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Abstract

The production of K∗(892)0 andφ (1020) in pp collisions at
√

s=7 TeV was measured by the ALICE
experiment at the LHC. The yields and the transverse momentum spectra d2N/dydpT at midrapidity
|y|< 0.5 in the range 0<pT<6 GeV/c for K∗(892)0 and 0.4<pT<6 GeV/c for φ (1020) are reported
and compared to model predictions. Using the yield of pions,kaons, andΩ baryons measured previ-
ously by ALICE at

√
s=7 TeV, the ratios K∗/K−, φ /K∗, φ /K−, φ /π−, and(Ω+Ω)/φ are presented.

The values of the K∗/K−, φ /K∗ andφ /K− ratios are similar to those found at lower centre-of-mass
energies. In contrast, theφ /π− ratio, which has been observed to increase with energy, seems to
saturate above 200 GeV. The(Ω+Ω)/φ ratio in the pT range 1-5 GeV/c is found to be in good
agreement with the prediction of the HIJING/BB v2.0 model with a strong colour field.
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1 Introduction

The study of resonance production plays an important role both in elementary and in heavy ion collisions.
In pp and e+e− collisions it contributes to the understanding of hadron production [1, 2] as the decay
products of resonances represent a large fraction of the final state particles. In addition, it provides
a reference for tuning event generators inspired by Quantum Chromodynamics (QCD). In heavy ion
collisions, resonances are a sensitive probe of the dynamical evolution of the fireball. Due to their short
lifetime (a few fm/c) a significant fraction of resonances decay inside the hot and dense medium and
their hadronic daughters interact with the medium during the fireball expansion [3, 4, 5].

Theφ (1020), which is the lightest vector meson composed of sea quarks only, provides a probe for the
study of the strangeness production. In pp collisions,ss̄ pair production was found to be significantly
suppressed in comparison touū anddd̄-pair [6, 7]. Another useful probe of strangeness production is
the K∗(892)0, which is a vector meson with a mass similar to theφ , but differing by one unit of the
strangeness quantum number. The(Ω+Ω)/φ ratio has been suggested [8] as a probe of the colour field
strength, which in microscopic models influences the relative yield of strangewith respect to non-strange
particles.

We present the first measurement of the differential (d2N/dydpT) and pT-integrated (dN/dy) yields of
the K∗ 1 andφ (1020) mesons at midrapidity (|y|<0.5) in pp collisions at

√
s=7 TeV. The data analysis

was carried out for K∗ (φ ) on a sample of 80 (60) million minimum bias pp collisions collected by the
ALICE experiment. The resonances were identified via their main decay channel K∗ −→ π±+K∓ and
φ −→ K++K−. Tracks were reconstructed by the main ALICE tracking devices, the Time Projection
Chamber (TPC) and the Inner Tracking System (ITS). The TPC and Time of Flight (TOF) detectors
were used to identify pions and kaons. The measured spectra are compared to two QCD-based event
generators, PHOJET [9] and PYTHIA [10].

The ratios K∗/K−, φ /K∗, φ /K−, andφ /π− are computed using the yield of pions and kaons measured [11]
with the ALICE detector in pp collisions at 7 TeV. These ratios are compared with measurements at
lower collision energies. The (Ω+Ω)/φ ratio has been calculated as a function of transverse momentum
using theΩ andΩ yield measured at 7 TeV [12]; this ratio is then compared to the predictions of the
HIJING/BB v2.0 model with a Strong Colour Field (SCF) [13] and to PYTHIA-Perugia 2011 [14].

The article is organized as follows: Section 2 gives details about the detectors relevant for this analysis,
Section 3 describes the criteria used for event and track selection, Section4 gives an overview of the
analysis, Section 5 presents the results and Section 6 the conclusions.

2 Experimental set-up

A full description of the ALICE detector can be found in [15, 16]. For theanalyses described in this paper,
the ITS, the TPC, and the TOF detectors were used. These detectors areset inside a large solenoidal
magnet providing a magnetic fieldB=0.5 T, and have a common pseudorapidity coverage of|η | < 0.9.
Two forward scintillator hodoscopes (VZERO) placed along the beam direction at -0.9 m and 3.3 m on
either side of the interaction point, cover the pseudorapidity regions−3.7< η <−1.7 and 2.8<η < 5.1.
These are used for triggering and for rejecting beam-gas interactions.

2.1 The Inner Tracking System

The ITS [16] is the innermost ALICE detector, located between 3.9 and 43 cm radial distance from the
beam axis. It is made of six cylindrical layers of silicon detectors (two layers of pixels, two of silicon
drift, and two of silicon strips), with a total material budget of 7.66 % of the radiation lengthX0. It

1We denote by K∗ the average of K∗(892)0 andK∗(892)0.
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provides high-resolution space points close to the interaction vertex, thus improving momentum and
angular resolution of the tracks reconstructed in the TPC.

The two innermost ITS layers constitute the Silicon Pixel Detector (SPD), which has a high granularity
of about 9.8 million pixel cells, each with a size of 50×425µm2. These layers are located at radii of 3.9
and 7.6 cm with pseudorapidity coverages of|η |< 2.0 and|η |< 1.4, respectively. The detector provides
a position resolution of 12µm in therϕ direction and about 100µm in the direction along the beam
axis.

2.2 The Time Projection Chamber

The TPC [17] is the main ALICE tracking device. It is a large-volume, high-granularity, cylindrical drift
detector which has a length of 5.1 m and inner and outer radii of 0.85 and 2.47 m, respectively. It covers
the pseudorapidity range|η |< 0.9 with a full azimuthal acceptance. The drift volume is filled with 90 m3

of Ne/CO2/N2. The maximum drift time is 94µs. A total of 72 multi-wire proportional chambers with
cathode pad readout instrument the two end plates, which are segmented into18 sectors and include a
total of over 550,000 readout pads. The ionization electrons drift for up to 2.5 m and are measured on 159
pad rows. The momentum resolution of the TPC is in the range 1-7% for pions with 1<pT<10 GeV/c.
The ALICE TPC ReadOut (ALTRO) chip, employing a 10 bit ADC at 10 MHz sampling rate and digital
filtering circuits, allows for precise position and linear energy loss measurements with a gas gain of the
order of 104. The material budget of the TPC nearη = 0 amounts to about 4.1% ofX0.

The position resolution in therϕ direction varies between 1100µm and 800µm going from the inner to
the outer radius, whereas the resolution along the beam axis varies between 1250µm and 1100µm.

2.3 The Time Of Flight detector

The ALICE TOF [18, 19] is a cylindrical assembly of Multi-gap Resistive Plate Chambers (MRPC) with
an inner radius of 370 cm and an outer radius of 399 cm. It has a pseudorapidity coverage of|η | < 0.9
and full azimuthal acceptance, except for the region 260o< ϕ < 320o at |η |< 0.14 where a gap was left
in order to reduce the amount of material in front of the Photon Spectrometer(PHOS). The elementary
unit of the TOF system is a 10-gap double-stack MRPC strip 122 cm long and13 cm wide, with an
active area of 120×7.4 cm2 subdivided into two rows of 48 pads of 3.5×2.5 cm2 each. The length of
the TOF barrel active region is 741 cm. It has about 153,000 readout channels and an average thickness
of 25-30% ofX0, depending on the detector zone. For pp collisions, such a segmentation leads to an
occupancy below 0.02%. The front-end electronics are designed to comply with the basic characteristics
of the MRPC detector, i.e. very fast differential signals from the anode and the cathode readout: the
resulting intrinsic time resolution of the detector and electronics was measured tobe smaller than 50 ps.

3 Data collection and event selection

Data used for this analysis were collected in 2010 using a magnetic field ofB=0.5 T with both field
polarities. The minimum bias trigger required a single hit in the SPD detector or in one of the two
VZERO counters, i.e. at least one charged particle anywhere in the∼8 units of pseudorapidity covered
by these detectors. In addition, a coincidence was required with signals from two beam pick-up coun-
ters, one on each side of the interaction region, indicating the passage of proton bunches. The trigger
selection efficiency for inelastic collisions was estimated to be 85.1% with a +7% and -3.5% relative
uncertainty [20]. During the data-taking period, the luminosity at the ALICE interaction point was kept
in the range 0.6−1.2×1029 cm−2s−1. Runs with a mean pile-up probability per event larger than 5%
were excluded from the analysis.

Beam-induced background was reduced to a negligible level (< 0.01%) with the help of the timing
information of the VZERO counters and by a cut on the position of the primary vertex reconstructed
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by the SPD [21]. Accepted events were required to have a reconstructed primary vertex. Its position
can be computed either using the tracks reconstructed by TPC and ITS, orusing the “tracklets” obtained
connecting reconstructed clusters in both SPD layers. If possible, the first method is used. First, for
each event a three dimensional reconstruction of the primary vertex was attempted with either a Kalman
filter, using reconstructed tracks as input, or by a minimization of the squareddistances between all
the extrapolated tracklets. Otherwise only thez position of the primary vertex was reconstructed by
correlating thez coordinates of the SPD space points, while forx andy the average position of the beam
in the transverse plane was taken. The primary vertex reconstrunction efficiency, calculated via Monte
Carlo simulation, approaches unity in events with a K∗ or aφ produced in the central rapidity region. In
order to minimize acceptance and efficiency biases for tracks at the edge of the TPC detection volume,
events were accepted only when their primary vertex was within±10 cm from the geometrical centre of
the ALICE barrel.

4 Data analysis

4.1 Track selection

Global tracking in ALICE is performed using ITS and TPC clusters. It is based on a Kalman filter al-
gorithm which takes into account both multiple scattering and energy loss alongthe path as described in
detail in [22]. The Distance of Closest Approach (DCA) to the primary vertex is used to discriminate
between primary and secondary particles. Primary charged particles arethose produced directly in the
interaction and all decay products from particles with a proper decay length cτ <1 cm; secondary parti-
cles include those from the weak decay of strange hadrons and from interactions in the detector material.
Several cuts were applied to achive a high track quality in the analyzed sample. Tracks were required to
have at least 70 reconstructed clusters in the TPC out of the maximum 159 available. This ensured a high
efficiency and good dE/dx resolution, keeping the contamination from secondary and fake tracks small.

In order to improve the global resolution, tracks were accepted only in the range|η | < 0.8 (i.e. well
within the TPC acceptance) and withpT> 0.15 GeV/c. In order to reduce secondary particles, tracks
were required to have at least one hit in one of the two innermost tracking detectors (SPD) and to have
a DCA to the primary vertex less than 2 cm along the beam direction. The DCA in the transverse plane
was required to be smaller than 7σDCA(pT), whereσDCA(pT) = (0.0026 + 0.0050 GeV/c ·pT

−1) cm.

4.2 Particle identification

Identification of pions and kaons is performed using the measurements of theTPC and the TOF. For the
TPC, the particle is identified based on the energy it deposits in the drift gas,compared with the expected
value computed using a parameterized Bethe-Bloch function [23, 24]. Figure 1 shows the TPC signal
versus track momentum computed at the point the particle enters the detector, and the curves represent
the Bethe-Bloch functions for each mass hypothesis. The TPC calibration parameters have mostly been
determined and tested via the analysis of cosmic rays; the chamber gain has been measured using the
decay of radioactive83Kr gas released into the TPC volume [17].

A truncated-mean procedure is used to determine dE/dx, with only 60% of the points keept. The
dE/dx resolutionσTPC is about 5% for tracks with 159 clusters and about 6.5% when averaged over
all reconstructed tracks. The relevant value ofσTPC is estimated for each track taking into account the
actual number of clusters used [17].

The TPC dE/dx measurement allows pions to be separated from kaons for momenta up top∼ 0.7 GeV/c,
while the proton/antiproton band starts to overlap with the pion/kaon band atp ≈1 GeV/c. As can be
observed in Fig. 1, the electron/positron dE/dx band crosses the other bands at various momenta. This
contamination in identified pions and kaons can be drastically reduced using information from the TOF.
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Fig. 1: (Colour online) Specific ionization energy loss dE/dx vs. momentum for tracks measured with the ALICE
TPC. The solid lines are parametrizations of the Bethe-Bloch function [23].

Particles are identified in the TPC via the difference between the measured energy loss and the value
expected for different mass hypotheses. The cut on this difference,normalized to the resolutionσTPC,
is optimized for each analysis and depends in general on the signal-to-background ratio and on the
transverse momentum.

Figure 2 shows the correlation between particle momentum and their velocityβ = Lc/t, whereL is the
total integrated path length andt is the time of flight measured by the TOF detector. For the analyses
described in this paper the start time of the collision is estimated using the particle arrival times at the
TOF or the averaged collision time observed in the fill. The bands corresponding to pions, kaons, protons
and deuterons are clearly visible.

Particles are identified in the TOF by comparing the measured time of flight to the expected time for
a given particle species. The cut is expressed in units of the estimated resolution σTOF for each track,
which has a mean value of 160 ps. The TOF allows pions and kaons to be unambigously identifed up to
p ∼ 1.5 GeV/c. The two mesons can be distinguished from (anti)protons up top ∼ 2.5 GeV/c.

Considering the high multiplicities reached in pp collisions at LHC energies, good particle identification
is important to reduce combinatorial background as well as correlated background from misidentified
resonance decays. Theφ analysis requires only primary kaons to be selected and cuts were kept loose in
order to maximize the efficiency. The cut for particle identification in the TPC was set to 3σTPC (5σTPC)
for tracks withp larger (smaller) than 0.35 GeV/c. When a TOF signal is present, a particle identification
cut of 3σTOF is also applied. For the K∗ analysis, both pions and kaons are identified. Two different
strategies were followed. For tracks with TOF signals, a TPC dE/dx cut of 5σTPC was applied and a TOF
cut of 3σTOF (2σTOF) was applied for tracks with momenta below (above) 1.5 GeV/c. For tracks without
a TOF signal, 5σTPC, 3σTPC, and 2σTPC cuts were used forp <0.35 GeV/c, 0.35< p < 0.5 GeV/c,
and p > 0.5 GeV/c, respectively; the kaon momentum was required to be below 0.7 GeV/c. This more
restrictive cut on kaons was used to reduce the correlated background originating fromρ decays in which
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Fig. 2: (Colour online) Velocityβ of particles measured by TOF vs. momentum.

a pion is misindentified.

4.3 Raw yield extraction and background estimation

The uncorrelated background was estimated using two different techniques: like-sign and event mixing.
In the like-sign method invariant mass distributions of like-sign Kπ or KK combinations (for K∗ and
φ , respectively) from the same event were constructed. In the event mixingmethod the shape of the
uncorrelated background was estimated from the invariant mass distributionof unlike-sign Kπ or KK
combinations from different events. To avoid mismatch due to different acceptances and to assure a
similar event structure, tracks from events with similar vertex positionsz (∆z < 1 cm) and track mul-
tiplicities n (∆n < 10) were mixed. To reduce statistical uncertainties each event was mixed with10
other events. The mixed-event distribution was then normalized in the mass region 1.08< M <1.2 (1.04
< M <1.07) GeV/c2 for K∗ (φ ), and subtracted in eachpT bin. The uncertainty in the normalization was
estimated by varying the normalization region and is included in the quoted systematic uncertainty for
signal extraction. After background subtraction a residual background remains. This is due in part to
an imperfect description of the combinatorial background but mainly caused by a real correlated back-
ground. The latter can arise from correlatedπK or KK pairs or from misidentified particle decays (for
example K∗0 for φ , or φ andρ for K∗, or from underlying jet event structure).

The totalpT-integrated number of reconstructed mesons after background subtraction was about 1.8×106

for the K∗ and 2.3×105 for the φ . For the K∗ the signal-to-background ratio varied from 0.08 at
pT=0.05 GeV/c to 0.2 at pT= 5.5 GeV/c. The significance (S/

√
S+B) was about 34 in thepT bins

at both 0.05 and 5.5 GeV/c and reached a maximum of about 127 at 1 GeV/c. For theφ the signal-to-
background ratio varied from 2.8 to 1.6 betweenpT=0.45 andpT=5.5 GeV/c, with a minimum of 0.5 at
1.6 GeV/c; the significance was about 30 in thepT bins at both 0.45 and 5.5 GeV/c with a maximum of
90 at 1 GeV/c.

The raw yield of K∗(892)0 and its antiparticle was extracted in 22pT bins between 0 and 6 GeV/c in
the rapidity range|y|< 0.5. The combinatorial background was subtracted using like-signπ±K± pairs.
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Fig. 3: (Colour online) (Upper panel) Theπ±K∓ invariant mass distribution in|y|<0.5 for the bin 0.4<
pT<0.5 GeV/c (left) and 0.9<pT<1.0 GeV/c (right), in pp collisions at 7 TeV. The background shape estimated
using unlike-sign pairs from different events (event mixing) and like-sign pairs from the same event are shown as
open red squares and full green squares, respectively. (Lower panel) Theπ±K∓ invariant mass distribution after
like-sign background subtraction for 0.4<pT<0.5 GeV/c (left) and 0.9<pT<1.0 GeV/c (right). The solid curve is
the result of the fit by Eq. 1, the dashed line describes the residual background.
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Fig. 4: (Colour online) (Upper panel) The K+K− invariant mass distribution in|y|<0.5, for the bin
0.5<pT<0.6 GeV/c (left) and 1.1<pT<1.2 GeV/c (right) in pp collisions at 7 TeV. The solid curve is the fit
result (Eq. 2), while the dashed line describes the background. The background shape estimated using unlike-sign
pairs from different events (event mixing) or like-sign pairs from the same event are shown as open red squares
and full green squares, respectively. (Lower panel) The K+K− invariant mass distribution after mixed-event back-
ground subtraction for 0.5<pT<0.6 GeV/c (left) and 1.1<pT<1.2 GeV/c (right). The solid curve is the fit result
(Eq. 2), while the dashed line describes the residual background.
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The mass distributionM(π±,K∓) (see Fig. 3 for twopT bins) was fitted with a relativistic Breit-Wigner
function multiplied by a Boltzmann factor [3] and added to a polynomial residualbackground. The
width was found to be compatible, within uncertainties, with the natural value. Atlow pT the fitted mass
values were found to be slightly lower (by about≈5 MeV/c2) than the natural value, which is attributed
to imperfections in corrections for the energy loss in the detector material. To extract the yield the
distribution ofM(π±,K∓) was then fitted with a (non-relativistic) Breit-Wigner function with the width
fixed to its natural value (Γ= 48.7±0.8 [25]) and a background function:

dN
dM

=
1

2π
AΓ

(M−M0)2+Γ2/4
+B(M) (1)

whereA is the area under the peak corresponding to the number of K∗ mesons,Γ is the full width at half
maximum of the peak, andM0 is the resonance mass. The residual backgroundB(M), after like-sign
subtraction, was parametrized by a polynomial (dashed line in Fig. 3).

For theφ meson, the raw yield was extracted from the K+K− invariant mass distributions in 26pT bins
between 0.4 and 6 GeV/c. The combinatorial background was subtracted using a polynomial fit (first
or second order), like-sign pairs, or unlike-sign pairs from mixed events (Fig. 4 for twopT bins). Since
the invariant mass resolution of theφ peak is of the same order of magnitude as the naturalφ width
(∼1 MeV/c2 vs. 4.26 MeV/c2), the fit is performed, after background subtraction, using a Voigtian
function (convolution of Breit-Wigner function and Gaussian) superimposed on a polynomial to describe
the residual background:

dN
dM

= A
∫ Γ/2π

(M−M′)2+Γ2/4
e−(M′−M0)

2/2σ2

√
2πσ

dM′+B(M) (2)

whereσ represents the mass resolution and the other parameters have the same meaning as in Eq. (1).
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√

s=7 TeV. The statistical and sys-
tematic uncertainties are added in quadrature and the uncertainty due to normalization [20] is shown separately.
The statistical uncertainty is smaller than the symbol size. Each spectrum is fitted with a Lévy-Tsallis function
(dashed line).

The backgroundB(M) is represented in the lower panels of Fig. 4 by a dashed line. The widthΓ is
fixed to its nominal value [25] whileσ is a free parameter. The fitted mass values were found to be
compatible, within uncertainties, with the known mass [25], with the exception of the low pT range 0.4-
0.7 GeV/c where a fitted value lower than the natural one (by< 0.1%) was observed. The raw yields
extracted using the three different methods to estimate the combinatorial background (analytic function,
like-sign and mixed-event method) were found to be compatible within a few percent; therefore the mean
value of all three methods was taken in eachpT bin.

4.4 Efficiency corrections

In order to extract the meson yields, the raw counts (NRAW) were corrected for the decay branching
ratio [25] and for losses due to pion/kaon in-flight decays, geometrical acceptance, and detector efficiency
(Ncor = NRAW/(A× ε)BR, where BR indicates the decay branching ratio). The product of acceptance
and efficiency (A×ε) was determined for K∗ andφ from Monte Carlo simulations with the PYTHIA 6.4
event generator (tune Perugia 0 [14]) and a GEANT3-based simulation of the ALICE detector response.
About 60 M Monte Carlo events, with the same vertex distribution as the measured events, were analyzed
in exactly the same way as the data. The dependence on the event generator was estimated to be below 1%
by comparing PYTHIA and PHOJET simulated events. TheA×ε was determined from the Monte Carlo
simulations as the ratio of the number of reconstructed resonances to the number of those generated,
differentially as a function of rapidity and transverse momentum. The transverse momentum dependence
is shown in Fig. 5 for K∗ and φ mesons. The decrease inA × ε at low pT is due to the minimum
pT requirement for reconstructed tracks, while the different behaviour for φ and K∗ is due to the different
Q-value of their decay (31.1 MeV forφ and 262.7 MeV for K∗).

Finally, corrections for the trigger efficiency (εtrigger) and the required primary vertex range (εvert) were
applied in order to obtain the absolute resonance yields per inelastic collision:
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√
s=1.8 TeV) [33].

The STAR data have been slightly displaced to separate the K∗ and theφ . The data point at 1.8 TeV represents the
mean of the two values quoted from the E735 collaboration in [33], obtained from two different fit functions of the
φ pT distribution.

d2N
dydpT

=
Ncor(pT)

∆y∆pT
× 1

εvert
× εtrigger

NMB
(3)

hereNcor and NMB are the number of reconstructed K∗ or φ and the total number of minimum bias
triggers, respectively. The trigger selection efficiency for inelastic collisions εtrigger is equal to 0.851
with a +7% and -3.5% uncertainty [20]. The loss of resonances due to the trigger selection, estimated
by Monte Carlo, is negligible, less than 0.2%. Theεvert correction factor accounts for resonance losses
(≈1%) due to the requirement to have a vertex in the range of±10 cm.

4.5 Estimation of the systematic uncertainties

The minimum and maximum values of the major contributions to the point-to-point systematic uncer-
tainties are listed in Tab. 1. The uncertainty due to the raw yield extraction methodwas found to be
±2-28% (2-10%) for K∗ (φ ). It was estimated by changing the mass range considered for the fit and
the order of the polynomial for the residual background function (fromfirst through third (second) order
for K∗ (φ )). Finally, variations in the yield due to the method used to estimate the combinatorialback-
ground (like-sign and event-mixing method and also analytic function forφ ) were incorporated into the
systematic uncertainties. For the K∗ a relativistic Breit-Wigner function was used to fit the mass peak in
addition to the non-relativistic version. In the case of the K∗ a rather large systematic uncertainty was
estimated for the higherpT bins, due to the presence of a correlated background.

The uncertainty introduced by the tracking and PID efficiency was estimatedto be±8% (8%) and±1-6%
(1.5%) respectively in the case of K∗ (φ ) by varying the kinematical and PID cuts on the daughter tracks.
An additional±1-4% uncertainty was added for the K∗ due to differences observed in the TOF matching
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Table 1: Summary of the systematic point-to-point uncertainties inthe K* andφ yield

Source of uncertainty K∗ φ

Signal extraction ± 2-28 % ± 2-10%
Tracking efficiency ± 8 % ± 8 %
PID efficiency ± 1-6 % ± 1.5 %
TOF matching efficiency ± 1-4 % -
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Fig. 8: (Colour online) Comparison of the K∗ pT spectra in inelastic pp collisions with PHOJET and PYTHIA
tunes D6T (109), ATLAS-CSC (306), Perugia 0 (320), and Perugia 2011 (350).

efficiency between data and Monte Carlo. The uncertainty on the yield contained in the extrapolated
part of theφ spectrum was estimated to be±20% using different fit functions. The normalization to
the number of inelastic collisions leads to a +7% and -3.5% uncertainty in the yield of the measured
particles. The resulting overall systematic uncertainty is+11

−9 % (+12.5
−9 %) for the K∗ (φ ) yield dN/dy and

±2% (3%) for the average transverse momentum〈pT〉.
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Table 2: Parameters extracted from the Lévy-Tsallis (4) fits to the K∗ and φ transverse momentum spectra in
7 TeV pp collisions, including point-to-point systematic uncertainties. The first uncertainty is statistical and the
second is systematic.

Particles χ2/ndf T (MeV) n

K∗ 4.2/19 254±2±18 6.2±0.07±0.8
φ 2.8/23 272±4±11 6.7±0.20±0.4

Table 3: K∗ andφ yield and〈pT〉 estimated in the range 0-6 GeV/c in inelastic pp collisions at
√

s=7 TeV. The
systematic uncertainties of dN/dy and 〈pT〉 include contributions from the choice of spectrum fit function for
extrapolation, the absolute normalization, and the point-to-point uncertainties listed in Tab 1.

Particles measuredpT (GeV/c) dN/dy 〈pT〉 (GeV/c)

K∗ [0.0−6.0] 0.097±0.0004+0.011
−0.009 1.01±0.003±0.02

φ [0.4−6.0] 0.032±0.0004+0.004
−0.003 1.07±0.005±0.03

5 Results and discussion

5.1 pt spectra and integrated yield

Figure 6 presents the correctedpT spectra for the two resonances. The statistical and point-to-point
systematic uncertainties added in quadrature are shown. The spectra arefitted with a Ĺevy-Tsallis func-
tion [26, 27]

d2N
dydpT

=
(n−1)(n−2)

nT [nT +m(n−2)]
× dN

dy
× pT ×

(

1+
mT −m

nT

)−n

(4)

wheremT =
√

m2+ p2
T. This function describes both the exponential shape of the spectrum at low pT and

the power-law distribution at largepT, quantified by the inverse slope parameterT and the exponent
parametern, respectively. The extracted parameter values are listed in Table 2 and thefits are shown
in Fig. 6. Theχ2/ndf values are smaller than unity because the point-to-point systematic uncertainties,
which are included in the fit, could be correlated.

The extractedn values are similar to those quoted by the STAR experiment at RHIC for theφ measured
in pp collisions at 200 GeV (n=8.3±1.2) [5]. In contrast, the slope parameters are significantly higher
than the values obtained at RHIC,T= 202± 14± 11 MeV forφ , andT=223±8±9 MeV for K∗ [3] (the
latter was obtained by an exponential fit and can therefore not be directlycompared).

The total yields dN/dy and the mean transverse momentum〈pT〉, including statistical and systematic
uncertainties, are listed in Table 3. The values of dN/dy were obtained by integrating the spectra in the
measured range and extrapolating to zeropT with the fitted Ĺevy-Tsallis function. The contribution of
the low-pT extrapolation is negligible for the K∗ and about 15± 3% for theφ . The mean transverse
momentum was estimated in the range 0< pT < 6 GeV/c using the Ĺevy-Tsallis function. However,
similar values are obtained when calculating the mean from the measured data points, using the fit only
to extrapolate into the unmeasuredpT regions. In addition to the point to point systematic uncertainties
previously described, an exponential fit was also used to estimate the systematic uncertainty in〈pT〉 due
to a different choice of fit function. Compared to pp collisions at 200 GeV [3, 5, 28], the meanpT rises
by about 30% (Fig. 7) and the yield per inelastic collision increases by about a factor of two, which is
similar to the overall increase of charged particle multiplicity [29, 30].
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Fig. 10: (Colour online) Energy dependence of the K∗/K− (upper panel) andφ /K∗ (lower panel) ratio in e+e−

(diamonds) [2, 41, 42, 46, 59], and pp (triangles) [1, 3, 5, 47, 48, 49] collisions. Red squares represent the data
from the ALICE experiment for 7 TeV pp collisions, K− yields are from [11]. Open circles represent the same
ratios in central nucleus-nucleus collisions from [3, 5, 49, 50, 51]. Some points have been displaced horizontally
for better visibility. Ratios are calculated from yields atmid-rapidity or in full space.

The φ yield, measured via the leptonic decay channel in the ALICE muon spectrometer in 2.5< y <4,
1<pT<5 GeV/c [31], has a similar momentum distribution, but is lower by about 30% at forward ra-
pidity. The φ yield is expected to vary by 20%-50% between forward (2.5< y <4) and mid-central
(-0.5< y <0.5) rapidities, based on analysis of different PYTHIA tunes describedin paragraph 5.2. In
particular, the lower value is predicted from the D6T PYTHIA tune [35], which reproduces rather well
theφ spectrum at forward rapidity [31] and the lowpT part of theφ spectrum at mid-rapidity (see Fig. 9
described in 5.2).
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5.2 Comparisons to models

Multiparticle production, which is predominantly a soft, non-pertubative process, is usually modelled
by QCD inspired Monte Carlo event generators like PHOJET [9] and PYTHIA [10]. In both models,
hadronization is simulated using the Lund string fragmentation model [34]. Different PYTHIA tunes
were obtained by adjusting the model parameters to reproduce existing data.The D6T tune [35], which
uses the CTEQ6L parton distribution function (with a corresponding largerproduction of strange parti-
cles), was obtained by fitting CDF Run 2 data. The ATLAS-CSC [36] tune was adjusted to minimum
bias data from the UA5, E735, and CDF experiments for energies rangingfrom 0.2 to 1.8 TeV. The latest
PYTHIA tune, Perugia 2011 [14], takes into account first results fromthe LHC, in particular minimum-
bias and underlying event data at 0.9 and 7 TeV. Strange baryon production was increased in this tune
leading to a largerΛ/K ratio with respect to the Perugia 0 tune.

The transverse momentum spectra of K∗ andφ are compared to PHOJET and various PYTHIA tunes in
Figs. 8 and 9. For PYTHIA, tunes D6T (109), ATLAS-CSC (306), Perugia 0 (320) and Perugia 2011
(350) were used. The best agreement is found for the PYTHIA Perugia 2011 tune, which reproduces both
the K∗ spectrum and the highpT part (pT> 3 GeV/c) of theφ spectrum rather well. PHOJET and ATLAS-
CSC very significantly overestimate the low momentum part (pT< 1 GeV/c) of the transverse momentum
distribution but reproduce the high momentum distribution of both mesons well. The PYTHIA D6T tune
gives the best description at lowpT, but deviates from the data atpT>2 GeV/c. Finally, the PYTHIA
Perugia 0 tune underestimates the meson yield forpT larger than 0.5 GeV/c.

Similar comparisons for the mid- and forward-rapidityφ spectrum in pp collisions at
√

s=0.9 TeV [32]
and 7 TeV [31], respectively, show that theφ spectrum is rather well reproduced by the ATLAS-CSC
and D6T tunes, while the Perugia 0 and 2011 tunes underestimate the data. Moreover the PYTHIA tunes
generally underestimate strange meson and hyperon production in 7 TeV ppcollisions [12, 37], while
the Perugia 2011 tune gives a good description of kaon production in pp collisions at 7 TeV [11].

5.3 Particle ratios

The measurement of particle production and particle ratios in pp collisions is important as a baseline
for comparison with heavy ion reactions. In heavy ion collisions, the yields for stable and long-lived
hadrons reflect the thermodynamic conditions (temperature, chemical potentials) at freeze-out, whereas
the yield for short-lived resonances can be modified by final state interactions inside the hot and dense
reaction zone [38, 39]. Particularly interesting is the comparison ofφ and K∗ production, considering
the different lifetimes (about a factor 10) of the two resonances.

Using different particle ratios (like K/π or φ /K∗) measured in elementary collisions, values ranging
from 0.1 to 0.4 [1, 2, 41, 42, 43] were previoulsy obtained for the strange quark suppression factor
λs = 2s̄s/(uū+ dd̄), which represents the probability to produce strange quark pairs relative to light
quarks [40]. In pp reactions, particle abundances have been successfully described by statistical-ther-
mal models. Now, using measured identified particle yields, an energy-independent value of 0.2 forλs

has been extracted in e+e−, pp, and pp collisions at
√

s<1 TeV [40, 44].

Using theφ and K∗ yields presented in this paper and stable particle results measured by ALICEat the
same energy [11], we find the following values for particle ratios in pp collisions at 7 TeV: K∗/K−=
0.35± 0.001 (stat.)±0.04 (syst.),φ /K∗= 0.33±0.004 (stat.)±0.05 (syst.),φ/K−= 0.11±0.001(stat.)
±0.02 (syst.),φ/π−= 0.014±0.0002 (stat.)±0.002 (syst.). Due to the fact that the same data were
analyzed to extract both resonance and non-resonance (π,K) yields, the uncertainties due to the absolute
normalization cancel and are therefore not included in the systematic uncertainties of the ratios. These
ratios are shown in Figures 10 and 11, together with the results obtained at lower incident energies in pp,
e+e−, and A-A collisions.

The K∗/K−, φ/K−, andφ /K∗ ratios are essentially independent of energy and also independent of the
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collision system, with the exception of K∗/K and φ/K∗ at RHIC [5, 49, 50, 51], where these ratios in
nuclear collisions are respectively lower and higher than in pp. On the contrary, theφ/π ratio increases
with energy both in heavy ion and in pp collisions up to at least 200 GeV. However, in heavy ion collisions
the value obtained by the PHENIX experiment [4], about 40% lower than theSTAR result [5] at the
same collision energy, seems indicate a saturation of this ratio at the RHIC energies. In pp collisions we
observe a saturation of theφ/π ratio, with no significant change over the LHC energy range between 1
and 7 TeV.

In microscopic models where soft particle production is governed by stringfragmentation, strange hadron
yields are predicted to depend on the string tension [8]. Multi-strange baryons, and in particular the ratio
Ω/φ , are expected to be very sensitive to this effect [13]. Theφ yield is compared to theΩ−+Ω+

data
measured by ALICE at the same incident energy [12] in Fig. 12 as a function of transverse momentum.
The full line represents the PYTHIA model (Perugia 2011 tune), which is afactor 1.5-5 below the data.
While this tune describes theφ spectrum reasonably well above 2-3 GeV/c, it underpredicts multistrange
baryon yields by a large factor [12]. The dashed line, which is very close to the data, represents the
prediction of a model with increased string tension, the HIJING/BB v2.0 model with a Strong Colour
Field (SCF), for pp collisions at 5.5 TeV [13]. This is a model that combines multiple minijet production
via perturbative QCD with soft longitudinal string excitation and hadronization. In this case the SCF
effects are modeled by varying the effective string tensions that controlsthe qq and qqqq pair creation
rates and the strangeness suppression factor. The value of string tension used in this calculation isκ=2
GeV/fm, equal to the value used to fit the high baryon/meson ratio at

√
s=1.8 TeV reported by the CDF

collaboration [60]. The same calculation at 7 TeV yields a∼ 10% higher ratio [61]. Higher values of the
string tension (∼ 3 GeV/fm) also successfully reproduce also the (Ω+Ω)/φ ratio in Au-Au collisions at√

s=200 GeV [13], but overestimate the (Λ+ Λ)/K0
S at 7 TeV [8].

6 Conclusion

Yields and spectra of K∗(892)0 andφ (1020) mesons were measured for inelastic pp collisions at
√

s=7 TeV
by the ALICE collaboration at the LHC. The transverse momentum spectra are well described by the
Lévy-Tsallis function. The yields for both mesons increase by about a factor of two from 200 GeV
centre-of-mass energy, and the averagepT by about 30%.

The K∗/K andφ /K∗ ratios (and consequently theφ /K ratio) are found to be independent of energy up to
7 TeV. Also theφ/π ratio, which increases in both pp and A-A collisions up to at least RHIC energies,
saturates and becomes independent of energy above 200 GeV.

The data have been compared to a number of PYTHIA tunes and the PHOJETevent generator. None of
them gives a fully satisfactory description of the data. The latest PYTHIA version (Perugia 2011) comes
closest, while still underpredicting theφ mesonpT spectrum below 3 GeV/c by up to a factor of two.

The(Ω−+Ω+
)/φ ratio is not reproduced by PYTHIA Perugia 2011, but is in good agreement with the

HIJING/BB v2.0 model with SCF, which enhances multi-strange baryon production by increasing the
string tension parameter.
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CONACYT, DGAPA, México, ALFA-EC and the HELEN Program (High-Energy physics Latin-American–
European Network);
Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor



Production of K∗(892)0 andφ (1020) in pp collisions at
√

s=7 TeV 21

Wetenschappelijk Onderzoek (NWO), Netherlands;
Research Council of Norway (NFR);
Polish Ministry of Science and Higher Education;
National Authority for Scientific Research - NASR (Autoritatea Naţională pentru Cercetare Ştiinţifică -
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26 Dipartimento di Scienze e Innovazione Tecnologica dell’Universit̀a del Piemonte Orientale and Gruppo

Collegato INFN, Alessandria, Italy
27 Dipartimento Interateneo di Fisica ‘M. Merlin’ and SezioneINFN, Bari, Italy
28 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
29 European Organization for Nuclear Research (CERN), Geneva, Switzerland
30 Fachhochschule K̈oln, Köln, Germany
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38 Hiroshima University, Hiroshima, Japan
39 Hua-Zhong Normal University, Wuhan, China
40 Indian Institute of Technology, Mumbai, India
41 Indian Institute of Technology Indore (IIT), Indore, India
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