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Abstract

The pT-differential inclusive production cross section of the prompt charm-strange meson D+
s in the

rapidity range|y| < 0.5 was measured in proton–proton collisions at
√

s = 7 TeV at the LHC using
the ALICE detector. The analysis was performed on a data sample of 2.98×108 events collected with
a minimum-bias trigger. The corresponding integrated luminosity isLint = 4.8 nb−1. Reconstructing
the decay D+s → φπ+, with φ → K−K+, and its charge conjugate, about 480 D±

s mesons were
counted, after selection cuts, in the transverse momentum range 2< pT < 12 GeV/c. The results are
compared with the prediction of a model based on perturbative QCD. The ratios of the cross sections
of four D meson species (namely D0, D+, D∗+ and D+s ) were determined both as a function ofpT

and integrated overpT after extrapolating to fullpT range, together with the strangeness suppression
factor in charm fragmentation. The obtained values are found to be compatible within uncertainties
with those measured by other experiments in e+e−, ep and pp interactions at various centre-of-mass
energies.
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1 Introduction

The measurement of open charm production in proton–proton (pp) collisions at the Large Hadron Col-
lider (LHC) provides a way to test predictions of quantum chromodynamics (QCD) at the highest avail-
able collision energies. Charm and beauty production cross sections canbe computed in perturbative
QCD (pQCD) using the factorization approach [1, 2]. In this scheme, cross sections are computed as a
convolution of three terms: the parton distribution functions of the incoming protons, the partonic hard
scattering cross section, and the fragmentation process. The partonic hard scattering cross section is
computed through a perturbative calculation [1, 2], while the parton distribution functions and the frag-
mentation process are parametrized on experimental data. In particular, thefragmentation describes the
non-perturbative transition of a charm quark to a hadron. It is modeled by a fragmentation function,
which parametrizes the fraction of quark energy transferred to the produced hadron, and by the fragmen-
tation fractions,f (c→ D), which describe the probability of a charm quark to hadronize into a particular
hadron species.

The production of prompt D0, D+ and D∗+ mesons in pp collisions at
√

s= 7 TeV was measured with the
ALICE detector at two centre-of-mass energies, namely 7 and 2.76 TeV [3,4]. Here, ‘prompt’ indicates D
mesons produced at the pp interaction point, either directly in the hadronization of the charm quark or in
strong decays of excited charm resonances. The contribution from weak decays of beauty mesons, which
give rise to feed-down D mesons displaced from the interaction vertex, was subtracted. The measuredpT-
differential cross sections for prompt D0, D+ and D∗+ are described within uncertainties by theoretical
predictions based on pQCD at next-to-leading order (e.g. in the general-mass variable-flavour-number
scheme, GM-VFNS [6]) or at fixed order with next-to-leading-log resummation (FONLL [5]). The
central value of the GM-VFNS predictions for these three mesons lies systematically above the data. On
the other hand, the data tend to be higher than the central value of the FONLLpredictions, as it was
observed at lower collision energies, namely at the Tevatron [7, 8], where hadronic decays of D mesons
were reconstructed, and at RHIC, where measurements of electrons from semileptonic D and B decays
were performed [9,10].

The measurement of thepT-differential prompt D+s meson production is of particular interest due to its
strange valence quark content. The D+

s production cross section in hadronic collisions was measured at
lower energies at the Tevatron collider in the transverse momentum (pT) range 8< pT < 12 GeV/c [7].
Preliminary results for D+s production at the LHC were reported by the LHCb Collaboration for prompt
mesons at forward rapidity [11] and by the ATLAS Collaboration at central rapidity [12]. The LHCb
Collaboration also measured the asymmetry between prompt D+

s and D−s production in the rapidity
region 2< y < 4.5 and for transverse momentapT > 2 GeV/c, observing a small excess of D−s mesons:
AP= (σ(D+

s )−σ(D−
s ))/(σ(D+

s )+σ(D−
s )) = (−0.33±0.22±0.10)% [13]. Such a particle-antiparticle

production asymmetry is understood in phenomenological models as due to the effect of the beam
remnants on the heavy-quark hadronization, see e.g. [14].

Charm production has been measured in ep interactions at the HERA colliderby the ZEUS [15] and
H1 [16] Collaborations, as well as in e+e− annihilations, at the Z0 resonance, by the ALEPH [17],
DELPHI [18] and OPAL [19] Collaborations, and at centre-of-mass energies of about 10 GeV by the
CLEO [20] and ARGUS [21] Collaborations.

As far as theoretical models are concerned, a calculation of the D+
s production cross section within

the FONLL framework is not available, because of the poor knowledge ofthe parton fragmentation
function. The measured data points can be compared with the GM-VFNS prediction that uses meson
specific fragmentation functions [22].

From the differential production cross section of prompt D0, D+, D∗+ and D+s mesons, the relative
production yields of the D meson species can be studied as a function of transverse momentum. ApT

dependence is expected for these ratios, due to differences in the fragmentation function of the charm
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quark in the four considered meson species, and because of the different contributions from decays of
higher excited states. In this sense, the measurement of the ratios between the D meson species can
provide information on the fragmentation functions that can be used in the pQCD models based on the
factorization approach. The suppression of strange meson productionin the charm fragmentation is
quantified by the strangeness suppression factor,γs, which is computed from the measured D0, D+ and
D+

s cross sections extrapolated to fullpT range, as defined in Section 6. The values measured at the LHC
can be compared with those measured for different energies and different colliding systems [23].

Furthermore, the measurement of D+
s in pp collisions provides a reference for the studies of charm

production in heavy-ion collisions. According to QCD calculations on the lattice, under the conditions
of high energy-density and temperature that are reached in these collisions, the confinement of quarks
and gluons into hadrons vanishes and a transition to a Quark-Gluon Plasma (QGP) occurs [24]. Charm
hadrons are a powerful tool to study the properties of the QCD medium created in these collisions [25–
27]. In particular, the D+s meson is sensitive to strangeness production in heavy-ion collisions. Strange
quarks are abundant in the QGP, resulting in an enhanced production ofstrange particles with respect
to pp collisions [28–31]. Hence, at low momentum, the relative yield of D+

s mesons with respect
to non-strange charm mesons (such as D0 and D+) is predicted to be enhanced in nucleus-nucleus
collisions [32–34], if the dominant mechanism for D meson formation at low/intermediate momenta
is in-medium hadronization of charm quarks via coalescence with strange quarks [35–37].

In this paper, we report on the measurement of D+
s production cross section in pp collisions at

√
s = 7 TeV

with the ALICE detector at the LHC. D+s mesons were reconstructed through their hadronic decay chan-
nel D+

s → φπ+ with a subsequent decayφ → K−K+. ThepT-differential cross section is measured over
a range of transverse momentum extending from 2 GeV/c up to 12 GeV/c at central rapidity,|y|< 0.5.
In Section 2, the detector layout and the data sample are described. This is followed, in Section 3, by
the description of the D+s meson reconstruction strategy, the selection cuts, and the raw yield extraction
from the invariant mass distributions. The various corrections applied to obtain the production cross sec-
tions are illustrated in Section 4. This also includes the estimation of the fraction ofpromptly produced
D+

s mesons. The various sources of systematic uncertainties are discussed indetail in Section 5. The
results on thepT-differential cross section compared with pQCD theoretical predictions, the D meson
production ratios, and the strangeness suppression factor are presented in Section 6.

2 Detector layout and data collection

The ALICE detector is described in detail in [38]. It is composed of a central barrel, a forward muon
spectrometer, and a set of forward detectors for triggering and eventcharacterization. The detectors of
the central barrel are located inside a large solenoid magnet that provides a magnetic field B= 0.5 T,
parallel to the beam line.

D+
s mesons, and their charge conjugates, were reconstructed in the centralrapidity region from their

decays into three charged hadrons (K−K+π+), utilizing the tracking, vertexing and particle identification
capabilities of the central barrel detectors.

The trajectories of the decay particles were reconstructed from their hits inthe Inner Tracking System
(ITS) and in the Time Projection Chamber (TPC) detectors in the pseudo-rapidity range|η | < 0.8. The
ITS [39] consists of six cylindrical layers of silicon detectors with radii in the range between 3.9 cm
and 43.0 cm. The two innermost layers are equipped with Silicon Pixel Detectors (SPD), Silicon Drift
Detectors (SDD) are used in the two intermediate layers, while the two outermostlayers are composed
of double-sided Silicon Strip Detectors (SSD). The ITS, thanks to the high spatial resolution of the
reconstructed hits, the low material budget (on average 7.7% of a radiationlength for tracks atη = 0),
and the small distance of the innermost layer from the beam vacuum tube, provides the capability to
detect the secondary vertices originating from heavy flavour decays.For this purpose, a key role is
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played by the two layers of SPD detectors, which are located at radial positions of 3.9 and 7.6 cm from
the beam line and cover the pseudo-rapidity ranges|η |< 2.0 and|η |< 1.4, respectively. The TPC [40]
provides track reconstruction with up to 159 space points per track in a cylindrical active volume of about
90 m3. The active volume has an inner radius of about 85 cm, an outer radius ofabout 250 cm, and an
overall length along the beam direction of 500 cm.

Particle identification (PID) is provided by the measurement of the specific ionization energy loss, dE/dx,
in the TPC and of the flight time in the time-of-flight (TOF) detector. The dE/dx samples measured by
the TPC are reduced, by means of a truncated mean, to a Gaussian distribution with a resolution of
σdE/dx/(dE/dx) ≈ 5.5% [40]. The TOF detector is positioned at 370–399 cm from the beam axisand
covers the full azimuth for the pseudo-rapidity range|η | < 0.9. The particle identification is based
on the difference between the measured time-of-flight and its expected value, computed for each mass
hypothesis from the track momentum and length. The overall resolution on thisdifference is about
160 ps and it includes the detector intrinsic resolution, the contribution from the electronics and the
calibration, the uncertainty on the start time of the event (i.e. the time of the collision), and the tracking
and momentum resolution. The start time of the event is defined as the weighted average between the one
estimated using the particle arrival times at the TOF [41] and the one measuredby the T0 detector. The
T0 detector is composed of two arrays of Cherenkov counters located oneither side of the interaction
point at+350 cm and−70 cm from the nominal vertex position along the beam-line. In this analysis,
the time-of-flight measurement provides kaon/pion separation up to a momentumof about 1.5 GeV/c.

The data sample used for the analysis consists of 298 million minimum-bias (MB) pp collisions at√
s = 7 TeV, corresponding to an integrated luminosityLint = 4.8 nb−1, collected during the 2010

LHC run period. The minimum-bias trigger was based on the information of the SPD and the VZERO
detectors. The VZERO detector is composed of two arrays of scintillator tiles with full azimuthal
coverage in the pseudo-rapidity regions 2.8< η < 5.1 and−3.7< η <−1.7. Minimum-bias collisions
were triggered by requiring at least one hit in either of the VZERO counters or in the SPD (|η | < 2),
in coincidence with the arrival of proton bunches from both directions. This trigger was estimated to
be sensitive to about 87% of the pp inelastic cross section [42, 43]. It was verified by means of Monte
Carlo simulations based on the PYTHIA 6.4.21 event generator [44] (with Perugia-0 tune [45]) that
the minimum-bias trigger is 100% efficient for events containing D mesons withpT > 1 GeV/c and
|y| < 0.5 [3]. Events were further selected offline to remove the contamination frombeam-induced
background using the timing information from the VZERO and the correlation between the number of
hits and track segments (tracklets) in the SPD detector.

During the pp run, the luminosity in the ALICE experiment was limited to 0.6–1.2×1029 cm−2s−1 by
displacing the beams in the transverse plane by 3.8 times the r.m.s. of their transverse profile, thus keeping
the probability of collision pile-up below 4% per triggered event. The luminous region, measured from
the distribution of the reconstructed interaction vertices, had an r.m.s. width ofabout 4–6 cm along the
beam direction and 35–50µm in the transverse plane (the quoted ranges originate from the variations
of the beam conditions during the data taking). Only events with a vertex found within ±10 cm from
the centre of the detector along the beam line were used for the analysis. This requirement selects
a region where the vertex reconstruction efficiency is independent of itsposition along the beam line
and it provides almost uniform acceptance for particles within the pseudo-rapidity range|η |< 0.8 for all
events in the analyzed sample. Pile-up events were identified by the presence of more than one interaction
vertex reconstructed by matching hits in the two SPD layers (tracklets). An event was rejected from the
analyzed data sample if a second interaction vertex was found, it had at least 3 associated tracklets, and
it was separated from the first one by more than 8 mm. The remaining undetected pile-up is negligible
for the analysis described in this paper.
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3 D+
s meson reconstruction and selection

D+
s mesons and their antiparticles were reconstructed in the decay chain D+

s → φπ+ (and its charge
conjugate) followed byφ → K−K+. The branching ratio (BR) of the chain D+s → φπ+ → K−K+π+ is
2.28± 0.12% [46]. It should be noted that other D+

s meson decay channels can give rise to the same

K−K+π+ final state. Among them, those with larger BR are D+
s → K

∗0
K+ and D+s → f0(980)π+, with

BR into the K−K+π+ final state of 2.63±0.13% and 1.16±0.32%, respectively. However, as it will
be discussed in the following, the selection efficiency for these decay modes is strongly suppressed by
the cuts applied to select the signal candidates, and therefore the measured yield is dominated by the
D+

s → φπ+ → K−K+π+ decays.

D+
s mesons have a mean proper decay lengthcτ = 150±2 µm [46], which makes it possible to resolve

their decay vertex from the interaction (primary) vertex. The analysis strategy for the extraction of
the signal from the large combinatorial background can therefore be based on the reconstruction and
selection of secondary vertex topologies with significant separation fromthe primary vertex.

D+
s meson candidates were defined from triplets of tracks with proper chargesign combination. Tracks

were selected requiring|η | < 0.8, pT > 0.4 GeV/c, a minimum of 70 associated space points in the
TPC,χ2/ndf< 2 for the track momentum fit in the TPC, and at least 2 associated hits in the ITS,out of
which at least one has to be in either of the two SPD layers. For tracks that satisfy these TPC and ITS
selection criteria, the transverse momentum resolution is better than 1% atpT = 1 GeV/c and about 2%
at pT = 10 GeV/c. The resolution on the track impact parameter (i.e. the distance of closest approach
of the track to the primary interaction vertex) in the bending plane (rφ ) is better than 75µm for pT > 1
GeV/c, well reproduced in Monte Carlo simulations [3].

For each D+s candidate, in order to have an unbiased estimate of the interaction vertex, theevent primary
vertex was recalculated from the reconstructed tracks after excluding the candidate decay tracks. The
secondary vertex was reconstructed from the decay tracks with the samealgorithm used to compute the
primary vertex [3]. The position resolution on the D+

s decay vertices was estimated via Monte Carlo
simulations to be of the order of 100µm for each of the three coordinates with little dependence onpT.
The resolution on the position of the primary vertex depends on the event multiplicity: for the transverse
coordinates, where the information on the position and spread of the luminousregion is used to constrain
the vertex fit, it ranges from 40µm in low-multiplicity events to about 10µm in events with 40 charged
particles per unit of rapidity.

Candidates were then filtered by applying kinematical and topological cuts together with particle iden-
tification criteria. With the track selection described above, the acceptance inrapidity for D mesons
drops steeply to zero for|y|>∼0.5 at low pT and |y|>∼0.8 at pT

>∼5 GeV/c. A pT-dependent fiducial
acceptance cut was therefore applied on the D meson rapidity,|y| < yfid(pT), wherepT is the D+s trans-
verse momentum. The cut value,yfid(pT), increases from 0.5 to 0.8 in the transverse momentum range
0< pT < 5 GeV/c according to a second-order polynomial function and it takes a constantvalue of 0.8
for pT > 5 GeV/c.

The topological selections were tuned to have a large statistical significanceof the signal, while keeping
the selection efficiency as high as possible. It was also checked that background fluctuations were not
causing a distortion in the signal line shape by verifying that the D+

s meson mass and its resolution were
in agreement with the Particle Data Group (PDG) value (1.969 GeV/c2 [46]) and the simulation results,
respectively. The resulting cut values depend on the transverse momentum of the candidate.

The candidates were selected according to the decay length and the cosineof the pointing angle, which
is the angle between the reconstructed D meson momentum and the line connectingthe primary and
secondary vertex. The three tracks composing the candidate triplet wererequired to have small distance
to the reconstructed decay vertex. In addition, D+

s candidates were selected by requiring that one of the
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Table 1: Measured raw yields, signal (S) over background (B) and statistical significance ( S/
√

S+B ) for D+
s and

their antiparticles in the four consideredpT intervals. The estimation of the systematic uncertainty onthe raw yield
is described in Section 5.

pT interval ND±
s raw ±stat.±syst. S/B (3σ ) Significance (3σ )

(GeV/c)
2–4 125±36±25 0.12 3.6
4–6 189±35±28 0.26 6.3
6–8 79±19±12 0.40 4.8
8–12 85±16±17 0.58 5.6

two pairs of opposite-charged tracks has an invariant mass compatible with the PDG world average for
the φ mass (1.019 GeV/c2 [46]). To further suppress the combinatorial background, the anglesθ ∗(π)
andθ ′(K) were exploited.θ ∗(π) is the angle between the pion in the KKπ rest frame and the KKπ flight
line, which is defined by the positions of the primary and secondary verticesin the laboratory frame.
θ ′(K) is the angle between one of the kaons and the pion in the KK rest frame. The cut values used
for the D+

s mesons with 2< pT < 4 GeV/c were: decay length larger than 350µm, cosθpointing> 0.94,
|Minv

K+K− −MPDG
φ |< 8 MeV/c2, cosθ ∗(π)< 0.95, and|cos3 θ ′(K)|> 0.1. A looser selection was applied

at higherpT due to the lower combinatorial background, resulting in a selection efficiency that increases
with increasingpT.

Particle identification selections, based on the specific energy loss, dE/dx, from the TPC and the time-
of-flight from the TOF detector, were used to obtain further reduction ofthe background. Compatibility
cuts were applied to the difference between the measured signals and thoseexpected for a pion or a
kaon. A track was considered compatible with the kaon or pion hypothesis if both its dE/dx and time-
of-flight were within 3σ from the expected values, with at least one of them within 2σ . Tracks without
a TOF signal were identified using only the TPC information and requiring a 2σ compatibility with
the expected dE/dx. Candidate triplets were required to have two tracks compatible with the kaon
hypothesis and one with the pion hypothesis. In addition, since the decay particle with opposite charge
sign has to be a kaon, a triplet was rejected if the opposite-sign track was not compatible with the kaon
hypothesis. This particle identification strategy preserves more than 90% ofthe D+

s signal and provides a
reduction of the combinatorial background under the D+

s peak by a factor of 10 in the lowestpT interval
(2< pT < 4 GeV/c), a factor of 5 in 4< pT < 6 GeV/c and a factor of 2 at higher transverse momenta.

For each candidate, two values of invariant mass can be computed, corresponding to the two possible
assignments of the kaon and pion mass to the two same-sign tracks. Signal candidates with wrong mass
assignment to the same-sign tracks would give rise to a contribution to the invariant mass distributions
that could potentially introduce a bias in the measured raw yield of D+

s mesons. It was verified, both in
data and in simulations, that this contribution is reduced to a negligible level by theparticle identification
selection and by the requirement that the invariant mass of the two tracks identified as kaons is compatible
with theφ PDG mass.

The raw signal yields were extracted by fitting the invariant mass distributionsin eachpT interval as
shown in Fig. 1. The fitting function consists of a sum of a Gaussian and an exponential function to
describe the signal and the background, respectively. For allpT intervals, the invariant mass range
used for the fit was 1.88< Minv

KKπ < 2.16 GeV/c2, chosen in order to exclude the region where the
background shape is affected by D+ → K−K+π+ decays (BR=0.265% [46]) that give rise to a bump
at the D+ invariant mass (1.870 GeV/c2 [46]). The mean values of the Gaussian functions in all
transverse momentum intervals were found to be compatible within the uncertainties with the PDG
world average for the D+s mass. The Gaussian widths are well reproduced in Monte Carlo simulations.
In Table 1 the extracted raw yields of D+s meson (sum of particle and antiparticle) are reported for
the different pT intervals, together with the signal-over-background (S/B) ratios and the statistical
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Figure 1: Invariant mass distributions for D+s candidates and charge conjugates in the four consideredpT intervals.
The fit functions described in the text are also shown. The values of mean (µ) and width (σ ) of the signal peak are
reported together with the signal counts (S).

significance, S/
√

S+B, with signal and background evaluated by integrating the fit functions in±3σ
around the centroid of the Gaussian.

4 Corrections

In order to obtain thepT-differential cross section for prompt (i.e. not coming from weak decays
of beauty mesons) D±s mesons, the raw yields obtained from the invariant mass analysis (ND±

s raw)
were corrected for the experimental acceptance, the reconstruction and selection efficiency, and for the
contribution to the D+s measured yield from B meson decay feed-down. The production cross section of
prompt D+s mesons was computed as:

dσD+
s

dpT

∣

∣

∣

∣

∣

|y|<0.5

=
1
2

1
∆y∆pT

fprompt·ND±
s raw

∣

∣

∣

|y|<yfid

(Acc× ε)prompt·BR·Lint
. (1)

where∆pT is the width of thepT interval,∆y (= 2yfid(pT)) is the width of the fiducial rapidity coverage
(see Section 3) and BR is the decay branching ratio (2.28% [46]). The factorfprompt is the prompt
fraction of the raw yield;(Acc× ε)prompt is the acceptance times efficiency of promptly produced D+

s
mesons. The efficiencyε accounts for vertex reconstruction, track reconstruction and selection, and for
D+

s candidate selection with the topological and particle identification criteria described in Section 3.
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Figure 2: Acceptance× efficiency for D+s mesons as a function ofpT, for prompt and feed-down D+s mesons (left
panel) and decays throughφ andK

∗0
intermediate resonant state (right panel).

The factor 1/2 accounts for the fact that the measured raw yields are the sum of D+
s and D−s , while the

cross section is given for particles only, neglecting the small particle-antiparticle production asymmetry
observed by LHCb [13]. The integrated luminosity,Lint = 4.8 nb−1, was computed from the number
of analyzed events and the cross section of pp collisions passing the minimum-bias trigger condition
defined in Section 2,σpp,MB = 62.2 mb [43, 47]. The value ofσpp,MB was derived from a van der Meer
scan [48] measurement, which has an uncertainty of 3.5%, mainly due to the uncertainties on the beam
intensities.

The acceptance and efficiency correction factors were determined using pp collisions simulated with the
PYTHIA 6.4.21 event generator [44] with the Perugia-0 tune [45]. Only events containing D mesons
were transported through the apparatus (using the GEANT3 transport code [49]) and reconstructed. The
luminous region distribution and the conditions (active channels, gain, noiselevel, and alignment) of all
the ALICE detectors were included in the simulations, considering also their evolution with time during
the 2010 LHC run.

The acceptance-times-efficiency for D+
s → φπ+ → K−K+π+ decays in the fiducial rapidity range de-

scribed in Section 3 are shown in the left panel Fig. 2 for prompt and feed-down D+
s mesons. The

acceptance-times-efficiency for the prompt mesons increases from about 1% in the lowest consideredpT

interval up to 10–15% at highpT. For D+
s mesons from B decays, the efficiency is larger by a factor

1.5–2 (depending onpT) because the decay vertices of the feed-down D mesons are more displaced from
the primary vertex and, therefore, they are more efficiently selected by thetopological cuts. The differ-
ence between the prompt and feed-down efficiencies decreases with increasingpT, because the applied
selections are looser in the higher transverse momentum intervals. The acceptance-times-efficiency for
prompt D+s mesons obtained without applying the particle identification selection is also shown to sin-
gle out the PID contribution to the overall efficiency. The used particle identification strategy preserves
more than 90% of the signal and does not show any significant dependence on D+s mesonpT in the range
considered in this analysis.

As discussed in Section 3, the decay of the D+
s meson into the K−K+π+ final state occurs via different

intermediate resonant states. The selection strategy used in this analysis requires that one of the
opposite-sign pairs of tracks composing the candidate triplet has an invariant mass compatible with the
φ meson. The decays D+s → φπ+ → K−K+π+ are therefore preferentially selected by the applied cuts.
Nevertheless, a fraction of the D+s decaying via another resonant state can pass the selection cuts. In the
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right panel of Fig. 2, the acceptance-times-efficiencies for prompt D+
s decaying to K−K+π+ final state

via aφ and aK
∗0

in the intermediate state are compared. The acceptance-times-efficiency forthe decay
chain D+s → K

∗0
K+ → K−K+π+ is smaller by a factor≈ 100 with respect to the decay throughφ , and it

is further reduced when applying the PID selection. Indeed, the PID allows the rejection of D+s decaying

via aK
∗0

that would pass the selection on the invariant mass of theφ in case of wrong assignment of the
mass (kaon/pion) to the two same-sign tracks.

The contribution to the inclusive raw yields due to D+
s from B feed-down was subtracted using the

beauty production cross section from the FONLL calculation [1, 5], the B→ D+
s decay kinematics from

the EvtGen package [50], and the Monte Carlo efficiencies for feed-down D+
s mesons. Before running

the EvtGen decayer, the B admixture cross section predicted by FONLL wassplit into that of B0, B+, B0
s

andΛb by assuming the samepT shape for all hadrons and the production fractions from [46], namely
40.1% of B0, 40.1% of B+, 10.5% of B0

s and 9.3% of beauty baryons. The resulting fraction of prompt
D+

s mesons,fprompt, depends on thepT interval, on the applied selection cuts, and on the parameters used
in the FONLL calculation for the B meson cross section. It ranges from 0.93in the lowest transverse
momentum interval (2< pT < 4 GeV/c) to≈ 0.87 at highpT (> 6 GeV/c).

5 Systematic uncertainties

The systematic uncertainties on the D+
s cross section are summarized in Table 2 for the consideredpT

intervals.

The systematic uncertainty on the yield extraction was defined as the full spread of the D+s yield values
obtained with different techniques to analyze the invariant mass distributionsin eachpT interval. The fit
was repeated in different mass ranges and by varying the function usedto describe the background. In
particular, first and second order polynomials were used instead of an exponential for the background.
In case of fitting in an extended mass range, a second Gaussian signal was included in the fit function to
account for the D+ → K−K+π+ decays. Furthermore, the yield extraction was repeated using a method
based on bin counting after subtraction of the background estimated from afit in the mass side bands.
The resulting uncertainty amounts to 15–20% depending on thepT interval, as detailed in Table 2.

The systematic uncertainty on the tracking efficiency (including the effect of the track selection) was
evaluated by comparing the probability of track finding in the TPC and track prolongation from the TPC
to the ITS in the data with those in the simulation, and by varying the track quality selections. The
estimated uncertainty is 4% per track, which results in 12% for the three-bodydecay of D+s mesons.

Another source of systematic uncertainty originates from the residual discrepancies between data and
simulation for the variables used to select the D+

s candidates. The distributions of these variables were
compared for candidates passing loose topological cuts, i.e. essentially background candidates, and
found to be well described in the simulation. The effect of the imperfect implementation of the detector
description in the Monte Carlo simulations was estimated by repeating the analysis with different sets of
cuts. The cut values were changed in order to vary the efficiency of signal selection by at least 20% in all
pT intervals. A systematic uncertainty of 15% was estimated from the spread of theresulting corrected
yields. Part of this uncertainty is due to residual detector misalignment effects not fully described in the
simulation. To estimate this contribution, the secondary vertices in the simulation were reconstructed
also after a track-by-track scaling of the impact parameter residuals with respect to their true value. In
particular, a scaling factor of 1.08, tuned to reproduce the impact parameter resolution observed in the
data (see [3]), was used. The resulting variation of the efficiency was found to be 4% in the lowestpT

interval used in this analysis and less than 1% forpT > 6 GeV/c. This contribution was not included
explicitly in the systematic uncertainty, because it is already accounted for in the cut variation study.

Due to the limited statistics, it was not possible to analyze separately D+
s and D−s candidates to verify the
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absence of biases coming from a different reconstruction efficiency for tracks with positive and negative
charge sign not properly described in the simulation1. This check was carried out for other D meson
species [3] without observing any significant difference between particle and antiparticle.

The systematic uncertainty induced by a different efficiency for particle identification in data and
simulation was evaluated by comparing the resultingpT-differential cross section with that obtained
using a different PID approach based on 3σ (instead of 2σ ) cuts on TPC dE/dx and time-of-flight
signals, which preserves almost 100% of the signal. In addition, the PID efficiency, was estimated by
comparing the reduction of signal yield due to the PID selection in data and in simulation, when the same
topological cuts are applied. Due to the limited statistical significance, this checkcould be performed in
data only for D+s candidates integrated over the transverse momentum range 4< pT < 12 GeV/c. From
these studies, a systematic uncertainty of 7%, independent ofpT, was assigned to the PID selection.

The contribution to the measured yield from D+
s decaying into the K−K+π+ final state via other resonant

channels (i.e. not via aφ meson) was found to be less than 1% due to the much lower selection efficiency,
as shown in the right panel of Fig. 2 for the case of the decay through aK

∗0
. The contamination from

other decay chains (all having smaller branching ratio than the two reportedin Fig. 2) was also found to
be negligible.

The effect on the selection efficiency due to the shape of the D+
s pT spectrum used in the simulation was

estimated from the relative difference between the Monte Carlo efficienciesobtained using two different
pT shapes, namely those from PYTHIA [44] with Perugia-0 tune [45] and from the FONLL pQCD
calculation [1,5]. The resulting contribution to the systematic uncertainty was found to be 3% in the two
lowestpT intervals, where the selection efficiency is stronglypT dependent, and 2% at higherpT.

The systematic uncertainty from the subtraction of feed-down D mesons wasestimated following the
same approach as used for D0, D+ and D∗+ mesons [3]. The contribution of the FONLL perturbative
uncertainties was included by varying the heavy-quark masses and the factorization and renormalization
scales,µF andµR, independently in the ranges 0.5< µF/mT < 2, 0.5< µR/mT < 2, with the constraint

0.5 < µF/µR < 2, wheremT =
√

p2
T +m2

c. The mass of the b quark was varied within 4.5 < mb <

5 GeV/c2. The uncertainty related to the B decay kinematics was estimated from the difference between
the results obtained using PYTHIA [44] instead of EvtGen [50] for the particle decays and was found to
be negligible with respect to the uncertainty on the B meson cross section in FONLL. Furthermore, the
prompt fraction obtained in eachpT interval was compared with the results of a different procedure in
which the FONLL cross sections for prompt and feed-down D mesons andtheir respective Monte Carlo
efficiencies are the input for evaluating the correction factor. Since FONLL does not have a specific
prediction for D+s mesons, four different approaches were used to compute thepT-differential cross
section of promptly produced D+s . The first two approaches used the FONLL prediction for the generic
admixture of charm hadrons and that for D∗+ mesons (the D∗+ mass being close to that of the D+

s )
scaled with the fragmentation fractions of charm quarks in the different hadronic species,f (c→ D),
measured by ALEPH [17]. The other two predictions for prompt D+

s were computed using thepT-
differential cross section of c quarks from FONLL, the fractionsf (c→ D) from ALEPH [17], and the
fragmentation functions from [51], which have one parameter,r. Two definitions were considered for
ther parameter: i)r = (mD −mc)/mD (mD andmc being the masses of the considered D meson species
and of the c quark, respectively) as proposed in [51]; ii)r = 0.1 for all mesons, as done in FONLL after
fitting the analytical forms of [51] to the D∗+ fragmentation function measured by ALEPH [52]. The
D∗+

s mesons produced in the c quark fragmentation were made to decay with PYTHIA and the resulting
D+

s were summed to the primary ones to obtain the prompt yield. For all the four predictions used for
prompt D+s cross section, the evaluation offprompt included the FONLL perturbative uncertainties from
the variation of the factorization and renormalization scales in the range quoted above and of the c quark

1The small particle-antiparticle asymmetry reported by the LHCb Collaboration [13] is negligible in this context.
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mass within 1.3< mc < 1.7 GeV/c2. The systematic uncertainty on the B feed-down was defined from
the envelope of the resulting values offprompt. The resulting uncertainties in the transverse momentum
intervals used in this analysis are about+ 5

−17% , as it can be seen in Table 2.

Finally, the results have global systematic uncertainties due to the D+
s → φπ+ → K−K+π+ branching

ratio (5.3% [46]) and to the determination of the cross section of pp collisions passing the minimum-bias
trigger condition (3.5%).

Table 2: Relative systematic uncertainties for the four consideredpT intervals.

pT interval (GeV/c)
2–4 4–6 6–8 8–12

Raw yield extraction 20% 15% 15% 20%
Tracking efficiency 12% 12% 12% 12%
Topological selection efficiency 15% 15% 15% 15%
PID efficiency 7% 7% 7% 7%
MC pT shape 3% 3% 2% 2%
Other resonant channels <1% <1% <1% <1%

Feed-down from B + 4
−18%

+ 4
−17%

+ 6
−15%

+ 5
−17%

Branching ratio 5.3%
Normalization 3.5%

6 Results

6.1 pT-differential D+
s cross section andD meson ratios

The inclusive production cross section for prompt D+
s mesons in four transverse momentum intervals in

the range 2< pT < 12 GeV/c is shown in Fig. 3. As discussed in section 4, the cross section reported
in Fig. 3 refers to particles only, being computed as the average of particlesand antiparticles under the
assumption that the production cross section is the same for D+

s and D−s . The vertical error bars represent
the statistical uncertainties, while the systematic uncertainties are shown as boxes around the data points.
The symbols are positioned horizontally at the centre of eachpT interval, with the horizontal bars
representing the width of thepT interval. In Table 3, the numerical values of the prompt D+

s production
cross section are reported together with the averagepT of D+

s mesons in each transverse momentum
interval. The〈pT〉 values were obtained from thepT distribution of the candidates in the D+s peak
region, after subtracting the background contribution estimated from the side bands of the invariant mass
distribution. The measured differential production cross section is compared to the theoretical prediction
from the GM-VFNS model [6, 53], which is found to be compatible with the measurements, within the
uncertainties. The central value of the GM-VFNS prediction corresponds to the default values of the
renormalization (µR) and factorization (µI andµF for initial- and final-state singularities, respectively)

scales, i.e. µR = µI = µF = mT, wheremT =
√

p2
T +m2

c, with mc = 1.5 GeV/c2. The theoretical
uncertainties are determined by varying the values of the renormalization andfactorization scales by
a factor of two up and down with the constraint that any ratio of the scale parameters should be smaller
than or equal to two [6]. The central value of the GM-VFNS prediction is higher than the measured point
by ≈ 50% in the firstpT interval, while in the other intervals it agrees with the data within≈ 15%. For
D0, D+ and D∗+ mesons measured by ALICE at the same pp collision energy [3], the centralvalue of
the GM-VFNS predictions was found to lie systematically above the data. As mentioned in Section 1,
predictions for the D+s production cross section within the FONLL framework are not available, due to
the poor knowledge of the fragmentation function for charm-strange mesons.

The ratios of thepT-differential cross sections of D+ and D∗+ to that of D0, taken from [3], are shown in
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Figure 3: (colour online)pT-differential inclusive cross section for prompt D+
s meson production in pp collisions

at
√

s = 7 TeV. The symbols are positioned horizontally at the centreof eachpT interval. The horizontal error
bars represent thepT interval width. The normalization uncertainty (3.5% from the minimum-bias cross section
and 5.3% from the branching ratio uncertainties) is not shown. Theoretical prediction from GM-VFNS [6] is also
shown.

the top panels of Fig. 4. In the bottom panels of the same figure, the ratios of the D+
s cross section

to the D0 and D+ ones are displayed. In the evaluation of the systematic uncertainties on the D
meson ratios, the sources of correlated and uncorrelated systematic effects were treated separately. In
particular, the contributions of the yield extraction, cut efficiency and PIDselection were considered
as uncorrelated and summed in quadrature. The systematic uncertainty on theB feed-down subtraction,
being completely correlated, was estimated from the spread of the cross section ratios obtained by varying
the factorization and renormalization scales and the heavy quark mass in FONLL coherently for all
mesons. The uncertainty on the tracking efficiency cancels completely in the ratios between production
cross sections of mesons reconstructed from three-body decay channels (D+, D∗+ and D+s ), while a 4%
systematic error was considered in the ratios involving the D0 mesons, which are reconstructed from
a two-particle final state. The D+s /D0 and D+s /D+ ratios were corrected for the different value of pp

Table 3: Production cross section in|y|< 0.5 for prompt D+s mesons in pp collisions at
√

s= 7 TeV, in pT intervals.
The normalization uncertainty (3.5% from the minimum-biascross section and 5.3% from the branching ratio) is
not included in the systematic uncertainties reported in the table.

pT interval 〈pT〉 dσ/dpT||y|<0.5 ±stat.±syst.

(GeV/c) (GeV/c) (µb GeV−1c)

2–4 2.7±0.4 19.8±6.1+5.7
−6.7

4–6 4.7±0.1 5.04±1.03+1.3
−1.5

6–8 6.8±0.1 1.01±0.28+0.26
−0.30

8–12 9.4±0.1 0.28±0.06+0.08
−0.09
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Figure 4: Ratios of D meson production cross sections as a function ofpT. Predictions from FONLL, GM-VFNS
and PYTHIA 6.4.21 with the Perugia-0 tune are also shown. ForFONLL and GM-VFNS three sets of curves
are shown, corresponding to the central, upper and lower values of the theoretical uncertainty band for the cross
section of the D meson species involved in the ratio.

minimum-bias cross section used in [3] and in this analysis2.

The predictions from FONLL (only for D0, D+ and D∗+ mesons), GM-VFNS, and the PYTHIA 6.4.21
event generator with the Perugia-0 tune are also shown. For all these model predictions, D mesons in the
rapidity range|y|< 0.5 were considered. In PYTHIA, the default configuration of the Perugia-0 tune for
charm hadronization was used.

The D+/D0 and D∗+/D0 ratios are determined in PYTHIA by an input parameter, PARJ(13), that defines
the probability that a charm or heavier meson has spin 1. In the Perugia-0 tune, this parameter is set to
0.54 from the measured fractions Pv of heavy flavour mesons produced in vector state, see e.g. [4, 23].
This setting results in an enhancement of the D+/D0 and a reduction of the D∗+/D0 ratios with respect to
those obtained with the default value, PARJ(13)=0.75, based on spin counting.

The D+
s /D0 and D+s /D+ ratios in PYTHIA are governed by another input parameter, PARJ(2), that

defines the s/u (s/d) quark suppression factor in the fragmentation process. In the Perugia-0 tune, PARJ(2)
is set to 0.2, which gives rise to a reduced abundance of D+

s mesons with respect to the default value of
0.3. With this parameter adjustment, PYTHIA with the Perugia-0 tune reproduces reasonably well the
value andpT shapes of the measured ratios involving D0, D+ and D∗+, while it slightly underestimates
the abundance of D+s mesons. The fact that PYTHIA with Perugia-0 tune underestimates the strangeness
production was already observed at the LHC in the light flavour sector [54,55].

2The preliminary pp minimum-bias cross section value of 62.5 mb, used in [3], was updated to 62.2 mb.
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In the Perugia 2011 tune [56], PARJ(13) is set to the same value (0.54) asin the Perugia-0 tune, while a
lower value of the strangeness suppression factor, PARJ(2)=0.19, isused. This results in the same values
of the Perugia-0 tune for the D+/D0 and D∗+/D0 ratios, and in slightly lower values for the D+s /D0 and
D+

s /D+ ratios.

The ratios of the FONLL and GM-VFNS predictions were computed assuming the perturbative uncer-
tainty to be fully correlated among the D meson species, i.e. using the same scalesfor the cross sections
at the numerator and at the denominator. Thus, the perturbative uncertainty cancels almost completely
in the ratio, as it can be seen in Fig. 4 where for both FONLL and GM-VFNS three sets of curves are
shown for each D meson ratio, corresponding to the central, upper and lower values of the theoretical
uncertainty band. The predictions from FONLL and GM-VFNS agree within uncertainties with the mea-
sured particle ratios. Indeed, in FONLL and GM-VFNS, the relative abundances of the various D meson
species are not predicted by the theory: the fragmentation fractionsf (c→ D) are taken from the exper-
imental measurements. On the other hand, in both the pQCD calculations, thepT dependence of the
ratios of the D meson production cross sections arises from the differentfragmentation functions used to
model the transfer of energy from the charm quark to a specific D meson species [22, 57, 58] and from
the different contribution from decays of higher excited states. The parton fragmentation models used in
the calculations provide an adequate description of the measured data. Themeasured D+s /D0 and D+s /D+

ratios do not show a significantpT dependence within the experimental uncertainties, thus suggesting a
small difference between the fragmentation functions of c quarks to strange and non-strange mesons. A
higher statistics data sample would be needed to conclude on a possiblepT dependence of the ratios of
strange to non-strange D meson cross sections.

6.2 pT-integrated D+
s cross section andD meson ratios

The visible cross section of prompt D+s mesons, obtained by integrating thepT-differential cross section
in the measuredpT range (2< pT < 12 GeV/c), is

σD+
s

vis = 53±12(stat.)+13
−15(syst.)±2(lumi.)±3(BR) µb.

The production cross section per unit of rapidity, dσ/dy, at mid-rapidity was computed by extrapolating
the visible cross section to the fullpT range. The extrapolation factor was extracted from the FONLL-
based predictions for the D+s pT-differential cross section described in Section 5. The extrapolation
factor was taken as the ratio between the total D+

s production cross section in|y| < 0.5 and the cross
section integrated in|y|< 0.5 and in thepT range where the experimental measurement is performed. In
particular, the central value of the extrapolation factor was computed fromthe prediction based on the
pT-differential cross section of c quarks from FONLL, the fractionsf (c→ D) from ALEPH [17], and the
fragmentation functions from [51] withr = 0.1. The uncertainty on the extrapolation factor was obtained
as a quadratic sum of the uncertainties from charm mass and perturbativescales, varied in the ranges
described above, and from the CTEQ6.6 parton distribution functions [59]. Furthermore, to account for
the uncertainty on the D+s fragmentation function, the extrapolation factors and their uncertainties were
also computed using the FONLL predictions for D0, D+ and D∗+ mesons and the envelope of the results
was assigned as systematic uncertainty. The resulting value for the extrapolation factor is 2.23+0.71

−0.65. The
prompt D+s production cross section per unit of rapidity in|y|< 0.5 is then

dσD+
s /dy = 118±28(stat.)+28

−34(syst.)±4(lumi.)±7(BR)+38
−35(extr.) µb.

The D meson production ratios were computed from the cross sections per unit of rapidity, dσ/dy.
The corresponding values for D0, D+ and D∗+ from [3] were corrected to account for the updated
value of the pp minimum-bias cross section. The systematic uncertainties on the ratios were computed
taking into account the correlated and uncorrelated sources as described above. The resulting values
are reported in Table 4 and shown in the left-hand panel of Fig. 5 togetherwith the results by other
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Table 4: Ratios of the measured production cross section for prompt Dmesons inpT > 0 and|y| < 0.5 in pp
collisions at

√
s = 7 TeV.

Ratio± (stat.)± (syst.)± (BR)
D+/D0 0.48 ± 0.07 ± 0.11 ± 0.01
D∗+/D0 0.48 ± 0.07 ± 0.08 ± 0.01
D+

s /D0 0.23 ± 0.06 ± 0.08 ± 0.01
D+

s /D+ 0.48 ± 0.13 ± 0.17 ± 0.03

experiments that measured prompt charm production: LHCb [11], e+e− data (taken from the compilation
in [60]), and ep data in photoproduction from ZEUS [23] and DIS from H1 [16]. The error bars are the
quadratic sum of statistical and systematic uncertainties and do not include theuncertainty on the decay
branching ratios, which are common to all experiments. The particle ratios forZEUS and e+e− were
computed from the compilation of fragmentation fractionsf (c→ D) published in [23] after updating
the branching ratios of the considered decay channels to the most recentvalues [46]. For the ZEUS
data, the systematic uncertainties were propagated to the particle ratios by properly taking into account
correlated and uncorrelated sources [61]. For the H1 data, the D mesonratios were computed starting
from the unconstrained values off (c→ D) published in [16], taking into account the correlated part of
the systematic uncertainty and subtracting from the quoted ‘theoretical’ uncertainty the contribution due
to the decay branching ratio [62]. Also in this case, a correction was applied to account for the updates in
the branching ratios of the considered decay channels. The ALICE results are compatible with the other
measurements within uncertainties.

The values predicted by PYTHIA 6.4.21 with the Perugia-0 tune are also shown in the figure, as well as
those from a canonical implementation of the Statistical Hadronization Model (SHM) [63]. The values
from PYTHIA were obtained by integrating the prompt D meson yields in the range|y|< 0.5 andpT > 0.
The SHM provides a good description of the measured hadron yields in heavy-ion collisions at various
energies and centralities [64], but it can also be applied to small systems like pp [65] and e+e− [66,67].
The SHM results used for the present comparison were computed for prompt D mesons, assuming a
temperatureT of 164 MeV and a volumeV of 30±10 fm3. The dependence on temperature of the cross
section ratios considered in this analysis is rather small within the few MeV uncertainty on the value ofT .
To properly reproduce the yield of strange particles in small systems, suchas pp and e+e−, an additional
parameter, the fugacity [65], is usually introduced in the partition function to account for the deviation of
strange particle yields from their chemical equilibrium values. For the SHM predictions reported here, a
value of strangeness fugacity of 0.60±0.04, extrapolated from the results of a fit to particle yields in pp
collisions at

√
s = 200 GeV [68], was used. With these parameters, the SHM provides a gooddescription

of the measured ratios of D meson cross sections.

The strangeness suppression factor for charm mesons,γs, was also evaluated. It is defined as the ratio of
the production cross sections of charm-strange mesons (cs̄) to that of non-strange charm mesons (average
of cd̄ and c̄u) 3. Since all D∗+ and D∗0 mesons decay into either a D0 or a D+, and all D∗+s decays produce
a D+

s meson [46], the strangeness suppression factor was computed as

γs =
2 dσ(D+

s )/dy
dσ(D0)/dy+dσ(D+)/dy

. (2)

The contribution to D0 and D+ yield from decays of excited charm-strange mesons heavier than D∗+
s was

neglected.

3The same symbolγs is used in the statistical hadronization model to indicate the fugacity, which, asmentioned above, is
usually included in the partition function to account for strangeness suppression. However, the twoγs are different. Indeed, in
the statistical hadronization model, the value of the ratio between strange andnon-strange charm mesons is proportional to the
fugacity, but not equal to it, due to the different masses of the various Dmeson species.
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Figure 5: Left: pT integrated ratios of D meson production cross sections compared with other experiments [11,
16, 23, 60]. Error bars are the quadratic sum of statistical and systematic uncertainties, without including the
uncertainty on the BR which is common to all experiments. Right: strangeness suppression factorγs compared to
measurements by other experiments [12,16,23,60]. Predictions from PYTHIA 6.4.21 with the Perugia-0 tune and
from a canonical implementation of the statistical hadronization model (SHM) [63] are also shown. The gray band
represents the uncertainty on the SHM predictions due to theuncertainty on the volume and on the strangeness
fugacity (see text for details).

The resulting value ofγs, computed from the D+s , D0 and D+ cross sections per unit of rapidity (dσ/dy),
is

γs = 0.31 ± 0.08(stat.) ± 0.10(syst.) ± 0.02(BR).

Charm-strange meson production is suppressed by a factor≈ 3.3 in the fragmentation of charm quarks.
In the right-hand panel of Fig. 5, this result is compared with theγs measurements by other experiments,
taken from the compilation in [15], after updating the branching ratios of the considered decay channels
to the values in [46]. The preliminary measurement by ATLAS [12] in pp collisions at the LHC, obtained
using an equivalent (under the hypothesis of isospin symmetry between u and d quarks) definition of the
strangeness suppression factor based on the cross sections of D+

s , D+ and D∗+ in charm hadronization,
is also shown. The error bars are the quadratic sum of statistical and systematic uncertainties and do
not include the uncertainty on the decay BR. The values from PYTHIA with the Perugia-0 tune, where
γs corresponds to PARJ(2), and the statistical hadronization model described above are also shown for
reference. It is also interesting to note that a similar amount of strangenesssuppression was reported for
beauty mesons by the LHCb Collaboration that measured the ratio of strange Bmesons to light neutral
B mesons,fs/ fd, obtaining the value 0.267+0.021

−0.020 [69].

All the γs measurements, performed in different colliding systems and at different centre-of-mass ener-
gies are compatible within experimental uncertainties. The current ALICE and ATLAS results at LHC
energy in the central rapidity region do not allow one to conclude on a possible lifting of strangeness
suppression with increasing collision energy. Furthermore, the D+

s /D0 (D+
s /D+) ratios are measured at

the LHC both at midrapidity and at forward rapidity, thus allowing to study a possible rapidity depen-
dence of the strangeness suppression in charm hadronization. From the comparison of the ALICE and
LHCb results with the current experimental uncertainties (left-hand panelof Fig. 5), it is not possible to
draw a firm conclusion on this point.



16 The ALICE Collaboration

7 Summary

The inclusive production cross section for prompt D+
s meson has been measured in the transverse mo-

mentum range 2< pT < 12 GeV/c at central rapidity in pp collisions at
√

s = 7 TeV. D+
s mesons

were reconstructed in the hadronic decay channel D+
s → φπ+ with φ → K−K+, and charge conjugates,

using the ALICE detector. The measured differential cross section is described within uncertainties
by the prediction from the GM-VFNS calculation, which is based on perturbative QCD with the fac-
torization approach. The relative D meson production yields and the strangeness suppression factor,
γs = 0.31 ± 0.08(stat.) ± 0.10(syst.) ± 0.02(BR), agree within the present experimental uncertain-
ties with those measured by other experiments for different centre-of-mass energies and colliding sys-
tems. More precise measurements are needed to address the possible energy and rapidity dependence of
strangeness suppression in charm hadronization.
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J.L. Klay4 , J. Klein82 , C. Klein-Bösing54 , M. Kliemant52 , A. Kluge30 , M.L. Knichel85 , A.G. Knospe105 ,
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M. Morando20 , D.A. Moreira De Godoy107 , S. Moretto20 , A. Morsch30 , V. Muccifora65 , E. Mudnic103 ,
S. Muhuri116 , M. Mukherjee116 , H. Müller30 , M.G. Munhoz107 , L. Musa30 , A. Musso94 , B.K. Nandi40 ,
R. Nania97 , E. Nappi98 , C. Nattrass112 , N.P. Naumov87 , S. Navin90 , T.K. Nayak116 , S. Nazarenko87 ,
G. Nazarov87 , A. Nedosekin46 , M. Nicassio28 , M.Niculescu50 ,30, B.S. Nielsen71 , T. Niida114 , S. Nikolaev88 ,
V. Nikolic86 , S. Nikulin88 , V. Nikulin75 , B.S. Nilsen76 , M.S. Nilsson18 , F. Noferini97 ,10, P. Nomokonov59 ,
G. Nooren45 , N. Novitzky38 , A. Nyanin88 , A. Nyatha40 , C. Nygaard71 , J. Nystrand15 , A. Ochirov117 ,
H. Oeschler53 ,30, S. Oh120 , S.K. Oh37 , J. Oleniacz118 , C. Oppedisano94 , A. Ortiz Velasquez29 ,55, G. Ortona23 ,
A. Oskarsson29 , P. Ostrowski118 , J. Otwinowski85 , K. Oyama82 , K. Ozawa113 , Y. Pachmayer82 , M. Pachr34 ,
F. Padilla23 , P. Pagano26 , G. Paíc55 , F. Painke36 , C. Pajares13 , S.K. Pal116 , A. Palaha90 , A. Palmeri99 ,
V. Papikyan121 , G.S. Pappalardo99 , W.J. Park85 , A. Passfeld54 , B. Pastiřcák47 , D.I. Patalakha43 , V. Paticchio98 ,
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Serbia

Collaboration Institutes
1 Beneḿerita Universidad Aut́onoma de Puebla, Puebla, Mexico
2 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
3 Budker Institute for Nuclear Physics, Novosibirsk, Russia
4 California Polytechnic State University, San Luis Obispo,California, United States
5 Central China Normal University, Wuhan, China
6 Centre de Calcul de l’IN2P3, Villeurbanne, France
7 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
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116 Variable Energy Cyclotron Centre, Kolkata, India
117 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
118 Warsaw University of Technology, Warsaw, Poland
119 Wayne State University, Detroit, Michigan, United States
120 Yale University, New Haven, Connecticut, United States
121 Yerevan Physics Institute, Yerevan, Armenia
122 Yildiz Technical University, Istanbul, Turkey
123 Yonsei University, Seoul, South Korea
124 Zentrum f̈ur Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms,

Germany


