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Abstract

The software alignment of planar tracking detectors using samples of charged
particle trajectories may lead to global detector distortions that affect ver-
tex and momentum resolution. We present an alignment procedure that
constrains such distortions by making use of samples of decay vertices re-
constructed from two or more trajectories and putting constraints on their
invariant mass. We illustrate the method by using a sample of invariant-mass
constrained vertices from D0 → K−π+ decays to remove a curvature bias in
the LHCb spectrometer.
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1. Introduction

The calibration of the position and orientation of tracking detectors in
high energy physics experiments is called alignment. The input for alignment
comes from two sources, namely survey information collected during assem-
bly or after installation, and hit residuals of reconstructed charged particle
trajectories (tracks). With track-based algorithms an alignment accuracy
can be reached that well exceeds the single-hit resolution.

The track-based alignment algorithms considered here optimize the total
fit quality of a sample of tracks, for example the total track fit χ2, with respect
to a set of numbers that parametrize the detector geometry. The parameters
are usually chosen to be the positions and orientations of individual detector
elements. We denote the set of alignment parameters with a generic symbol
a. The condition that the total χ2 be minimal with respect to a can then be
written as

d

da

∑
tracks i

χ2
i = 0 , (1)

where the sum runs over all tracks in the calibration sample.
A common problem in the application of track-based alignment algo-

rithms is related to so-called weak modes. These denote alignment degrees
of freedom to which the total track χ2 is mostly or completely insensitive.
A global translation or rotation of all detector elements with respect to a
common point (i.e. a coordinate transformation) can be thought of as a per-
fect weak mode. Less trivial weak modes are related to global distortions
and depend on the detector geometry. In parallel plane detectors, shearings,
such as that depicted in Fig. 1, are also examples of weak modes.
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Figure 1: Illustration of a shearing in a planar detector.

One reason weak modes are a concern in alignment is that they lead to
poor convergence. An approach to treat weak modes is to impose additional
constraints. For example, information on alignment parameters obtained
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from detector survey can be used in the minimization procedure by including
additional terms in the χ2,

χ2
survey =

∑
k

(
ak − ak,survey
σk,survey

)2

(2)

where the sum runs over all alignment parameters and ak,survey and σk,survey
represent the survey information and its uncertainty, respectively. In this
formulation we have assumed that the survey constraints are uncorrelated.
In practise, a proper treatment of correlations is necessary if one wants to
exploit the fact that the survey uncertainty depends on assembly granularity.
For instance, the position of detector modules in a layer or box assembly is
usually much better constrained than the position of that assembly in the
global reference frame.

Weak modes related to global distortions pose a particular concern be-
cause they can lead to biases in track parameters that affect the performance
of an experiment. A global translation of the entire detection apparatus
changes the numerical values of the track parameters without changing the
kinematics relevant for physics analysis, such as an invariant mass or a decay
angle. However, global distortions that affect the relative position or direc-
tion of tracks will introduce a bias in kinematic observables and degrade the
overall detector resolution.

A particularly interesting weak mode related to a global distortion is
the so-called curvature bias. This weak mode appears both in cylindrical
detectors with a solenoidal magnetic field (in which it is sometimes called
sagitta bias or curl) and in forward spectrometers with a dipole magnet, as
illustrated in Fig. 2. In cylindrical detectors it is caused by a layer-dependent
rotation. In forward detectors it can be the result of both a relative shearing
and a relative rotation of the detectors before and after the magnet, which
are to first order indistinguishable.

The momentum of a charged particle is measured via its curvature radius,
which requires at least three measured coordinates. In a uniform magnetic
field B, the inverse of the curvature radius, which we shall call the curvature
ω, is related to the momentum component p⊥ perpendicular to the field by

ω =
QB

p⊥
, (3)

where Q is the charge of the particle. The weak modes illustrated in Fig. 2
introduce a bias in the curvature

ω −→ ω + δω (4)

that for sufficiently large curvature radius is approximately independent of
particle momentum and direction. A constant curvature bias leads to a
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Figure 2: Illustration of a curvature bias in a cylindrical detector geometry (left) and in a
forward detector geometry (right).

momentum bias that depends both on momentum and charge. As we shall
see later, one signature of a curvature bias is a shift in the reconstructed
invariant mass of a two-body decay that is proportional to the momentum
difference between the two final-state particles.

The weak mode that leads to a curvature bias only exists in the presence
of a magnetic field. Consequently, a curvature bias can be constrained with
field-off data, provided that detectors do not move if the field is turned on.
Unfortunately, the latter condition is not often fulfilled. In central detectors
a curvature bias can be constrained with samples of reconstructed cosmic
ray tracks that traverse detector layers on either side of their point of closest
approach to the detector axis [1]. The curvature bias affects the ‘top’ and
‘bottom’ segments of such a track with opposite signs, and hence the require-
ment that those curvatures must be identical constrains the bias. In forward
detectors, such as the LHCb detector at CERN [2], this technique does not
work and alternative methods must be deployed.

We report here on a novel method to constrain the curvature bias by
including a χ2 contribution from a mass-constrained vertex fit of a multi-body
decay. Implementations of kinematic and vertex constraints for alignment
have been presented before [1, 3, 4? ]. With the exception of that in Ref. [?
], these implementations rely on reparameterizations of the tracks and are
limited to two-track combinations. Our method does not need a special track
parametrization or track fit and can be used with vertices with any number
of tracks.

The outline of this paper is as follows. In Section 2 we briefly discuss
the track-based alignment procedure, referring the reader to a previous pub-
lication for details. In Section 3 we present the implementation of a vertex
fit for use in the alignment. In Section 4 we discuss the use of vertex con-
straints in the alignment of the LHCb detector. As an illustration we compare
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the performance of alignments obtained with and without mass-constrained
D0 → K−π+ decays.1

2. Alignment with tracks and vertices

The application of a χ2 minimization procedure for track-based align-
ment is extensively discussed in the literature (see e.g. Ref. [5] and references
therein). For our discussion we use the formalism presented in a previous
publication [6], in which we have shown how to use a Kalman-filter track
fit in a closed-form alignment procedure. We follow the notation from that
paper and from a seminal paper on the application of Kalman filters in high
energy physics [7].

We denote the set of alignment parameters by a and the parameters of
track i by xi. For a track with N hits, we write the N dimensional vector of
hit residuals schematically as

ri(xi, a) = mi(a)− hi(xi) , (5)

where mi is the vector of hit coordinates, each of which is a function of
(a subset of) the alignment parameters. The function hi is often called the
measurement model. It expresses the expected hit coordinates in terms of the
track parameters.2 The χ2 of track i can now be written in matrix notation
as

χ2
i = rTi V

−1
i ri , (6)

where Vi is theN×N covariance matrix of the measurement coordinates. The
latter is usually diagonal. The best-fitting track parameters are obtained by
minimizing χ2

i with respect to xi for a given value a of the alignment param-
eters. Since the measurements depend on a, so do the track parameters.

While the track parameters are different for each track, the alignment
parameters are common. To obtain the optimal alignment one minimizes
the total χ2 of a sample of tracks simultaneously with respect to the track
parameters xi and the alignment parameters a. By taking into account how
the track parameters depend on the alignment parameters, the problem can
be reduced to a minimization problem with the dimension of a only [8, 9, 10,
6].

Starting from an initial alignment a0, the solution for a = a0 + ∆a is
obtained by solving the set of linear equations

d2χ2

da2

∣∣∣∣
a0

∆a = − dχ2

da

∣∣∣∣
a0

. (7)

1Throughout this paper charge-conjugated modes are implied.
2Note that one can choose where to put the alignment parameters a in Eq. 5. The

residual can also be written as ri = mi − hi(xi, a) [6]. Only the residual and the
derivatives of the residual to track and alignment parameters enter the formalism.
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The first and second derivatives are obtained by summing the contributions
from all tracks and can be expressed as [6, 10]

dχ2

da
= 2

∑
tracks i

∂ri
∂a

T

V −1i ri (8)

and
d2χ2

da2
= 2

∑
tracks i

∂ri
∂a

T

V −1i Ri V
−1
i

∂ri
∂a

, (9)

where Ri is the covariance matrix of the residuals after the track fit. The
latter is expressed as

Ri = Vi − HiCiH
T
i , (10)

where Hi is the derivative of ri with respect to the track parameters of track
i and Ci is the covariance matrix for the track parameters. To obtain the
expression in Eq. 8 one exploits the fact that the χ2 contribution for each
track has been minimized with respect to the track parameters for the initial
alignment a0 [6, 10].

One ingredient to Eqs. 8 and 9 is the derivatives of the residuals (or
measured hit coordinates) to alignment parameters.3 Their computation
depends on the implementation of the detector geometry and is outside the
scope of this paper.4 Another ingredient is the track parameter covariance
matrix Ci. In LHCb we use a Kalman filter track fit that takes multiple
scattering and energy loss into account and follow the approach derived in
Ref. [6] to compute Ci.

In Section 4 of Ref. [6] the formalism above is extended with vertex con-
straints. The proposed method relies on a vertex fit. The vertex fit computes
new track parameters on the assumption that all tracks in the fit originate
at a common point. Using the covariance matrix of the tracks the difference
between the track parameters before and after the vertex fit can be propa-
gated to the hit residuals ri. The vertex fit introduces a correlation between
the parameters of different tracks. Therefore, the χ2 contributions from dif-
ferent tracks are no longer independent. This means that the residual vector
ri now spans residuals from all tracks included in the vertex and the covari-
ance matrix Ci is now the covariance matrix for the parameters of all tracks
included in the vertex. The method is valid for any number of tracks in a
vertex. The strength and novel aspect of the method is that no special track
fit is required. The one ingredient that is missing in the discussion in Ref. [6]
is the vertex fit itself. We present the vertex fit in the next section.

3We denote these as partial derivatives since at this stage one ignores the contribution
to the derivative that comes through the track parameters.

4Their evaluation in LHCb is similar to that discussed in Section 3 of Ref. [10] for the
ATLAS detector.
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The actual alignment procedure now consists of the following steps. First,
the tracks are fitted. Next, subsets of tracks that are identified to come
from a single vertex are combined with a vertex fit. Using the formalism
in Ref. [6] a single residual vector ri and corresponding covariance matrix
Ri are computed for each multi-track object and added to the derivatives in
Eqs. 8 and 9. Selected tracks that are not used in a vertex can also be added
to these derivatives. Finally, once all contributions in the sample have been
accumulated, new alignment parameters are computed using Eq. 7.

3. The vertex fit

A vertex fit combines the trajectories of a set of charged particles with
the constraint that the particles originate from a common point. The input
to the vertex fit is the reconstructed parameters and the covariance matrix
for each of the tracks. The output of the vertex fit is the vertex position, the
momentum vector for each of the tracks and the corresponding covariance
matrix.

For the implementation of the vertex fit we use the Billoir-Frühwirth-
Regler algorithm [11]. We follow the notation used in Ref. [7], with small
modifications to remain consistent with the symbols used for the track pa-
rameters in the previous section. For the application in alignment we extend
the formalism with a mass constraint.

Tracks are locally parametrized by a 5-D vector, generically denoted by
the symbol xi where the label i enumerates the tracks in the vertex. The
covariance matrix of the track is denoted by Ci and its inverse by Gi. We
denote the 3-D vertex position vector with the symbol ξ and the 3-D vector
that parametrizes the momentum vector of outgoing track i with qi. The
measurement model, hi(ξ, qi) expresses the parameters of track i in terms of
ξ and qi. The residual of track i is then defined as

ri = xi − hi(ξ, qi) . (11)

Note that the symbol xi used for the track parameters is the same symbol
that appears in Eq. 5 and beyond. However, the role of the track param-
eters is different: in the track fit, the track parameters are free parameters
determined by the track fit. In the vertex fit, the track parameters and their
covariance matrix are input to the fit. In the following we show how the
track parameters are changed if a vertex constraint is applied.

The χ2 of the vertex fit is written as

χ2 =
∑
i

rTi Gi ri , (12)

where the sum runs over all tracks in the vertex. The solution to the vertex
fit is the set of parameters (ξ, q1, . . . , qN) that minimizes this χ2.
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As in Refs. [7, 11] we linearize the measurement model around the current
estimate (ξ0, qi,0),

hi(ξ, qi) = hi(ξ0, qi,0) + Ai(ξ − ξ0) + Bi(qi − qi,0) . (13)

The measurement model and its derivatives Ai and Bi follow from the para-
metrization chosen for tracks and vertices. In Appendix A we shall discuss
a definition suitable for a forward detector as LHCb. The total derivatives
of the χ2 with respect to the vertex position can now be written as [11]

dχ2

dξ
= −2

∑
i

ATi G
B
i ri and

d2χ2

dξ2
= 2

∑
i

ATi G
B
i Ai , (14)

where we introduced

GB
i ≡ Gi −GiBiWiB

T
i Gi (15)

with
Wi ≡

(
BT
i GiBi

)−1
. (16)

By requiring that the first derivative of the χ2 is zero, updated track and
vertex parameters are obtained. The vertex parameters can be expressed as

ξ = ξ0 −
(

d2χ2

dξ2

)−1
dχ2

dξ
, (17)

while their covariance matrix is given by

Cov(ξ) ≡ Cξ = 2

(
d2χ2

dξ2

)−1
. (18)

The momentum parameters of the outgoing tracks can be computed with

qi = qi,0 +WiB
T
i Gi(xi − hi(ξ, qi,0)) . (19)

The covariance matrix for two outgoing tracks i and j is given by

Cov(qi, qj) ≡ Di,j = δijWi + (WiB
T
i GiAi)Cξ (ATj GjBjWj) , (20)

where δij is one if i = j and zero otherwise. The covariance matrix for the
vertex position and the momentum of track i is given by

Cov(qi, ξ) ≡ Ei = −WiB
T
i GiAiCξ . (21)

The vertex fit can be iterated until a certain convergence criterion is met,
for example a sufficiently small change in the vertex χ2 of Eq. 12. Note
that the computation of the covariance matrices in Eqs. 20 and 21 is CPU
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intensive, but not needed for obtaining the χ2 or the position and momentum
updates in Eqs. 17 and 19 [11]. Consequently, their computation can be
delayed until the fit has converged.

An invariant mass constraint adds a new term to the total vertex χ2 in
Eq. 12. In contrast to the χ2 contributions from the individual tracks, the
mass χ2 term has non-zero derivatives to all momentum vectors qi, instead of
just one of them. As a result the formulation of the vertex fit above cannot
easily be extended with a mass constraint. Therefore, we have chosen to add
the mass constraint after the fit to the vertex position, ignoring small effects
due to the non-linearity of the fit. Such effects can be expected to be small as
long as the change in the invariant mass is small compared to the invariant
mass.

For each final state particle i, we compute a relativistic four-momentum
vector ki, which is a function of the momentum parameters qi and a mass
hypothesis mi. We denote the (4 × 3) matrix for the derivative of ki with
respect to qi by

Ki ≡
dki
dqi

. (22)

The total four-momentum of all tracks assigned to the vertex and its covari-
ance matrix are given by

ktot =
∑
i

ki(qi,mi) and Cov(ktot) =
∑
i,j

Ki Di,j K
T
j , (23)

where qi and Di,j are the result of the unconstrained fit (Eqs. 19 and 20,
respectively). From ktot we compute the mass and form a residual for the
mass constraint,

rM = m(ktot)−m0 , (24)

where m0 is the known mass of the reconstructed decay. Defining the 1× 4
derivative matrix

HM ≡
dm

dktot
, (25)

the variance of the constraint is given by

RM = HM Cov(ktot)H
T
M . (26)

In case the natural width Γ0 of the decaying particle is not small compared
to the invariant mass resolution, such as for the decay Z0 → µ+µ−, one can
add Γ2

0 to the variance of the constraint.
Using well-known expressions for the Kalman filter [7], the mass-constrained
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vertex position and track parameters now become

ξ̂ = ξ −
∑
k

ET
kK

T
k H

T
MR

−1
M rM , (27)

q̂i = qi −
∑
k

Di,kK
T
k H

T
MR

−1
M rM . (28)

The updated covariance matrices are given by

Ĉξ = Cξ −
∑
k,l

ET
kK

T
k H

T
MR

−1
M HMKlEl , (29)

D̂i,j = Di,j −
∑
k,l

Di,kK
T
k H

T
MR

−1
M HMKlDl,j , (30)

Êi = Ei −
∑
k,l

Di,kK
T
k H

T
MR

−1
M HMKlEl . (31)

The indices k and l run over all tracks in the vertex.
Finally, for application in the alignment, the vertex-constrained track

parameters and their covariance matrices must be computed. These follow
from the measurement model as

x̃i = h(ξ, qi) (32)

and
Cov(x̃i, x̃j) = AiCξA

T
j + AiE

T
j B

T
j +BiEiA

T
j +BiDi,jB

T
j . (33)

These equations provide the input to Eqs. 18, 19 and 21 in Ref. [6].5 In case a
mass constraint is used we replace the vertex position ξ, the track momentum
parameters qi and their corresponding covariance matrices with their mass-
constrained counterparts in Eqs. 27–31. This concludes the algebra of the
vertex fit for use in a track-based alignment algorithm.

4. Application to the alignment of the LHCb spectrometer

The tracking system of the LHCb detector is an example of a planar de-
tector with a forward geometry. It is schematically depicted in Fig. 3 and
discussed in detail in Ref. [2]. Charged particles produced at the interaction
point bend in the magnetic field of a dipole magnet with a field integral of
about 4 Tm. Precision vertexing is provided by a 21-layer silicon strip detec-
tor located in the field-free region around the interaction point. Four more
layers of silicon strip detectors just in front of the magnet and another 12
layers of silicon strip detectors and straw tube chambers behind the magnet
allow for a precise momentum measurement.

5The symbols x̃
(i)
0 , C̃

(i)
0 and C̃

(i,j)
0 in Ref. [6] translate in our notation as x̃i, Cov(x̃i, x̃i)

and Cov(x̃i, x̃j), respectively.
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Figure 3: Sketch of the LHCb spectrometer. The proton-proton collision point is located
inside the vertex detector on the left (z ' 0). The main component of the field of the dipole
magnet is parallel to the y axis. The curved lines represent trajectories of a positively and
negatively charged particle.

The coordinate frame in LHCb is defined such that the y axis is pointing
upwards (parallel to the main component of the dipole field) and the z axis is
parallel to the beam line with positive z in the direction of the spectrometer.
The x axis is chosen such that (x, y, z) is a right-handed system. The origin
is located approximately in the center of the vertex detector and roughly
corresponds to the average interaction point.

The implementation of a global minimum χ2 algorithm for the alignment
of tracking detectors in LHCb has been previously discussed in Refs. [12, 13].
Since then we have extended the algorithm to exploit vertex constraints from
primary vertices and from resonances using the techniques outlined above.

4.1. Primary vertex constraints

Primary vertices are important for the alignment of the LHCb vertex
detector to guarantee an optimal impact parameter and decay time resolu-
tion [14]. The silicon modules of the vertex detector are assembled in two
detector ‘halves’ that are positioned on the positive and negative x side of
the LHC beam line. The fraction of tracks leaving hits in both halves is
small. Furthermore, tracks that cross detector planes both in front and be-
hind the average interaction point (at z = 0) are rare as well. Reconstructed
primary vertices allow to link detector planes at positive and negative x and
at positive and negative z.

We have successfully exploited primary vertices in LHCb alignment using
the algorithm described above. Although the algorithm in principle allows to
use vertices with an arbitrary number of tracks, a practical problem occurs
for high track multiplicity. In LHCb primary vertices often contain tens of
reconstructed tracks. Reconstructed tracks can have up to 40 hits. A first
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implementation of the algorithm showed that for large-multiplicity primary
vertices the computation of the correlations between all hits on all tracks is
computationally very demanding. In Ref. [6] it was suggested to compute
only the correlations between the hits nearest to the vertex. However, we
have found that this can lead to non-positive definite contributions to the
second derivative of the χ2 and therefore is not a viable solution.

A working solution has been obtained by limiting the track multiplicity
in vertices. For application in alignment we divide a reconstructed primary
vertex into separate vertices with at most eight tracks each. Tracks are sorted
such that particles flying forward (pz > 0) or backward (pz < 0) and left
(px > 0) or right (px < 0) are distributed evenly over the different vertices.
In our framework the computation time of the correlations in these vertices
is small compared to the overall reconstruction and track fitting time. The
loss in statistical power due to the splitting of the vertex can be compensated
by using more events. With typically 30 tracks per primary vertex, we need
about 20% more data to compensate for the loss.

4.2. Invariant mass constraints

To constrain weak degrees of freedom in the spectrometer, such as the
curvature bias discussed in the introduction, mass-constrained vertices from
D0 → K−π+, J/ψ → µ+µ− and Z0 → µ+µ− decays are used. The advantage
of D0 → K−π+ over other resonances is their large abundance and clean sec-
ondary vertex signature in LHCb. This allows to select samples of thousands
of events per hour with practically no background.

In order to illustrate the effect on the alignment and on momentum mea-
surements, we show a comparison of two alignment strategies, one obtained
using approximately 300k selected high-momentum tracks, and another using
in addition the constraint from 80k mass-constrained D0 → K−π+ vertices
in the same sample. For this exercise all alignment parameters for the LHCb
vertex detector were fixed, while all detector elements behind the vertex de-
tector were allowed to move in the x direction and rotate in the xy plane
around their center of gravity. To constrain weak modes and ensure conver-
gence, survey information was used by adding for each alignment parameter
a term to the total χ2, as in Eq. 2. The alignment process started in both
cases from alignment parameters obtained with early data [12, 15]. To ac-
count for non-linearities multiple iterations were performed. In each iteration
the same data set was used, but the assignment of hits to tracks, the track fit
and the track selection were redone. A single iteration took approximately 1
hour on a 2.8 GHz CPU.

In both scenarios the minimization converged in about three iterations,
as illustrated by the average χ2 per degree of freedom versus iteration, shown
in Fig. 4. Remaining variations in the χ2 between iterations are due to small
changes in the track sample entering the alignment, as individual tracks are
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Figure 4: Average χ2 per degree of freedom at each iteration of the alignment procedure
for the alignment with (black line) and without (red squares) D0 mass constraint.

added or removed. We verified the convergence by running many more iter-
ations and by studying the stability of alignment parameters and curvature
bias. While slowly converging components exist, these do not affect the re-
sults reported below.

Although the average track χ2 after the alignment is practically identical
in the two cases, the performance in terms of invariant mass resolution is very
different. Figure 5 shows the invariant mass distribution of D0 → K−π+ and
J/ψ → µ+µ− candidates on independent data sets using the two alignment
sets as input. The mass resolution obtained with the alignment that exploits
the D0 → K−π+ mass constraint is approximately 30% better.
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Figure 5: Invariant mass distribution of D0 → K−π+ (left) and J/ψ → µ+µ− (right) can-
didates obtained with the alignment using the D0 mass constraint (black solid points) and
the alignment based only on tracks (red open points).

To understand this behaviour we consider the effect of a curvature bias
on the invariant mass of a decay to two oppositely charged particles with
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momenta p− and p+ and masses m− and m+, respectively. Assuming small
masses with respect to the momenta, i.e. ignoring terms of order m2

i /p
2
i , the

invariant mass is given by

m =
√
m2
− +m2

+ + 2p−p+(1− cos θ)/c2 , (34)

where θ is the opening angle between the two particles. As a result of a
curvature bias δω, the momentum changes as

p⊥ −→ p⊥

(
1− δω

ω

)
= p⊥

(
1− δωp⊥

QB

)
, (35)

where we have ignored higher order terms in δω/ω. Note that the sign of the
bias in the momentum is opposite for the positive and the negative track.
In a forward spectrometer the momentum component perpendicular to the
field dominates the total momentum. The change in the invariant mass then
becomes, to first order in δω/ω,

m −→ m

(
1 − (p+ − p−)

m2 −m2
− −m2

+

2m2

δω
eB

)
, (36)

where e is the positron charge. In other words, one expects a bias in the
mass that is approximately proportional to the difference of the momenta of
the two final state particles.
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Figure 6: Position of the peak of the invariant mass distribution for D0 → K−π+ (left)
and J/ψ → µ+µ− (right) candidates as a function of the momentum difference of the
two daughter tracks evaluated with the alignment using the D0 mass constraint and the
alignment based only on tracks.

This effect is demonstrated in Fig. 6. The figure shows the position of
the peak of the invariant mass distribution for D0 → K−π+ and J/ψ → µ+µ−

decays as a function of the momentum difference of the final state particles in
the two scenarios. Indeed, if the mass constraint is not used a clear evidence
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of a curvature bias is observed. The removal of the curvature bias explains
the difference in mass resolutions shown in Fig. 5.

From the slopes of the graphs in Fig. 6 one can estimate the value of
δω/2eB. We verify that the two slopes are consistent with a single curva-
ture bias. Studies with simulated LHCb data documented in Ref. [16] show
that the curvature bias is proportional to the x displacement of the detector
planes behind the magnet. The reported constant of proportionality allows
us to predict the displacement from the observed slopes in Fig. 6. We com-
pute a value of approximately 1.8 mm for the x movement of the tracking
layers behind the magnet, consistent with the actually observed difference in
alignment constants between the scenarios with and without mass constraint.

As explained in the introduction, a curvature bias may appear in the
scenario without the mass constraint because it corresponds to a weak mode,
a common displacement of tracking layers that is not constrained by single
particle trajectories. Weak modes are constrained in the LHCb alignment
by survey information. The precision of the survey is poor compared to the
resolution of individual tracks. However, since tracks carry little information
on the weak modes, in the absence of mass constraints the precision of the
survey limits the precision to which the curvature bias can be constrained.
The 1.8 mm difference between the two alignments seems large compared
to the typical uncertainty of the survey information for the detector layers
behind the magnet, which is about 0.5 mm. However, for the results obtained
here the vertex detector was used as a reference. The observed displacement
is equivalent to a 0.2 mrad rotation of the vertex detector around its y axis,
consistent with the precision of the vertex detector survey.

5. Conclusion

Following a recipe outlined in Ref. [6] we have developed a method to
extend a track-based minimum χ2 algorithm for detector alignment with
information from reconstructed vertices. We have presented the algebra of
the vertex fit, including a mass constraint. We have demonstrated how such
a vertex fit can be exploited to remove the effect of a curvature bias in the
alignment procedure.

Primary vertex constraints and D0 → K−π+ mass constraints are now by
default applied in the LHCb alignment procedure. For LHCb, invariant mass
resolution is important to isolate rare B decays from the background and to
separate decays that are kinematically close, such as decays of B mesons
to two light hadrons. The excellent mass resolution of the spectrometer
allows the LHCb collaboration to perform world-best measurements in such
decays [17].
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Appendix A. Track and vertex model for a forward detector

Here we discuss a parametrization for the vertex fit in a forward detector
like LHCb. We define a cartesian coordinate frame as in Section 4. Track
trajectories are locally parametrized by a 5-D ‘state’ vector (x, y, tx, ty, κ) at
a given z coordinate, such that (x, y, z) is a point on the track, tx and ty are
the local tangents dx/dz and dy/dz, respectively, and κ = Q/(pc) with Q
the charge and p the momentum.

In the vertex fit the vertex coordinates ξ are parametrized by a vector
ξ = (xv, yv, zv). The momentum vector of each of the outgoing tracks i is
parametrized by a 3-D vector qi = (tx,v,i, ty,v,i, κv,i), where the meaning of
parameters is the same as in the measured track state. The subscript v
indicates that these are now parameters of the fit, not reconstructed track
parameters. The motivation for choosing this particular parametrization is
that it makes the measurement model nearly linear.

We assume that the reference z coordinate of each of the track states is
sufficiently close to the z coordinate of the vertex that the magnetic field can
be ignored. The measurement model for track i then becomes

h(ξ, qi) =


xv + (zi − zv)tx,v,i
yv + (zi − zv)ty,v,i

tx,v,i
ty,v,i
κv,i

 , (A.1)

where zi is the position at which the measured state vector of the track is
defined. For the corresponding derivative matrices we obtain

A(ξ, qi) =


1 0 −tx,v,i
0 1 −ty,v,i
0 0 0
0 0 0
0 0 0

 (A.2)
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and

B(ξ, qi) =


zi − zv 0 0

0 zi − zv 0
1 0 0
0 1 0
0 0 1

 . (A.3)

Note that in the absence of a magnetic field, the magnitude of the momen-
tum is not required to obtain the vertex position. Therefore, the fit can be
performed more efficiently by omitting the curvature parameter altogether
and working with a 4-D track model. The updated curvature can then be
computed afterward by propagating the change in the remaining four track
parameters. This approach requires more algebra, in particular when imple-
menting the mass constraint. Consequently, we have not used it.

For completeness we also present the expressions for the derivative matri-
ces needed for the mass constraint. We drop the subscript v for readability
and choose units such that c = 1. In terms of the fit parameters the four-
vector (~ki, k0,i) of outgoing track i becomes

ki =


pi tx,i / ni
pi ty,i / ni
pi /ni√
m2
i + p2i

 , (A.4)

where mi is the track candidate mass, pi = Qi/κi and ni =
√

1 + tx,i
2 + ty,i

2.
The derivative matrix in Eq. 22 is then given by

Ki =


(1 + t2y,i) pi / n

3
i −tx,i ty,i pi / n3

i −Qi tx,i p
2
i / ni

−tx,i ty,i pi / n3
i (1 + t2x,i) pi / n

3
i −Qi ty,i p

2
i / ni

−tx,i pi / n3
i −ty,i pi / n3

i −Qi p
2
i / ni

0 0 −Qi p
3
i /
√
m2
i + p2i

 . (A.5)

Finally, taking the vertex invariant mass as the norm of the total four-vector,

m =
√
k20,tot − |~ktot|, one obtains for the derivative matrix Eq. 25 of the mass

constraint

HM = (−kx,tot/m,−ky,tot/m,−kz,tot/m, k0,tot/m) . (A.6)
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