same argument, all K-scalar real functions α(φ) (3.2) are necessarily of this form,

namely

α(φ) ∼ 〈h(φ), l(φ)〉 (3.7)

for some functions h(φ) and l(φ) of the same kind as f(φ) and g(φ) defined in (3.3).
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Thus, one can conclude that any Lagrangian density functional L of the form (3.1)

is invariant10 under the infinitesimal transformation (3.4). In other words, by the four

axioms (i)-(iv) of FTS, any Lagrangian L of the form (3.1) is guaranteed to be invariant

under the global symmetry generated by LΛ (3.4).

It should also be remarked here that the definitions (2.21) and (2.25) imply that the

F-dual field φ̃(x) is also an element of Kφ(x). Therefore, φ̃(x) transforms in the very same

way as φ(x) under the global symmetry LΛ (3.4).

As already pointed out above, the invariance (3.6) of the symplectic product 〈·, ·〉 (2.12)
in K under the action of the infinitesimal transformation LΛ implies that the latter is not

simply an element in gl(K), but rather it generally belongs to the Lie algebra g (2.15)–(2.16).

3.2 ...to gauge symmetry

We will now proceed to gauge the global symmetry introduced in subsection 3.1, by pro-

moting the infinitesimal generator Λ (3.5) to be a function Λ(x) over space-time. Corre-

spondingly, this will identify g (2.15)–(2.16) as the gauge algebra.

As done in subsection 2.3, by adopting a basis {ea} for K, one can generally write down

the gauge transformation of a K-valued scalar field φ(x) = φa(x)ea in the following form

(recall (2.17)):

LΛφ(x) = Λab(x)Leaebφ(x) = fabc
dΛab(x)φc(x)ed, (3.8)

where Λab(x) denotes the rank-2 tensor generating the gauge transformation itself. Note

that axiom (i) of FTS implies that such a tensor is symmetric (cfr. (2.14)):

Leaeb = Lebea ⇔ Λab(x) = Λba(x), (3.9)

which is consistent with (3.5). When Λab is constant over space-time, one consistently

re-obtains the global symmetry considered in subsection 3.1.

By recalling (2.16), one can define the linear operator Λ̂ ∈ g as11

Λ̂ a
b ≡ fcdb

aΛcd, (3.10)

such that the gauge symmetry transformation (3.8) of a field φ(x) is nothing but a matrix

multiplication by the linear operator Λ̂:

LΛφ
a = Λ̂ a

b φb. (3.11)

As discussed at the end of subsection 3.1, the gauge transformation of the F-dual field

φ̃(x) (2.25) is by construction the following one:

LΛφ̃
a = Λ̂ a

b φ̃b. (3.12)

10Note that no mentioning of invariance under (global ; cfr. point (IV) of subsection 2.5) Freudenthal

duality F (2.25) (which will be a crucial ingredient of FGT; see subsection 3.3) has been made so far;

indeed, it is immediate to check that the Lagrangian density functional L (3.1) is not invariant under

F (2.25).
11In the following treatment, we will often drop the explicit x-dependence in order to simplify the notation,

whenever confusion is unlikely to occur.
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Next, we introduce a gauge field

Aµ(x) ≡ Aab
µ (x) ea ⊗s eb, (3.13)

which is a 1-form valued in12 K⊗sK. Correspondingly, a g-valued gauge covariant derivative

Dµ acting on the scalar field φa(x) can be defined as:

Dµφ
a(x) ≡ ∂µφ

a(x)− (Âµ)
a
b (x)φb(x), (3.14)

where

(Âµ)
a
b (x) ≡ f a

cdb Acd
µ (x) (3.15)

is the corresponding 1-form linear operator in g.

It is worth remarking that both definitions (3.10) and (3.15) can respectively be re-

garded as images of the rank-2 symmetric tensor Λab (x) (3.5) of infinitesimal gauge pa-

rameters and of the corresponding rank-2 symmetric tensor Aab
µ (x) (3.13) of 1-form gauge

potentials, under a map (dubbed “hat” map), defined through the FTS structure constants

f d
abc (2.17) as follows:

·̂ :





K⊗s K → g;

Ψab(x) ea ⊗s eb 7→ f a
cdb Ψcd(x) ≡ Ψ̂ a

b .

(3.16)

The “hat” map (3.16) allows one to implement (generally g-valued) infinitesimal gauge

transformation LΛ defined via the FTS triple product in terms of standard matrix multi-

plication (in gl(K)). As such, this map provides an explicit matrix realization of the gauge

Lie algebra g of the FGT, by means of an embedding (local in space-time) analogous to

the local embedding Kφ(x) ⊂ K mentioned below (3.3).

Then, the requirement of Dµφ(x) to transform under the gauge symmetry LΛ in the

same way as φ(x), i.e.

LΛ (Dµφ
a(x)) = (LΛDµ)φ

a(x) +Dµ(LΛφ)
a(x) ≡ Λ̂ a

b (x)(Dµφ)
b(x) (3.17)

consistently fixes the gauge transformation Âµ(x) as follows:

LΛÂµ(x) = ∂µΛ̂(x)−
[
Âµ(x), Λ̂(x)

]
≡ DµΛ̂(x), (3.18)

namely Âµ(x) transforms as a g-valued 1-form.

To proceed further, we introduce the gauge field strength 2-form

F̂µν ≡ −[Dµ, Dν ] = ∂µÂν − ∂νÂµ − [Âµ, Âν ] ∈ g, (3.19)

whose infinitesimal gauge transformation can consistently be computed to be

LΛF̂µν = [F̂µν , Λ̂]. (3.20)

The matrix embedding of LΛ into g provided by the “hat” map (3.16) also ensures that

the “trace” of the field strength F̂µν(x) (3.19) is g-gauge invariant ; in the next subsection,

this fact will be used to work out a bosonic Lagrangian for FGT.

12Note that the symmetric nature of the tensor product in (3.13) does not imply any loss of generality,

due to the axiom (i) of FTS (yielding f a
cdb = f a

(cd)b ).
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3.3 The Lagrangian

We are now going to propose a consistent bosonic Lagrangian for the FGT.

By recalling definitions (2.21) and (2.25) and considering the lowest possible order in

the scalar field φ(x), one can introduce the following (generally non-polynomial) term

〈φ, φ̃〉 = sgn (∆(φ))
〈φ, T (φ)〉√
6 |λ∆(φ)|

= −
√

2

3 |λ|
√
|∆(φ)|, (3.21)

which is homogeneous of degree 2 in φ(x). As discussed in subsection 3.2, the gauge

covariant derivatives of both φ(x) and its F-dual field φ̃(x) transform as vectors under the

gauge transformation LΛ; therefore, a consistent kinetic term for scalar fields reads

− 1

2
〈Dµφ,D

µφ̃〉, (3.22)

whose gauge invariance is guaranteed by the FTS axioms (i)-(iv), (3.6), and by the very

treatment of subsection 3.2.

From axiom (iv) (or equivalently (3.6)) and (3.21), it follows that for any sufficiently

smooth function V : R → R, then13

V
(
∆(φ)

)
(3.23)

is a gauge invariant real function of φ:

LΛ

(
V
(
∆(φ)

))
= 0, (3.24)

which therefore can be taken as a gauge invariant potential in the bosonic FGT action.

By exploiting the matrix embedding of g-valued Freudenthal gauge transformations

LΛ (realized by the “hat” map (3.16)), one can construct a Maxwell term for the gauge

invariant kinetic term for the gauge field Âµ(x).

By introducing the Minkowski metric ηµν = ηµν and a function N (∆(φ)) coupling

vector and scalar fields, for D > 4 the following kinetic Maxwell term can be constructed:

1

4
N (∆(φ)) Tr

(
F̂ 2
)
≡ 1

4
N (∆(φ))

(
F̂µν

) b

a

(
F̂µν

) a

b

=
1

4
N (∆(φ)) ηµληνρ f b

cda f a
efb F cd

µν F
ef
λρ

= −1

4
N (∆(φ)) ηµληνρ fcdagfefbhω

ahωgb F cd
µν F

ef
λρ . (3.25)

The gauge invariance of (3.25) results from the simple computation

LΛ

(
1

4
N (∆(φ))Tr

(
F̂ 2
))

=
1

4
LΛ (N (∆(φ))) Tr

(
F̂ 2
)
+
1

4
N (∆(φ))LΛ

(
Tr
(
F̂ 2
))

(3.26)

=
1

2
N (∆(φ)) Tr

(
[F̂ , Λ̂]F̂

)
= 0, (3.27)

13Actually, by recalling definitions (3.2) and (3.3), one could have chosen V
(
α(φ) 〈f(φ), g(φ)〉

)
as the

most general gauge invariant potential term. However, the invariance also under F-duality F (2.25), as we

do impose in FGT (see further below), further restricts the choice to V
(
∆(φ)

)
, as given by (3.23).
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where (3.24) has been used for the function N , the field strength gauge transformation

property (3.20) has been recalled, and the cyclicity of the trace has been exploited.

Thus, by merging (3.22), (3.23) and (3.25), the following (bosonic) Lagrangian for the

“Freudenthal gauge theory”(FGT) can be written down:

L [φ(x), Fµν (x)]D>4 = −1

2
〈Dµφ,D

µφ̃〉+ 1

4
N (∆(φ)) Tr

(
F̂ 2
)
− V

(
∆(φ)

)
, (3.28)

whose simplest (“minimal”) version corresponds to setting V
(
∆(φ)

)
= ∆(φ) (quartic scalar

potential) and N (∆(φ)) = 1:

Lminimal [φ(x), Fµν (x)]D>4 = −1

2
〈Dµφ,D

µφ̃〉+ 1

4
Tr
(
F̂ 2
)
−∆(φ). (3.29)

Remarkably, the FGT Lagrangian density functional L [φ(x), Fµν (x)]D>4 (3.28) is not

only invariant under the off-shell gauge Lie algebra g introduced in subsections 3.1–3.2,

but also under the F-duality F (2.25), which acts as a global (off-shell) symmetry.14 In

order to check this, one should simply recall (2.26), as well as the anti-involutivity (2.27)

of F (2.25) itself and the anti-symmetry of the symplectic product used to construct the

scalar kinetic term (3.22). In particular, the F-invariance of the latter reads (recall point

(IV) of subsection 2.5):

F
(
ηµν〈Dµφ,Dν φ̃〉

)
= ηµν〈Dµφ̃, Dν(−φ)〉 = ηµν〈Dνφ,Dµφ̃〉

= ηµν〈Dµφ,Dν φ̃〉, (3.30)

where in the second line one does not necessarily have to use the the symmetry of the

Minkowski space-time metric ηµν , because, the scalar kinetic term is symmetric under the

exchange of its space-time indices:

〈Dµφ,Dν φ̃〉 = 〈Dνφ,Dµφ̃〉, (3.31)

as shown in appendix B.

It should be remarked here that in the above construction the dimension D of space-

time does not necessarily need to be specified. As mentioned, the (φ-coupled) Maxwell

kinetic vector term (3.25) is well defined in D > 4. Moreover, in D = 4 a topological (theta)

term can also be introduced, along with its vector-scalar coupling function M (∆(φ)):

1

4
M (∆(φ)) Tr

(
F̂ ∧ F̂

)
, (3.32)

and its gauge invariance and F-invariance once again follow from (3.24), (3.20), (2.26)

and the the cyclicity of the trace.

Thus, in D = 4, the bosonic Lagrangian density (3.28) can be completed as follows:

L [φ(x), Fµν (x)]D=4 = −1

2
〈Dµφ,D

µφ̃〉 − V
(
∆(φ)

)

+
1

4
N (∆(φ)) Tr

(
F̂ 2
)
+

1

4
M (∆(φ)) Tr

(
F̂ ∧ F̂

)
. (3.33)

14From point (IV) of subsection 2.5, the Freudenthal duality F (2.25) is not a derivation with respect

to the FTS triple product (2.11) over K, and thus with respect to the FTS -based gauge transformation

introduced above.
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Even if in the above construction the dimension D of space-time does not necessarily

need to be specified, it should be stressed that in D > 4 the FGT is non-unitary whenever

the gauge Lie algebra g is non-compact (and thus with a Cartan-Killing metric which is

not positive-definite). Indeed, we recall that in the present investigation we consider the

FTS to be defined on the ground field R (cfr. footnote 1); this constrains the pair (g,R)

such that R is a real representation space of the real algebra g. The latter, at least in

the examples related to conformal symmetries of JTS J = Ĵ (treated in section 3.4 and

reported in table 1), is non-compact.

On the other hand, in D = 3 space-time dimensions this does not hold any more, and

the non-compactness of the (real) gauge Lie algebra g is not inconsistent with unitarity

of the theory. Indeed, R is always assumed to possess a positive-definite inner product

(for unitarity of the corresponding gauge theory), but the gauge fields are not propagating

(and they are in Adj(g)), and therefore g does not necessarily have to be endowed with

a positive-definite product, thus allowing for non-compact (real) forms of g itself. As we

discuss in section 5, this is particularly relevant for the connection between D = 3 FGT

and (the bosonic sector of) superconformal Chern-Simons-matter gauge theories in D = 3.

Moreover, in D = 3 a Chern-Simons (CS) term for the gauge sector can be considered,

with the same form as in the BLG theory (cfr. (45) of [10]):

1

2
εµνλ

(
fabcdA

ab
µ ∂νA

cd
λ +

2

3
f g
cda fefgbA

ab
µ Acd

ν Aef
λ

)
, (3.34)

whose consistence in FGT follows from FTS axioms (i) and (iv). The F-invariance of the

CS term (3.34) is trivial (it does not depend on φ at all), while its gauge invariance can be

easily proved by exploiting the symmetry property (2.19) of FTS structure constants fabcd.

Thus, in D = 3 one can propose the following bosonic FGT Lagrangian density:

L [φ(x), Fµν (x)]D=3 = −1

2
〈Dµφ,D

µφ̃〉 − V
(
∆(φ)

)

+
1

2
εµνλ

(
fabcdA

ab
µ ∂νA

cd
λ +

2

3
f g
cda fefgbA

ab
µ Acd

ν Aef
λ

)
. (3.35)

3.4 Gauge algebras of type e7

An interesting class of gauge algebras g (2.15)–(2.16) for the FGT can be obtained by

considering symmetry algebras of Jordan algebras Ĵ themselves. Indeed, a particular non-

compact, real form of the decomposition (2.3) reads

qconf(Ĵ) = conf(Ĵ)⊕ sl(2,R)⊕ K(Ĵ)⊕ K(Ĵ), (3.36)

where conf(Ĵ) and qconf(Ĵ) respectively denote the conformal and quasi-conformal15 Lie

algebras of rank-3 simple Euclidean Jordan algebras Ĵ. Note that conf(Ĵ) is nothing but

15The novel, non-linear geometric quasi-conformal realizations of groups were first discovered by

Günaydin, Koepsell and Nicolai in [16], by exploiting the underlying FTS, and showing that they extend

to the complex forms and hence to different real forms of the corresponding groups. In the subsequent

papers [17] and [18], the quasi-conformal realizations of D = 3 U -duality groups of Maxwell-Einstein

supergravity theories, respectively with with 8 and at least 16 supersymmetries, have been determined.

See e.g. [19], for a review and a list of refs..
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a particular non-compact, real form of Inv(M
Ĵ
); this is also consistent with the fact that

conf(Ĵ) is nothing but the automorphism Lie algebra of K(Ĵ) itself:

conf(Ĵ) ∼ aut
(
K(Ĵ)

)
. (3.37)

Analogously, also formulæ (2.4)–(2.7) hold at the suitable non-compact real level, by respec-

tively replacing Inv(M
Ĵ
) and sp

(
K(Ĵ)

)
with conf(Ĵ) and16 sp (f,R). In particular, (2.7)

can be recast as

conf(Ĵ) = sp (f,R) ∩ qconf(Ĵ). (3.38)

The decompositions (2.3) and (3.36), as well as the whole treatment above, also hold

for rank-3 semi-simple Euclidean Jordan algebras of the type

Ĵ = R⊕Γm,n, (3.39)

where Γm,n is a rank-2 Jordan algebra with a quadratic form of pseudo-Euclidean signature

(m,n), i.e. the Clifford algebra of O(m,n) [80]. However, in this case the corresponding

Lie algebra G in (2.3) (or qconf(Ĵ) in (3.36)) is a classical Lie algebra, namely a (pseudo-

)orthogonal algebra.

Table 1 lists the entries of (3.36) for rank-3 Euclidean Jordan algebras, also including

the cases Ĵ = JAs

3 ≡ H3(As), where As = Cs, Hs, Os are the split version of C, H, O,

respectively (see e.g. [19] for further elucidation and list of refs.). The role of K(Ĵ)’s and

their symmetries in supergravity is discussed in the next subsection 3.5.

It is also worth recalling here that the Lie algebra Inv(M
Ĵ
) (or equivalently conf(Ĵ)) is

“of type e7” [22], as recalled in section 2.5, and in the mathematical literature its symplectic

(real) representation R is sometimes called minuscule irrep. (see e.g. [55]).

3.5 FGT and supergravity

Summarizing, a class of gauge algebras (and representations) for FGT is provided by the

conformal Lie algebras conf of (simple and semi-simple) Euclidean, rank-3 algebras Ĵ, listed

in table 1, along with their (real) symplectic representation R. The pair
(
conf

(
Ĵ
)
,R
)

characterizes conf
(
Ĵ
)
as a Lie algebra of type e7 [22].

Interestingly, conf
(
Ĵ
)
is the U -duality17 Lie algebra of D = 4 Maxwell-Einstein super-

gravity theories (MESGT’s) related to the FTS K(Ĵ) [14, 15] (see also e.g. [19] and [20, 21]

for recent reviews, and list of refs.).

Indeed, within such a class of theories, the decomposition (3.36) can be further in-

terpreted as the Cartan decomposition of the qconf(Ĵ) (U -duality algebra in D = 3) with

respect to conf(Ĵ) (U -duality algebra in D = 4). In particular, R
(
conf(Ĵ)

)
listed in table

1 is the representation in which the 2-form field strengths of the D = 4 Abelian vector

16Note that sp (f,R) is the maximally non-compact (split) real form of sp
(
K(Ĵ)

)
.

17Here U -duality is referred to as the “continuous” symmetries of [29, 30]. Their discrete versions are the

U -duality non-perturbative string theory symmetries introduced by Hull and Townsend [31].
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Ĵ conf(Ĵ) qconf(Ĵ) R
(
conf(Ĵ)

)
N

R sl(2,R) g2(2) 4 2

R⊕R sl(2,R)⊕ sl(2,R) so (3, 4) (2,3) 2

R⊕R⊕R sl(2,R)⊕ sl(2,R)⊕ sl(2,R) so(4, 4) (2,2,2) 2

R⊕Γm,n sl(2,R)⊕ so(m+1, n+1) so(m+2, n+2) (2,m+n+2)
2 (m=1)

4 (m=5)

JR
3 sp(6,R) f4(4) 14′ 2

JC
3 su(3, 3) e6(2) 20 2

JCs

3 sl(6,R) e6(6) 20 0

M1,2(O) su(1, 5) e6(−14) 20 5

JH
3 so∗(12) e7(−5) 32(′) 2, 6

JHs

3 so(6, 6) e7(7) 32(′) 0

JO

3 e7(−25) e8(−24) 56 2

JOs

3 e7(7) e8(8) 56 8

Table 1. Conformal conf(Ĵ) and quasi-conformal qconf(Ĵ) Lie algebras associated to rank-3

Euclidean Jordan algebras. The relevant symplectic irrep. R of conf(Ĵ) is also reported. In

particular, 14′ denotes the rank-3 antisymmetric irrep. of sp(6,R), whereas 32 and 32′ are

the two chiral spinor irreps. of so∗ (12) . Note that conf(JAs

3 ) and qconf(JAs

3 ) are the maximally

non-compact (split) real forms of the corresponding compact Lie algebra. M1,2 (O) is the JTS

generated by 2× 1 vectors over O [14, 15]. Note the Jordan algebraic isomorphisms Γ1,1 ∼ R⊕ R,

and Γ1,0 ∼ R. The number of spinor supercharges N of the corresponding supergravity theory in

D = 4 (cfr. subsection 3.5) is also listed.

potentials sit, along with their duals. As mentioned above, conf(Ĵ) is nothing but Inv(M
Ĵ
),

possibly specified as a suitable non-compact real algebra.18

At least inD = 3, 4, 5, 6, the theories of this class all exhibit (Abelian vector multiplets’)

scalar manifolds which are symmetric cosets.19 In particular, the coset Lie generators in

D = 4 and D = 3 Lorentzian space-time dimensions are respectively given by conf(Ĵ) and

qconf(Ĵ) modded out by their maximal compact subalgebra (mcs).

The number of spinor supercharges N of the D = 4 supergravity theory is reported

in table 1. In particular, the theories associated to Ĵ = JA
3 ≡ H3(A) are usually dubbed

18In fact, as a maximal subalgebra of qconf(Ĵ), in this framework the Lie algebra Inv(M
Ĵ
) can be compact

(with commuting subalgebra su(2)) or non-compact (with commuting subalgebra sl(2,R)), depending on

whether the Kaluza-Klein reduction from D = 4 → 3 is performed along a space-like or time-like direction,

respectively; in turn, this mathematically corresponds to perform a c-map [81] or a c∗-map (see e.g. [82])

on the D = 4 (vector multiplets’) scalar manifold.
19A particular case is given by M1,2 (O), which (cfr. caption of table 1) is a JTS generated by 2 × 1

vectors over O [14, 15]. It is related to supergravity with 20 local supersymmetries, which exists only in

D = 4 (N = 5 [56]) and in D = 3 (N = 10; see e.g. [57] and refs. therein).
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“magical” MESGT’s [14, 15], whereas the N = 2, D = 4 theories corresponding to Ĵ = R,

R⊕ R and R⊕ R⊕ R are the so-called T 3, ST 2 and STU models [58, 59]. It should also

be remarked that Ĵ = JH
3 is related to both N = 2 and N = 6 theories, which in fact share

the very same bosonic sector [14, 15, 60–62].

As discussed in subsection 2.1, FTS ’s K
(
Ĵ
)
(with Ĵ simple) exhibit a close relation-

ships with exceptional Lie algebras, as given by (2.3). As listed in table 1, when considering

suitable non-compact, real forms, (2.3) enjoys the reinterpretation (3.36): in other words,

exceptional Lie algebras occur as quasi-conformal Lie algebras of the corresponding simple

Jordan algebras Ĵ [38, 43]. In this respect, it is worth adding that classical (namely, pseudo-

othogonal) Lie algebras also occur as quasi-conformal Lie algebras of rank-3 semi-simple

Euclidean Jordan algebras of the type20 (3.39) [18].

These facts provide indication of possible links between FGT and Yang-Mills (excep-

tional) gauge theories.

At bosonic level, differences and similarities between the FGT and the class of

MESGT’s under consideration can be observed by comparing e.g. the D = 3 FGT La-

grangian density (3.35) with the bosonic sector of the (ungauged) MESGT (D = 4) La-

grangian density (cfr. e.g. the treatment in [63], and refs. therein)

e−1L = −1

2
R− gij∂µφ

i∂µφj +
1

4
Im (NΛΣ)F

Λ
µνF

Σ|µν − e−1

8
ǫµνρσRe (NΛΣ)F

Λ
µνF

Σ
ρσ. (3.40)

Besides the presence of the Einstein-Hilbert term, there are crucial differences: in the

FGT the scalar fields φ fit into R(g) and the vectors arise from the gauging of the

FTS triple product symmetry algebra g; as a consequence, the derivatives acting on

φ are covariantized, as discussed in sections 3.2 and 3.3. On the other hand, in the

corresponding (D = 4) supergravity framework, the Abelian two-form field strengths fit

into R(g = conf(Ĵ)), while the scalar fields are in a suitable representation of the maximal

compact subalgebra mcs(g). Furthermore, as discussed above, in FGT the gauge algebra

g = conf(Ĵ) and the corresponding global Freudenthal duality are off-shell symmetries of

the theory, whereas in the MESGT’s under consideration g = conf(Ĵ) is only an on-shell

symmetry.21 It is also worth pointing out that on the gravity side supersymmetry seems

to be an accidental feature; indeed, we recall that for Ĵ = JCs

3 and JHs

3 , the corresponding

theories of gravity coupled to Maxwell and scalar fields are not supersymmetric; possible

supersymmetrization of FGT will be discussed in section 4.

It will be interesting to investigate these relations in future studies; see also the

discussion in section 5.

20The quasi-conformal realizations constructed in [16–18] correspond to non-linear geometric construc-

tions that leave invariant a generalized lightcone with respect to a quartic distance function. As such, they

are different from the algebraic constructions of Lie algebras over triple systems given in the mathematics

literature (see e.g. [38, 43]).
21One can construct manifestly U -invariant Lagrangians, but at the price of a non-manifest Lorentz-

invariance [64–66] or of doubling the field strengths’ degrees of freedom (doubled formalism [67]; for recent

advances in relation to Freudenthal duality, see e.g. [68]).
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4 Generalization?

In the previous section, we have constructed a consistent Lagrangian for the Freud-

enthal gauge theory (FGT), based on the FTS K (J), with K-valued scalar field φ(x),

admitting both (off-shell) FTS gauge symmetry and (off-shell) global Freudenthal-duality

symmetry F .

The most important kind of generalization would concern an FGT-type Lagrangian

involving some vector fields and/or spinor fields, which is again invariant under both FTS

gauge and Freudenthal duality symmetries; indeed, this would be a necessary condition

for a supersymmetric (non-trivial) extension of FGT. Moreover, such a generalization is

of interest to the physicists, since it potentially might define a sigma-model type theory if

the space-time considered in this paper is regarded as the world-volume of some extended

objects (for instance, M2-branes), and correspondingly the vector fields conceived as the

image of the world-volume in some target space.

However, in subsections 4.1–4.2 we shall prove that, within some minimal reasonable

assumptions, such a generalization is not possible.

4.1 Coupling to a vector space

Let us start the analysis by coupling a generic FTS K to a generic vector space V, over

which one can introduce suitable algebraic structures and make it into an algebra; for

instance, spinors can be regarded as vectors with an anti-symmetric binary product that

yields the Fermi statistics. In this way, our discussion for the formal algebraic system V

will cover the most generic space that couples to K.

Thus, we are considering an extended vector space

N ≡ K⊗V, (4.1)

whose element, denoted by Φ, is the tensor product of an element φ ∈ K and an element

v ∈ V, i.e.

Φ ≡ φ⊗ v ∈ N. (4.2)

In order to be able to construct a Lagrangian density functional L [Φ(x)] for the fields

Φ(x) ∈ N obtained from promoting an element Φ ∈ N to a N-valued space-time field Φ(x),

one starts by introducing a bilinear form (namely, the metric)

〈·, ·〉 :





N⊗N → R;

ΦI ,ΦJ 7→ 〈ΦI ,ΦJ〉,
(4.3)

defined for any two ΦI,J = φI,J ⊗ vI,J in N. Via direct evaluation, (4.3) induces a metric

on V itself:

〈ΦI ,ΦJ〉 = 〈φI ⊗ vI , φJ ⊗ vJ〉 = 〈φI , φJ〉 × (vI , vJ)V , ∀ΦI ,ΦJ ∈ N, (4.4)
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where “×” is here multiplication by a scalar (real) factor, and

(·, ·)
V
:





V⊗V → R;

vI , vJ 7→ (vI , vJ)V ,

(4.5)

is the induced metric over V. Note that the symmetry property of (·, ·)
V

(4.5) is to be

determined by the required symmetry property of the metric 〈·, ·〉 (4.3) over N (by also

recalling the anti-symmetry of the symplectic form (2.12) over K).

Furthermore, in order to consistently define the Freudenthal duality F of this extended

theory, one needs to introduce a triple product

T :





N⊗N⊗N → N;

ΦI ,ΦJ ,ΦK 7→ T (ΦI ,ΦJ ,ΦK) ≡ ΦIΦJΦK ,

(4.6)

defined for any three elements ΦI ,ΦJ ,ΦK ∈ N, which would then induce a tri-linear triple

product on V itself:

[·, ·, ·]V :





V⊗V⊗V → V;

vI , vJ , vK 7→ [vI , vJ , vK ]
V
.

(4.7)

In order to proceed further, we make here a plausible conjecture that Freudenthal

duality F can be defined only for algebraic systems satisfying the axioms (i)-(iv) of an

FTS, introduced in subsection 2.3. As a consequence, we require the metric (4.3) to be an

anti-symmetric bilinear form (and append this as axiom (o)), thus obtaining the following

five axioms for the algebra N:

(o) 〈ΦI ,ΦJ〉 = −〈ΦJ ,ΦI〉

(i) ΦIΦJΦK = ΦJΦIΦK

(ii) ΦIΦJΦK = ΦIΦKΦJ + 2µ 〈ΦJ ,ΦK〉ΦI + µ 〈ΦI ,ΦK〉ΦJ − µ 〈ΦI ,ΦJ〉ΦK

(iii) ΦLΦM (ΦIΦJΦK) = (ΦLΦMΦI)ΦJΦK +ΦI(ΦLΦMΦJ)ΦK +ΦIΦJ(ΦLΦMΦK)

(iv) 〈ΦLΦMΦI ,ΦJ〉+ 〈ΦI ,ΦLΦMΦJ〉 = 0,

where µ plays the role of the real parameter λ introduced above for the FTS K.

Then, by repeating for the algebra N the very same construction discussed in section 3

for the FTS K, one gets the most general Lagrangian density functional L [Φ(x)] invariant

under the two desired symmetries, namely under both (off-shell) FTS gauge symmetry

and (off-shell) global Freudenthal-duality symmetry F .
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4.2 A no-go theorem

However, this seemingly smooth construction of an extended FGT coupled to vector

and/or spinor fields suffers from some severe constraints, which actually spoils the above

generalization.

Indeed, axioms (o)-(iv) of N induce a set of corresponding axioms for the metric (4.5)

and the triple product (4.7) induced on V (in addition to the ones already introduced for

other physical reasons, such as the ones yielded by the Bose and/or Fermi statistics for

the fields vI ∈ V); the reader can find the full set of such axioms for V in appendix C.

Among them, axiom (B. iii) induced from the derivation property of N leads to a

particularly strong constraint. In order to realize this, let us restrict to a subalgebra

Nφ ≡ Kφ ⊗V ⊂ N, (4.8)

where Kφ is the subalgebra in K generated by a single generator φ ∈ K (see also subsec-

tion 3.1). Then, by taking five elements of the form

ΦL,M,I,J,K ≡ φ⊗ vL,M,I,J,K ∈ Nφ (4.9)

and inserting them into axiom (B. iii) of appendix C, the following simplified (weaker)

condition on the algebraic structure of V is achieved:

φφT (φ)⊗
([

vL, vM , [vI , vJ , vK ]
V

]
V
−
[
vI , vJ , [vL, vM , vK ]

V

]
V

)
= 0, (4.10)

where the simplification comes from the fact that over the subalgebra Kφ, LφT (φ) and

LT (φ)φ act as annihilation operators, whose proof can be found in appendix A.

Moreover, we observe that, as holding for K (cfr. definition (2.13)) for any two

elements vL, vM ∈ V one gets a linear operator (generally gl(V)-valued, whenever it is

non-zero) LvLvM , whose action is evaluated by the triple product (4.7) as:

LvLvM :





V⊗V → V;

vL, vM 7→ LvLvM vI ≡ [vL, vM , vI ]V ,

(4.11)

Then, by using definition (4.11), the weaker form (4.10) of the axiom (B. iii) can be recast

as a condition on the matrix commutator in gl(V):

[
LvLvM ,LvIvJ

]
= 0, ∀vI,J,L,M ∈ V. (4.12)

Under the assumption that the metric (4.3) in N is non-degenerate (which we under-

stand throughout22), the condition (4.12) can be satisfied in only two instances:

22For instance, if the metric (4.3) of the algebra N is degenerate, it can be proved that a coupling to

a Grassmannian number degree of freedom is possible. However, since there is no fermion bilinear for

a one-dimensional spinor, this is a rather trivial theory, in which the fermionic degree of freedom never

plays any role, and it cannot mix up with the bosonic degree of freedom. In such a theory, the structure

is essentially the same as the one pertaining to a single K-valued (real) scalar field, and hence a consistent

implementation of invariance under (global, off-shell) Freudenthal duality is possible. We plan to investigate

further this issue in future work.
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[ I ] when dim(R)V = 1, i.e.

N = K⊗ R, (4.13)

which is the case of a single K-valued (real) scalar field discussed in sections 2–3;

[ II ] when the set

{LvIvJ ∈ gl(V) | vI , vJ ∈ V} ⊂ gl(V) (4.14)

is a subset of the Cartan subalgebra of gl(V), namely23 (recall definitions (4.5)

and (4.11)):

LvIvJ vK = [vI , vJ , vK ]
V
= (vI , vJ)V × vK . (4.15)

The triple product [·, ·, ·]V (4.7) defined by (4.15) satisfies the strong form of axiom

(B. iii) and most of other axioms of appendix C. However, at least within the as-

sumption of non-degeneracy of the metric of the algebra N (cfr. footnote 19), it is

refuted by axiom (B. ii) whenever K is larger then a single-generator algebra Kφ. �

This completes the proof of the following

No-go theorem. Assuming the metric of the algebraic system N (4.1) to be non-

degenerate and the Freudenthal duality F to be defined only for N satisfying all the four

FTS axioms introduced in subsection 2.3, then it is not possible to construct a Lagrangian

density functional L [Φ(x)] for a K-valued vector/spinor field Φ(x) which admits both

(off-shell) FTS gauge symmetry and (off-shell) global F-duality symmetry F .

5 FGT and (N = 3, D = 3) SC CSM gauge theories

We will now briefly make some observations on the relation between Freudenthal gauge

theory (FGT) (based on Freudenthal triple systems (FTS ’s)) and the intense research on

triple systems and gauge theories, in which remarkable advances were achieved after the

seminal papers of Bagger and Lambert [10] and Gustavsson [11]. A more detailed analysis

will be reported in [34].

Here, we will focus on the relation to superconformal (SC) Chern-Simons-matter

(CSM) gauge theories in D = 3 (in which the R-symmetry structure is richer); we will

mainly refer to the mathematical treatment of [36] and [37] (see also [69]); for an extensive

list of refs. on BLG theories and related developments, besides [36, 37, 69], we address

the reader e.g. to the recent comprehensive review [12].

We anticipate that the symmetry properties (2.20) of the FTS structure constants on

which the FGT is based are generally different from the ones pertaining to the structure

23In general, instead of (4.15) one may propose

LvIvJ vK = [vI , vJ , vK ]
V

= h
(
(vI , vJ)V

)
× vK ,

for any function h : R → R, as the most generic possibility [ II ]. However, the tri-linearity of the triple

product [·, ·, ·]
V

(4.7) in V requires the function h to be linear. Since the constant term of the linear function

h leads to a trivial triple product and is easily refuted by the other axioms of appendix C, one can conclude

that, up to an overall (real) factor, (4.15) is the most generic possibility [ II ].
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constants on which the BLG-type theories (such as the ones investigated e.g. in [70, 71],

among others) rely. Among SC CSM D = 3 gauge theories, the symmetry (2.20) is

indeed consistent only with N = 3 (see e.g. [37], and refs. therein). Disregarding the

global (off-shell) Freudenthal duality, (D = 3) FGT could be viewed as an alternative,

purely bosonic sector of the corresponding N = 3, D = 3 SC CSM gauge theory. In

fact, as analyzed in section 3.3, in FGT the non-vanishing of f(abcd) allows for terms

in the Lagrangian which differ from the usual ones in BLG theories; for instance, the

simplest FGT scalar potential is quartic in the scalar fields (essentially given by ∆ (2.21);

see (3.29)), whereas in BLG theories it is of order six (see e.g. (19) of [10]).

We start by observing that the set of axioms (i), (iii) and (iv) defining an FTS (as

given in section 2.4) match the set of axioms (a), (b) and (c) defining the triple systems

based on quaternionic unitary representations W of a metric Lie algebra g, as discussed

in [36] and [37] (see e.g. appendix A.2.4 of [37], and axioms (125)-(127) therein); in

particular, the FTS axiom (iii) is nothing but the so-called fundamental identity of the

triple system (see e.g. (127) of [37]). In turn, the treatment of [36] and [37] is based on

a construction due to Faulkner [35, 72], which essentially constructs triple systems from

pairs (g,V), where V is a suitable representation24 of g [36].

The g-irreducible decomposition of the rank-4 g-invariant structure in W is given

by (124) of [37] (also, cfr. table 2 therein):

S2S2W ∼= S4W ⊕W(2,2). (5.1)

In tensor notation, a reformulation25 of (5.1) reads as follows (a, b ∈ R):

fabcd = af(abcd) + bωa(cωd)b. (5.2)

(5.2) is consistent with the general symmetry of the FTS structure constants’ tensor fabcd
given by (2.20); furthermore, Freudenthal duality F (2.25) can be consistently introduced

whenever f(abcd) 6= 0.

It is worth remarking that Brown’s definition of Lie algebra (g,R) of type e7 [22] (cfr.

(a)–(c) in section 2.5) can be extended to include also the not completely symmetric part

ωa(cωd)b of (5.2) as follows: R is a representation space of g such that

(â) R possesses a non-degenerate, skew-symmetric bilinear g-invariant form ω (cfr. (2.12)

and (2.17));

(b̂) R possesses a rank-4 g-invariant structure fabcd (5.2), which allows to define

q̂ (x, y, z, w) ≡ fabcdx
aybzcwd = 2∆̂ (x, y, z, w) ; (5.3)

(ĉ) by defining a ternary product T̂ (x, y, z) on R as
〈
T̂ (x, y, z) , w

〉
≡ q̂ (x, y, z, w) , (5.4)

24The fourth axiom (quaternionic condition; see e.g. (128) of [37]) defining Faulkner’s triple systems based

on (g,W) is essentially related to the existence of a skew-symmetric symplectic invariant bilinear form ω

which raises and lowers indices.
25Here, we will not deal with issues of generality of the reformulation (5.2) of (5.1).
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then one has

3
〈
T̂ (x, x, y) , T̂ (y, y, y)

〉
= 〈x, y〉 q̂ (x, y, y, y) . (5.5)

By enhancing fabcd = f(abcd) to a not completely symmetric fabcd given by (5.2), one

can conclude that, by virtue of (â), the real parameters a and b can always be chosen such

that the inclusion of ωa(cωd)b in Brown’s definition [22] yields nothing but an equivalent

definition of a Lie algebra of type e7; however, as pointed out below, the presence or

absence of the term ωa(cωd)b matters in order to make contact with FTS ’s.

Note that the λ-dependent FTS-defining axiom (ii) was not mentioned so far. How-

ever, at least for the class of pairs (g,R) =
(
conf

(
Ĵ
)
,R
)
reported in table 1, the param-

eters a and b can be fixed consistently with axiom (ii), by further elaborating (5.2) as

fabcd = 6λf(abcd) − 2λωa(cωd)b. (5.6)

For pairs (g,R) =
(
conf

(
Ĵ
)
,R
)
with g simple, both (5.6) and the parameter λ acquires

a very simple group-theoretical meaning. Indeed, exploiting the results of [73], (5.6) can

be rewritten as

fabcd = −3τf(abcd) + τωa(cωd)b = tαabt
β
cdgαβ , (5.7)

where tαab = tα(ab) is the (g-invariant) realization of the generators of g in R; the indices α

and a respectively are in Adj and R of g, whose Cartan-Killing metric is gαβ . Therefore,

fabcd can be defined as the adjoint-trace of the product of two realizations of generators

of g in its representation R. Moreover, the parameter [73]

τ ≡ 2dimRAdj (g)

dimRR (g) (dimRR (g) + 1)
= −2λ (5.8)

expresses the ratio between the sets of indices α and ab = (ab) of tαab (in the treatment

above, we set dimRR (g) ≡ f ; cfr. (2.6)). By virtue of the Gaillard-Zumino embed-

ding (2.5) [44] (or, equivalently of the aforementioned Theorem by Dynkin [45, 46]), τ

expresses the fraction of generators of sp (f,R) which generate its maximal (generally

non-symmetric) sub-algebra g. Indeed, it holds that

0 < τ 6 1 ⇔ −1

2
6 λ < 0. (5.9)

By a suitable generalization of the analysis of [83], explicitly worked out in [71], the

choice of fabcd given by (5.7) can be made also for the pairs (g,R) =
(
conf

(
Ĵ
)
,R
)
with

g semi-simple. However, in these cases the last step of (5.2) does not hold:

fabcd = −3τf(abcd) + τωa(cωd)b 6= tαabt
β
cdgαβ ; (5.10)

in fact, the explicit expression of tαabtα|cd for these cases has been computed in [71], and it

is such that [70]

gαβt
α
(abt

β

c)d = 0.
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Thus, the FTS (the triple system on which the FGT is based) turns out to be related

to the quaternionic level of Faulkner’s construction [35] of triple systems from pairs (g,V),

which has been recently re-analyzed by [36, 37, 69] within D = 3 SC CSM gauge theories.

An important difference with the latter framework is the fact that, in the treatment of

the present paper, FTS is defined on the ground field R (recall footnote 1); this constrains

the pair (g,V) = (g,K) such that V is a real representation space of the (non-compact)

real algebra g; some examples, related to conformal symmetries of JTS J = Ĵ, are reported

in table 1. As mentioned in section 3.3, we point out that this is not inconsistent with the

physical constraint on matter representations in D = 3 SC CSM gauge theories; indeed,

V = W is always assumed to possess a positive-definite inner product (for unitarity of

the corresponding gauge theory), but CS gauge fields are not propagating (and they are in

Adj (g)), and therefore g does not necessarily have to be endowed with a positive-definite

product, thus allowing for non-compact (real) forms of g.

The expression (5.2) of the FTS structure constants’ tensor fabcd (or, equivalently,

for the rank-4 g-invariant structure in W in (g,V = W)-based Faulkner’s construction of

triple systems [35]) entails two “extremal” cases:

1. The case in which fabcd is completely symmetric (and therefore Freudenthal duality

F (2.25) can be consistently introduced). This corresponds to b = 0 and (up to

redefinition) a = 1 in (5.2):

fabcd = f(abcd), (5.11)

which characterizes Brown’s definition [22] of (g,W) as a Lie algebra of type e7 (cfr.

axiom (b) in section 2.5). The corresponding triple system has been called quater-

nionic Lie triple system (qLTS ) in [37]. However, this triple system is not relevant

for application to (BLG-type) gauge theories. Indeed, for positive-definite W (as

assumed for unitarity of the corresponding gauge theory), fabcd is nothing but the

Riemann tensor of a symmetric hyper-Kähler manifold, which is Ricci-flat ; however,

any homogeneous Ricci-flat Riemannian manifold is actually Riemann-flat [84, 85].

Thus, a positive-definite W in qLTS (5.11) is necessarily the trivial representation

(cfr. corollary 6 in [37]). Remarkably, this result has a consistent interpretation in

the FTS framework. Indeed, it can be checked that (5.11), when plugged into the

FTS axiom (iii) (fundamental identity) and contracted with xaxbycyeyfyg, does

not yield the axiom (c) which defines a Lie algebra of type e7 [22]. In other words,

(g,W) of type e7 [22] is not consistent with the FTS introduced in sections 2.5–2.4;

in particular, the fundamental identity (iii) is not consistent with axiom (c) of Lie

algebras of type e7 [22]. As a consequence, the limit of the defining axioms (i)-(iv)

in which fabcd is taken to be completely symmetric (5.11) is ill defined; a non-trivial

λ → 0 limit in (i)-(iv) can still be implemented, but it yields an FTS which does

not fulfill the symmetry condition (5.11) [34].

2. The case in which fabcd lacks its completely symmetric part. This corresponds to

a = 0 and (up to redefinition) b = 1 in (5.2):

fabcd = ωa(cωd)b. (5.12)
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In this case the Freudenthal duality F (2.25) cannot be consistently introduced. The

corresponding triple system has been called anti-Lie triple system (aLTS ) in [37];

it characterizes N = 4 and N = 5 SC CSM gauge theories in D = 3, as thoroughly

analyzed in [37] (see also table 6 therein), by elaborating on previous literature

(see refs. therein). A prototypical case (treated in Example 1 of [41]) is provided

by a consistent limit of (5.6), given by26 (recall (2.6)) g = sp(f,R) and W = f

(fundamental irrep.). Since

S4f ≡ (f × f × f × f)s (5.13)

is irreducible in sp(f,R) and contains no singlets, it follows that f(abcd) = 0. On

the other hand, since Adj(sp(f,R)) = S2f ≡ (f × f)s, the definition (5.8) also yields

τ = 1, and therefore (5.12) is recovered from (5.6). It is worth remarking that in this

case the resulting FTS is not endowed with a manifestly JTS -covariant structure (2.1)

as in the original Freudenthal’s formulation [38–40]; the corresponding (super)gravity

theory in D = 4 can have at most27 N = 1 local supersymmetry, and has a (non-

special) Kähler scalar coset with algebra sp (f,R)⊖ u(f/2) (upper Siegel half-plane).

The general triple system under consideration, which interpolates between qLTS (5.11)

and aLTS (5.12), is endowed with an fabcd given by (5.2) with both a and b non-vanishing.

As anticipated, among SC CSM gauge theories in D = 3, this is consistent only with

N = 3 (see e.g. [37], and refs. therein), which is thus the only amount of (global)

supersymmetry for which Freudenthal duality F (2.25) could a priori be implemented,

even if its enforcement as a global (off-shell) symmetry is in contrast with supersymmetry

itself, as implied by the No-Go theorem proved in section 4.2.

It is worth observing that this general case is also consistent with the “extension”

of the definition of Lie algebras of type e7 (based on axioms (â)-(ĉ) above); indeed, up

to some redefinitions, the real parameters a and b can always be chosen such that (5.2),

when plugged into the FTS axiom (iii) and contracted with xaxbycyeyfyg, does yield the

axiom (ĉ) introduced above; the term ωa(cωd)b plays a key role in this result.

The above treatment hints for the existence of a class of N = 3, D = 3 SC CSM gauge

theories in which the gauge Lie algebra and its matter representation are given by

(g,V) =
(
conf

(
Ĵ
)
,R
)
, (5.14)

namely they are respectively given by the conformal symmetries of rank-3, Euclidean

Jordan algebras, and by their relevant symplectic irreps. R, as reported in table 1.

In this respect, by recalling section 3.5, N = 3, D = 3 SC CSM gauge theories based

on (5.14) share the same symmetry (with different physical meanings) of two other distinct

classes of theories:

• D = 4 Maxwell-Einstein (super)gravity theories (ME(S)GT) (with various amount

N of local supersymmetry) having symmetric scalar manifolds, as discussed in

section 3.5 (and reported in table 1);

26Recall that, under the assumption that ω is non-degenerate, f is even.
27In this theory, the consistency of N = 1 local supersymmetry with a symplectic structure of electric

and magnetic fluxes has been studied e.g. in [53]; see also [86].
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• D = 3 Freudenthal gauge theories (FGT’s) based on an FTS K ∼ R
(
conf

(
Ĵ
))

.

The consistency of FGT with (global) supersymmetry is an important difference

with respect to N = 3 SC CSM gauge theories. Indeed, the No-Go Theorem proved

in section 4.2 essentially states that global (off-shell) Freudenthal duality is not

consistent with a non-trivial coupling to space-time vector/spinor fields, which in

turn is a necessary condition for supersymmetry.

These relations among N = 3, D = 3 SC CSM gauge theories, D = 4 ME(S)GT’s and

FGT’s can actually be extended to the general case in which the pair (g,V = W) defines

a generic FTS (based on axioms (i)-(iv)) corresponding, in the sense outlined above, to

the “quaternionic level” of Faulkner’s construction [35–37, 69, 72].

We plan to investigate this interesting interplay of symmetries in future work [34]

(also in view of possible AdS/CFT applications). In particular, as anticipated above,

when disregarding the global (off-shell) Freudenthal duality, it would be interesting to

consider the consistency of (D = 3) FGT as an alternative, purely bosonic sector of the

corresponding N = 3, D = 3 SC CSM gauge theory. In fact, as analyzed in section 3.3,

in FGT the non-vanishing of f(abcd) allows for terms in the Lagrangian which differ from

the usual ones in BLG theories; for instance, the simplest FGT scalar potential is quartic

in the scalar fields (essentially given by ∆ (2.21); see (3.29)), whereas in BLG theories it

is of order six (see e.g. (19) of [10]).

6 Concluding remarks

In this paper, we have introduced the Freudenthal Gauge Theory (FGT), a gauge theory

invariant under two off-shell symmetries: a local, gauge symmetry constructed from

a Freudenthal Triple System (FTS ) K, and a global symmetry based on the so-called

Freudenthal Duality (F-duality) F .

We have presented the most general bosonic action invariant under these two sym-

metries, containing a single K-valued scalar field φ(x) and a gauge field Aab
µ (x) ∈ K ⊗S K.

The algebraic structure of the FTS ensures that the FGT is well defined and has the

required properties.

One of the building blocks of FGT is the F-duality F , which is a non-linear

anti-involutive duality (F2 = −Id) which gives, up to a sign, a one-to-one pairing of

elements in K.

In section 4, we have also analyzed the possibility of generalizing the simple setup

presented in section 3 by coupling to space-time vector and/or spinor fields, which is

a necessary condition for supersymmetry and is usually a relatively simple step in the

construction of gauge theories. Within the assumption28 that Freudenthal duality F can be

defined only for algebraic systems satisfying the FTS axioms (i)-(iv) (see subsection 2.3)

we have proved a No-Go theorem (which holds true if the metric of the system is non-

degenerate), which essentially forbids the coupling to space-time vector and/or spinor fields.

28We leave the possible relaxation of the assumptions on F and/or on the metric of the algebraic system

to further future investigation. Concerning the case of degenerate metric, see also footnote 19.
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However, we point out that such a coupling is possible at least if one relaxes the require-

ment of invariance under F-duality. Despite the fact that in our treatment there is, a priori,

no restriction on the space-time dimension D, non-compact gauge Lie algebras g generally

yield non-unitary theories in D > 4 (cfr. the remark below (3.33)). However, in D = 3

this is no more a problem, and the resulting (non-Freudenthal-invariant) FGT can contain

both bosonic and fermionic degrees of freedom together with the Chern-Simons term.

In D = 3, some intriguing similarities (and important differences) between FGT and

superconformal (SC) Chern-Simons-matter (CSM) gauge theories with N = 3 global su-

persymmetry have been discussed in section 5. Indeed, among SC CSM gauge theories in

D = 3, a generic FTS is only consistent for N = 3 (see e.g. [37], and refs. therein), which

is thus the only amount of (global) supersymmetry for which Freudenthal duality F (2.25)

could a priori be implemented, even if its enforcement as a global (off-shell) symmetry is in

contrast with supersymmetry itself, as implied by the No-Go theorem proved in section 4.2.

It is worth recalling here that our treatment hints for the existence of a class of N = 3,

D = 3 SC CSM gauge theories in which the gauge Lie algebra is given by (5.14), namely

by the conformal algebras g = conf
(
Ĵ
)
of rank-3, Euclidean Jordan algebras, and by their

relevant symplectic irreps. R, as reported in table 1. In this respect, such N = 3, D = 3

SC CSM gauge theories share the same symmetry (with different physical meanings) of

two other distinct classes of theories: I] D = 4 Maxwell-Einstein (super)gravity theories

(ME(S)GT) (with various amount N of local supersymmetry) with symmetric scalar

manifolds, as discussed in section 3.5 (and reported in table 1); II] D = 3 FGT’s based on

an FTS K ∼ R
(
conf

(
Ĵ
))

.

These relations among N = 3, D = 3 SC CSM gauge theories, D = 4 ME(S)GT’s and

D = 3 FGT’s can actually be extended to the general case in which the pair (g,V = W)

defines a generic FTS (based on axioms (i)-(iv)) corresponding, as discussed in section 5,

to the “quaternionic level” of Faulkner’s construction [35–37, 69, 72].

We plan to investigate this interesting interplay of symmetries in future work [34] (also

in view of possible AdS/CFT applications). In particular, when disregarding the global

(off-shell) Freudenthal duality, it will be interesting to consider the consistency of D = 3

FGT as an alternative, purely bosonic sector of the corresponding N = 3, D = 3 SC

CSM gauge theory. In fact, as analyzed in section 3.3, in FGT the non-vanishing of f(abcd)
allows for terms in the Lagrangian which differ from the usual ones in BLG theories; for

instance, the simplest FGT scalar potential is quartic in the scalar fields (essentially given

by ∆ (2.21); see (3.29)), whereas in BLG theories it is of order six (see e.g. (19) of [10]).

The close relation between the particular class K
(
Ĵ
)

of FTS ’s and exceptional Lie

algebras g (discussed in sections 2.1 and 3.4) could also be used to investigate the possible

relation (duality? ) between FGT and Yang-Mills gauge theory with exceptional gauge Lie

algebra g. This is certainly possible, but one should recall that exceptional Lie groups can-

not be embedded into standard matrix groups, and thus the resulting Yang-Mills theory

would not have the standard Maxwell term constructed from trace over matrices. Geo-

metrically, a better way to understand this model is by noting that the exceptional Lie

groups can be embedded as matrix groups over octonions O [74]; thus, the K
(
Ĵ
)
-based

FGT would be dual to a standard Yang-Mills theory over29 O.

29For similar formulations, see e.g. [75–77], and refs. therein.
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The present investigation proved the quartic polynomial ∆ (2.21) to be invariant not

only under Freudenthal duality F (2.25), but also under the (global or gauged) transforma-

tion based on the FTS triple product (2.11). It will be interesting to investigate the physical

meaning of such an invariance of ∆ e.g. within black hole physics [23] and flux compactifi-

cations [79], in which ∆ occurs in relation respectively to the Bekenstein-Hawking [32, 33]

black hole entropy and to the cosmological constant. Interesting recent advances on

Freudenthal duality [68, 87] might also lead to further developments in understanding FGT.

Finally, we would like to point out that the FTS has another intriguing geometrical

interpretation in terms of the so-calledmetasymplectic geometry, introduced decades ago by

Freudenthal [38] [88]. In such a geometric framework, two points can define, instead of a line

passing through them as in the standard geometry, two more relations, called interwoven

and hinged. Furthermore, to each set of points there corresponds a set of dual geometrical

objects called symplecta, satisfying relations which are dual to the aforementioned three

ones among the points. In this bizarre geometrical setup, the FTS axioms acquire a natural

geometrical interpretation, and the relation to the exceptional Lie algebras becomes more

transparent. We leave the possible physical interpretation of such a fascinating geometry

within FGT for further future investigation.
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A Freudenthal duality

In this appendix, generalizing the treatment of [23] (in turn referring to [22]) to a generic

FTS K (see also [24]), we present the proof that the quartic polynomial ∆(φ) (2.21) is

invariant under the Freudenthal duality F (2.25).

By recalling definition (2.13), we can restate the derivation property (FTS axiom

(iii′)) as follows:

[LφLφM
,LφIφJ

]φK = L(φLφMφI)φJ
φK + LφI(φLφMφJ )φK . (A.1)

Since this equation is true for any element φK ∈ K, it is true as an operator equation for

LφIφJ
. Setting I = J = L = M , we find that

[Lφφ,Lφφ] = LT (φ)φ + LφT (φ) = 2LφT (φ) (A.2)
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where the FTS axiom (i) of subsection 2.3 has been used. Since the commutator of an

operator with itself must vanish, the above equation must be equal to zero:

LφT (φ) = 0 (A.3)

This means, again by the derivation property of L, that both LT (φ)φ and LφT (φ) act like

annihilation operators on any element φK ∈ K.

Then, by recalling the definition (2.21), from the FTS axiom (ii) of subsection 2.3

one obtains:

LT (φ)T (φ)φ = T (φ)T (φ)φ

= T (φ)φT (φ) + 2λ 〈T (φ), φ〉T (φ) + λ 〈T (φ), φ〉T (φ)− λ 〈T (φ), T (φ)〉φ
= 6λ∆(φ)T (φ); (A.4)

LφφT (φ) = φφT (φ) = −6λ∆(φ)φ. (A.5)

Consequently, the direct evaluation of T (T (φ)) reads:

T (T (φ)) = LT (φ)T (φ)T (φ) = 6λ∆(φ)
(
T (φ)φφ+ φT (φ)φ+ φφT (φ)

)

= −
(
6λ∆(φ)

)2
φ. (A.6)

From result (A.6), by assuming 6λ∆(φ) 6= 0 (see discussion in subsection 2.5, in particular

point (III)), one can check that the following two statements hold true:

1. The Freudenthal duality F (2.25) is an anti-involution in the FTS K, namely it

squares to negative identity (cfr. (2.27) and point (I) of subsection 2.5):

F2 ≡ F ◦ F = −Id. (A.7)

2. The quartic polynomial ∆(φ) (2.21) is invariant under the Freudenthal duality

F (2.25), namely (cfr. (2.26))

∆(φ) = ∆(φ̃), q.e.d. �

B Space-time symmetry of scalar kinetic term

In order to prove the symmetry (3.31) of the FGT kinetic scalar term under the exchange

of its space-time indices, one needs to re-write it only in terms of the K-valued scalar field

φ(x), by recalling the definitions (2.21) and (2.25) of the quartic polynomial ∆ (φ) and of

F-dual field φ̃(x).

One starts by computing the FTS gauge covariant derivative of φ̃(x), as follows:

Dµφ̃(x) = sgn (∆(φ))
1√
6
Dµ

(
T (φ)√
|λ∆(φ)|

)

=
sgn (∆(φ))√
6|λ∆(φ)|

[
3LφφDµφ+ 6λ〈Dµφ, φ〉φ+

〈Dµφ, T (φ)〉
∆(φ)

T (φ)

]
(B.1)
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As an aside, notice that the ∆(φ) in the denominator of the last term does not have absolute

signs attached to it. Plugging this expression into the kinetic term (prior to contraction

with ηµν) yields its following explicit re-writing only in terms of φ(x):

1

2
〈Dµφ,Dν φ̃〉 =

sgn (∆(φ))

2
√
6|λ∆(φ)|

[
3〈Dµφ,LφφDνφ〉+ 6λ〈Dµφ, φ〉〈Dνφ, φ〉

+
1

∆(φ)
〈Dµφ, T (φ)〉〈Dνφ, T (φ)〉

]
. (B.2)

On the other hand, the second and third term of (B.2) are manifestly symmetric under

µ ↔ ν, the symmetry of the first term can be proved as follows:

〈Dµφ,LφφDνφ〉 = −〈LφφDµφ,Dνφ〉 = 〈Dνφ,LφφDµφ〉, (B.3)

thus implying the result (3.31). �

C Axioms of V

As discussed in subsection 4.2, we report here the five axioms induced on V by the five

axioms (o)-(iv) of the algebra N (in addition to the ones already introduced on V for

other physical reasons, such as the ones required by the Bose and/or Fermi statistics for

the fields vI ∈ V). In particular, in the proof of the no-go theorem in subsection 4.2, a

crucial role is played by axioms (B. iii) and (B. ii).

(B. o) (vI , vJ)V = (vJ , vI)V ;

(B. i) [vI , vJ , vK ]
V
= [vJ , vI , vK ]

V
;

(B. ii) (φIφJφK)⊗
(
[vI , vJ , vK ]

V
− [vI , vK , vJ ]V

)

= 〈φJ , φK〉φI ⊗
(
2µ (vJ , vK)

V
× vI − 2λ [vI , vJ , vK ]

V

)

+〈φI , φK〉φJ ⊗
(
µ (vI , vK)

V
× vJ − λ [vI , vJ , vK ]

V

)

−〈φI , φJ〉φK ⊗
(
µ(vI , vJ)V × vK − λ [vI , vJ , vK ]

V

)
;

(B. iii) 0 = (φLφMφI)φJφK ⊗
([

vL, vM , [vI , vJ , vK ]
V

]
V
−
[
[vL, vM , vI ]V , vJ , vK

]
V

)

+φI(φLφMφJ)φK ⊗
([

vL, vM , [vI , vJ , vK ]
V

]
V
−
[
vI , [vL, vM , vJ ]V , vK

]
V

)

+φIφJ(φLφMφK)⊗
([

vL, vM , [vI , vJ , vK ]
V

]
V
−
[
vI , vJ , [vL, vM , vK ]

V

]
V

)
;

(B. iv)
(
[vL, vM , vI ]V , vJ

)

V

+
(
vI , [vL, vM , vJ ]V

)

V

= 0.
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