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ABSTRACT: The hadronic energy resolution of the CALICE setup, consisting of a silicon tungsten
electromagnetic calorimeter, an analog hadron calorimeter and an analog tail catcher has been
studied using data taken in 2007 at CERN and simulations. To improve the energy resolution of
hadronic showers in the hadron calorimeter and the tail catcher, a weighting procedure based on
the energy density of the hadron shower is studied. The shower itself and its energy density was
reconstructed using a simple clustering algorithm. Furthermore, the use of a neural network has
been studied for the same purpose. Both methods use simulated data to determine weights which
are then applied to test beam data. These first preliminary studies yield an relative improvement
of the energy resolution by roughly 15 % for the shower weighting technique and 23 % for the
neural network approach compared to the energy resolution of hadronic showers without software
compensation applied.
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1. Introduction1

The CALICE collaboration has constructed highly granular calorimeter prototypes for future col-2

lider experiments. The CALICE calorimeters were tested in various different configurations in3

particle beams at DESY, CERN and FNAL. For the data set studied in this note, taken in 20074

at CERN, a silicon-tungsten electromagnetic calorimeter (ECAL) [1], an analog scintillator-steel5

hadron calorimeter (AHCAL) [2] and a scintillator-steel tail catcher and muon tracker (TCMT) [3]6

were installed.7

The ECAL has a total depth of 24 X0 and consists of 30 active layers arranged in three longi-8

tudinal sections with different samplings. The first ten layers use 1.4 mm thick tungsten absorber9

plates (0.4 X0), followed by ten layers of 2.8 mm thick absorbers (0.8 X0) and 10 layers of 4.2 mm10

thickness (1.2 X0). The total thickness of the calorimeter is 20 cm. Each silicon layer has an ac-11

tive area of 18×18 cm2, segmented into individual modules with 6×6 readout pads with a size of12

1×1cm2. This results in a total of 9720 channels for the detector.13

The AHCAL consists of small scintillator tiles with individual readout by silicon photomulti-14

pliers (SiPMs) [4] arranged in layers between 1.75 cm thick stainless steel absorber plates. The full15

layer thickness is approximatley 3 cm [5]. The size of the scintillator tiles ranges from 3×3 cm2
16

in the center of the detector to 12×12 cm2 on the outer edges of the calorimeter. In the last eight17

layers only tiles with 6×6 cm2 and 12×12 cm2 are used. In total, the hadron calorimeter has 3818

sensitive layers, amounting to a depth of 4.5 interaction lengths λI . The total number of scintillator19

cells is 7608.20

The TCMT consists of 16 readout layers each with twenty 100×5 cm2 scintillator strips read21

out by SiPMs between steel absorber plates, resulting in 320 readout channels. The detector is22

subdivided into a fine and a coarse section, where the first 8 layers have 19 mm thick absorber23

plates, while the absorbers for the last 8 layers are 102 mm thick. The orientation of the scintillator24

strips alternates between horizontal and vertical in adjacent layers. In total, the TCMT thickness25

corresponds to a depth of 5.8 λI . This gives a total depth of approximately 11.3 λI for the complete26

CALICE setup.27

The present note describes a preliminary analysis of hadron data taken at CERN in 200728

and for the chosen test beam runs simulated data produced with the physics lists FTF_BIC and29

QGSP_BERT using GEANT4.9.3. The reconstructed energy of a hadronic shower in the AHCAL30

and the tail catcher has been studied in some detail. The potential to improve the energy resolution31

with two methods is described. The second method is a shower weighting procedure based on the32

energy density of the shower. The first method uses a neural network using cluster properties of33

the hadronic shower to reconstruct the energy of the shower.34

2. Motivation and Overview35

As described in greater detail in [7], a hadronic shower consists of a visible hadronic component,36

an electromagnetic component, and invisible energy deposited in the form of in the form of binding37

energy, nuclear recoil, neutrinos, and (mostly unseen) energy in the form of low energy neutrons.38

The electromagnetic component results from neutral pions created in the hadronic cascade, and is39

most prominent in the core of the shower. The observed signal for a particle showering in a non40
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compensating calorimeter, like the CALICE calorimeter, is larger in the case of electromagnetic41

than of hadronic showers for a given energy, commonly expressed as the ratio e/h > 1. The average42

electromagnetic fraction of a hadron shower increases with the energy of the incident particle.43

Large fluctuations from event to event in the relative fractions of electromagnetic and hadronic44

subshowers together with a non-unity e/h ratio lead to a deterioration of the energy resolution45

for hadrons. Hadronic showers with a high energy density (energy/volume of the shower) tend46

to have a higher reconstructed energy than those with low densities, as shown in Figure 1. This is
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Figure 1. Relation between the density of a cluster and the reconstructed energy in MIP for a 40 GeV test
beam pion data run on the left. For larger densities the reconstructed energy is generally larger. This is not the
case for a 40 GeV positron run (right picture). Note the different scales of the y-axis. Pure electromagnetic
showers have higher energy densities than hadronic ones.

47

exploited by software compensation techniques to improve the reconstructed energy and the energy48

resolution. In this note, we discuss two software compensation techniques developed on the basis49

of clustered hadronic showers. Chapter 5 describes a simple weighting technique based on the50

energy density of reconstructed clusters. This analysis is closely related to the analysis described51

in [7]. Not only do hadronic showers have a strong correlation between the reconstructed energy52

and the energy density of a showers due to the different electromagnetic and hadronic components,53

but also the interplay of other cluster variables such as cluster length, cluster width or the position54

of the cluster in the calorimeter may have a significant influence on the reconstructed energy. In55

Chapter 6 a neural network technique is used to exploit these relations and perform a software56

compensation on this basis.57

A clustering algorithm, described in Chapter 3, is the first step of both analyses. This clus-58

tering algorithm finds clusters which start in the AHCAL and may leak into the tail catcher. If a59

cluster is found, basic cluster properties such as the cluster energy, the cluster length and width are60

determined. It should be noted that the focus of this note is on the algorithms to improve the energy61

resolution and not the clustering itself. Every (more developed) clustering algorithm, e.g. the clus-62

tering in PandoraPFA [8], could in principle be used with the software compensation techniques63

discussed here.64

Both analyses types use Monte Carlo information to reconstruct the energy of pions showering65

in the calorimeter of the CALICE setup. In total three data sets are compared to each other. The66
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first data set is test beam data of π− events between 10-80 GeV. The run numbers are listed in67

Appendix A. The other two data sets are Monte Carlo data, both simulated for the mentioned test68

beam runs. The FTF_BIC and QGSP_BERT physics lists were chosen because both show quite69

good agreement with test beam data for the energy resolution and the reconstructed energy (Section70

3.1). The software versions used for the test beam run reconstruction and Monte Carlo simulations71

are listed in Appendix B.72

In the Chapter 4 a method to correct the Monte Carlo energy is described. This is necessary because73

the energy is an important parameter to extract the weights from Monte Carlo data.74

3. Clustering Algorithm75

The clustering is only performed in the AHCAL. Only events with a valid beam trigger (for test76

beam data) and hits with an energy deposition above a threshold of 0.5 MIP are analyzed. For the77

test beam data the Cherenkov trigger was used as well reduce the electron and proton background.78

For the Monte Carlo data only π− events were simulated.79

80

Seed finding: The geometry of the tiles in the calorimeter are defined in the I,J,K system. A81

seed is found in the I,J plane by the projection of the hits on the AHCAL front face. This is done82

once weighted with the energy of the hit and once unweighted to get just the number of hits for the83

different I,J values. In both projections the local maxima are found. A local maximum is chosen as84

a seed if it has more than four hits in the hit projection and more than 5 MIP in the energy projection.85

86

Finding the full shower: Starting with the seed and K = 1 (first layer of the AHCAL) the al-87

gorithm steps through the AHCAL layers and collects all hits with same I and J values as the88

seed hit as cluster hits, as well as all neighbors with a hit energy deposition above the threshold89

of 0.5 MIP. A gap is defined as a distance of more than three successive cells without an energy90

deposition after a cluster hit. If a gap is found, the algorithm stops to search for hits deeper (higher91

K values) in the AHCAL. Because the algorithm always starts searching for cluster hits in the first92

layer of the AHCAL, the track which leads to a cluster is found and will be counted as part of the93

cluster. If the last layer of the calorimeter is reached or a gap is found, the algorithm goes back94

to the front of the calorimeter and continues to collect all neighbors of cluster hits which are not95

already in the cluster. Every hit is collected if there is not a gap between the hit looked at and the96

closest cluster hit. This stage continues until no more cluster hits are found. A picture of an event97

with a cluster can be seen in Figure 2. The ECAL and the tail catcher are not shown in this figure.98

3.1 Energy reconstruction of clusters in the AHCAL and TCMT99

Event selection100

For the following analyses only events are analyzed that have one cluster in the AHCAL, with has101

more than 70 hits. This cut on the number of hits in the AHCAL is used to reject muon events and102

events with a most likely not completely found shower. To select only showers which start in the103

AHCAL a second cut, requiring less than 50 hits and 70 MIP in the ECAL, is introduced.104

The hits which are not found to be part of the cluster are most likely either noise hits or result of105

an energy deposition of a neutron which was created as part of the cluster. The mean not counted106
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Figure 2. Example event of a 20 GeV pion run. The red squares are hits which are part of the cluster. The
yellow squares are isolated hits which are not part of the cluster and the blue squares are non-isolated hits
which are not part of the cluster.

energy is around 10 MIP for all beam energies.107

Leakage to the tail catcher108

If a cluster in the AHCAL has hits in the last layer of the AHCAL it is likely that the shower is not109

contained in the AHCAL but also deposited energy in the tail catcher. To define the cluster proper-110

ties, the shower is extended to the tail catcher by looking for hits in successive layers starting at the111

first tail catcher layer behind the AHCAL. A hit (energy deposition larger than 0.5 MIP) belongs to112

the cluster if the full layer energy is above the threshold of 0.8 MIP. A hit with an energy deposition113

below this threshold will end the cluster in the tail catcher.114

115

Energy resolution with clustering algorithm116

The distributions of the cluster energy (AHCAL + TCMT) is calculated for the test beam data and117

the two Monte Carlo data sets. The reconstructed energy and resolution is extracted from a two-118

step gaussian fit of histograms of the event-by-event distribution of the reconstructed energy. First,119

a Gaussian was fitted over the full range of the histogram. Then, a second Gaussian was fitted only120

in the range of ±1.5σ of the first fit. The mean and the σ of this second fit were used as the mean121

reconstructed energy and as the energy resolution, respectively. For the conversion from the MIP122

to the GeV scale a single energy independent factor of 0.03 GeV/MIP was used for every cluster.123

This factor was determined from a 15 GeV pion run and can be interpreted as an electromagnetic124

conversion factor, multiplied with the e/pi ratio at 15 GeV. The energy resolution, shown in Figure125

3, for test beam data was found to be:126

Test Beam Data:
σ

E
=

64.3±0.4%√
E[GeV]

⊕0.0±0.7%⊕ 0.2±0.4
E[GeV]

127

The resolutions obtained from Monte Carlo were:128

FTF_BIC:
σ

E
=

61.6±0.4%√
E[GeV]

⊕2.7±0.3%⊕ 0.0±0.2
E[GeV]

QGSP_BERT:
σ

E
=

56.7±1.2%√
E[GeV]

⊕2.0±0.5%⊕ 0.9±0.1
E[GeV]
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for Monte Carlo data. The errors in the energy resolution and the linearity are statistical only and129

mostly smaller than the marker size.130

The energy resolutions obtained from both sets of Monte Carlo data are both similar to that ob-131

tained of test beam data. The reconstructed energy for FTF_BIC data differs at most 3.5 % to the132

test beam data. The disagreement is larger for QGSP_BERT data with a maximum deviation of133

5.5 %. The results of test beam and Monte Carlo data without the clustering are shown in the Ap-134

pendix in Figure 21.135

The fit of the energy resolution was done without start values or limits for the three parameters. A136

fit option to perform better errors estimation using Minos technique was applied. The stochastic,137

the constant and the noise term in the fit are strongly correlated, which does not allow compari-138

son of single parameters from different fits. In the following the energy resolutions are fitted to139

guide the eye and the fit results are shown in the Figures. The argumentation of energy resolution140

improvement is done by showing the ratio of energy resolution with and without software compen-141

sation technique applied.142
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Figure 3. Energy resolution (left picture) and the linearity (right picture) for test beam (black points) and
Monte Carlo (blue points) data.

143

The energy resolution of test beam data with and without the clustering can be compared via144

the ratio of the energy resolutions as a function of energy, shown in Figure 4. Since the clustering145

algorithm does not associate isolated hits or small isolated subclusters, stemming for example from146

neutrons, it is likely to miss a fraction of the total energy. This leads to a deterioration of the147

energy resolution compared to an analysis of the full visible energy in the calorimeter. This effect148

decreases with increasing shower energy.149
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Figure 4. Ratio of the energy resolution with and without the clustering. σall is the width of the gaussian of
the reconstructed energy taken all hist in the tail catcher and AHCAL into account. σclustering is the width of
the gaussian with the clustering algorithm.

3.2 Shower Properties150

The analyses described in this note are based on the input of one or more cluster properties. In the151

following, the definitions of the chosen variables are given and comparisons of data and simulation152

are shown. The events with one cluster are analyzed to find shower properties which describe the153

hadronic showers at energies from 10 GeV to 80 GeV. For this purpose, the variables which were154

chosen display a strong beam energy dependence. For a 40 GeV run the described variables are155

shown for test beam and Monte Carlo data in Figure 5.156

157

Shower energy: The energy sum of all hits in the AHCAL which belong to the shower and of158

the layers in the tail catcher which belong to the shower defines the total energy of shower.159

160

Shower length: The total shower length is defined as the length in layers between the shower161

starting point and the hit with the highest K-value (in AHCAL or tail catcher) of the shower. The162

shower starting point is defined as the layer in which the number of hits in this layer and the two163

former layers is higher than 3 hits and the energy sum of these layer is higher than 8 MIP.164

165

Shower width: It is assumed that the shower axis is always perpendicular to the front plane of166

the AHCAL and is defined by the shower seed. The distance of every hit to the shower axis is167

calculated. The mean value of these distances is defined as the cluster width. This value is only168

calculated for cluster hits in the AHCAL, not in the tail catcher.169

170

Shower volume: If the shower is contained in the AHCAL the volume is defined by the sum171

of all single tile volumes (tile volume here: area of tile times thickness of layer). If the shower172

leaked into the tail catcher, the cluster volume in the tail catcher is calculated with the following173

method. For every layer a cylinder around the cluster axis is calculated with a length of 5 cm (layer174

thickness). For more than one hit in a layer the diameter of the cylinder is taken as the mean dis-175

tance of the hits. If there is only one hit per layer the diameter is assumed to be the width of the176
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scintillator bar 5 cm. The sum of the volumes of these cylinders summed up give the volume of the177

cluster in the tail catcher.178

179

Tail catcher cluster energy: The energy of the cluster hits in the tail catcher form the tail catcher180

cluster energy. The value can be interpreted as longitudinal energy deposition information.181

182

Energy in the last five AHCAL layers: The cluster energy which is deposited in the last five183

AHCAL layers.
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Figure 5. Shower property variables of test beam (black) and Monte Carlo (blue) data of a 40 GeV run.
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4. Monte Carlo energy correction185

The determination of the weights for both analyses depend strongly on the reconstructed shower en-186

ergy Erec. For the neural network technique, the reconstructed energy is used as one input variable.187

For the cluster energy density weighting technique, the parameterization of the weights depends188

on the reconstructed energy. We found that weights extracted from Monte Carlo data can only189

successfully be applied to test beam data if the reconstructed energy, with which the weights will190

be determined, does not differ too much from the reconstructed energy on which these weights191

are applied (see Figure 20). The difference between reconstructed energy and beam energy for192

test beam data and simulation is shown in Figure 6. This difference also reflects the differences193

between reconstructed energy in simulations and test beam data; which is large for low and high194

beam energies in both physics list compared to test beam data. Such a correction would not be195

necessary for a physics list which reproduces the behavior of the energy reconstruction in data to196

good precision. The reconstructed energy of the Monte Carlo data is corrected by a multiplicative
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Figure 6.
Left: FTF_BIC: Fit of the energy dependence of the difference between reconstructed and beam energy for
test beam data (black points) and Monte Carlo data (red squares) and to the test beam data corrected Monte
Carlo data (green triangles).
Right: QGSP_BERT: Fit of the energy dependence of the difference between reconstructed and beam energy
for test beam data (black points) and Monte Carlo data (blue squares) and to the test beam data corrected
Monte Carlo data (green triangles).

197

factor kErec .198

Erec,c = Erec · kErec (4.1)

The correction factor kErec is extracted from the energy difference of the reconstructed energies199

to the beam energy shown in Figure 6. In these figure the energy dependence of the normalized200

difference is fitted with a function f (Ebeam) = a√
Ebeam

+ b. The black points and line belong to the201

test beam data, the red points and line belong to the FTF_BIC Monte Carlo data in the left plot of202

Figure 6 and the blue points and line in the right plot of Figure 6 belong to the QGSP_BERT Monte203

Carlo data. The correction factor is then extracted from the relations Erec,data = kErec ·Erec,MC and204
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f (Ebeam) = Erec−Ebeam
Ebeam

. This leads to a correction factor of205

kErec =
adata√
Ebeam

+bdata +1
aMC√
Ebeam

+bMC +1
. (4.2)

Because the beam energy should not be used in the weight determination it is replaced by the206

reconstructed shower energy:207

kErec =

adata√
Erec,MC

+bdata +1
aMC√
Erec,MC

+bMC +1
. (4.3)

With this correction factor, the energy of the clusters in Monte Carlo is increased for low energies208

and decreased for the high energies. The difference between corrected and beam energy for the209

corrected Monte Carlo data can be seen by the green triangles in figure 6 on the left for FTF_BIC210

and on the right by the green triangles for QGSP_BERT simulated data. These green triangles are211

much closer to the black line. In both following analyses, this corrected energy is used. All other212

cluster properties such as cluster energy density, cluster length are not changed.213
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5. Cluster Energy Density Weighting Technique214

The cluster weighting technique is similar to the single cell weighting technique described in CAN-215

015, but this time only one weight per shower per event is used. The weight depends on the216

energy density of the shower which is defined as the cluster energy divided by cluster volume. The217

definitions of the cluster energy and volume are described in Chapter 3.2.218

As shown in Figure 1, clusters with a high energy density tend to have a higher reconstructed219

cluster energy for the same particle energy. Since electromagnetic subshowers tend to be denser220

than purely hadronic ones, the higher the electromagnetic content in this shower the larger is the221

energy density and therefore the reconstructed energy. The cluster energy density is chosen as the222

property to determine the amount of the electromagnetic content. The strength of this correlation223

between the reconstructed energy and the cluster density depends on the beam energy. Therefore,224

a weighting technique based on the cluster energy density can be applied, if the weights are energy225

dependent.226

5.1 Energy reconstruction and parameterization of cluster energy density weights227

The simplest way to calculate the reconstructed cluster energy is to use one factor w to get from228

the MIP scale to the GeV scale.229

Erec[GeV] = ∑hit Ehit [MIP] ·w = Erec[MIP] ·w230

This factor w is constant for every energy and event and was determined to be 0.03 GeV/MIP.231

To improve the energy resolution, not one weight factor w for every event and energy is used, but232

weight factors ω(ρ,E) = (ω1(E), ...,ω8(E)) which depends on the energy density ρ of the cluster.233

Therefore, the cluster energy density is divided into eight bins, which are shown in Figure 7.234

The weighted cluster energy in GeV is calculated with
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Figure 7. Cluster energy density for the run 331280 (80GeV). The subdivision of the energy density into
eight different bins is illustrated by the color shading.

235

Erec,weighted[GeV] = ∑
hit

Ehit [MIP] ·ω(ρ,E) = Erec[MIP] ·ω(ρ,E). (5.1)
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The weight for each cluster ω(ρ,E) depends on the cluster energy density. Suitable weights236

ω(ρ,E) are found by the minimization of the Function 5.2 for each run individually.237

χ
2 = Erec ·ω(ρ,E)−Ebeam (5.2)

In this determination, the energy loss of the incoming particle in the ECAL was taken into account238

by reducing the beam energy Ebeam by 200 MeV. This corresponds to the mean energy loss of a239

minimum ionizing particle in this detector, calculated from the material properties.240

At this stage the Function 5.2 was minimized for every run of the Monte Carlo data sets individ-241

ually and weights were extracted. These individual weights for each run differ for the different242

cluster energy density bins. The weights are parameterized, see Figure 8, by a function with two243

parameters, given by244

ω(ρ,E) = (a(E)+b(E) ·ρ). (5.3)

In this function, the parameter a,b are energy dependent functions itself and x is the center of the
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Figure 8. Individual weights for a 40 GeV Monte Carlo run. The fit describes the parametrization of these
weights.

245

corresponding energy density bin.246

Using Function 5.3, each individual weight set of every beam energy was fitted and the energy247

dependence of the parameters a and b for all beam energies is shown Figure 9, where the param-248

eters a and b are plotted versus the beam energy. The distributions were fitted with the following249

functions:250

a(E) = p1 · (1− exp(p2 ·E))+ p3 (5.4)

and251

b(E) = q1 +q2 · exp(q3 ·E). (5.5)

For this analysis, the two weight parameters a and b are chosen according to these phenomeno-252

logical descriptions, taking the reconstructed energy of the single weight method as input energy.253

Equation 5.1 giving the weighted reconstructed energy, can then be rewritten to254

Erec,weighted = Erec · ([p1 · (1− exp(p2 ·Erec))+ p3]+ [q1 +q2 · exp(q3 ·Erec)] · x) (5.6)
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ture: Energy dependence of function parameter a. Right picture: Energy dependence of function parameter
b.

where x is the center of the corresponding energy density bin. With this method, the reconstructed255

energy and the corresponding energy resolution is calculated for each run in the data set.256

5.2 Results257

This result section has two parts. The first Subsection 5.2.1 shows results on the energy resolution,258

the gain in energy resolution and the linearity of test beam data obtained with weights extracted259

from the physics list FTF_BIC. The second part 5.2.2 shows the results with weights obtained from260

the physics list QGSP_BERT.261

5.2.1 Data with FTF_BIC weights262

The energy dependent weight Function 5.3, was determined with the simulated data sample of263

FTF_BIC. The results for the energy resolution are shown in Figure 10. The black points show test264

beam data with one constant weight factor and the red circles the test beam data with the weights265

obtained from FTF_BIC data. The distributions of the reconstructed energies were fitted with the266

described two step Gaussian fit.267

The gain in energy resolution is shown by the ratio of the energy resolution with and without268

weighting on the right plot on Figure 10. The energy resolution of the cluster weighting technique269

is labeled σweight and the energy resolution of the test beam data with one constant factor applied,270

is labeled σsingle. The ratio of these two values is between 0.83 and 0.9 over the full energy range.271

Therefore an improvement of 13 % in the energy resolution on test beam data with weights ex-272

tracted from FTF_BIC data could be reached.273

The reconstructed shower energy with the cluster weighting technique of the FTF_BIC physics list274

fulfills linearity better than 3 %, shown in Figure 11.275
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Figure 10. Left: Energy resolution of test beam data with a single weight factor (black points) and with
the weights applied (red circles) which were extracted from the cluster energy density weighting approach
which was determined with FTF_BIC Monte Carlo data.
Right: Ratio of energy resolution.
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Figure 11. Linearity of test beam data with a single weight factor (black points) and with the weights applied
(red circles) which were extracted from the cluster energy density weighting approach which was determined
with FTF_BIC Monte Carlo data.

5.2.2 Data with QGSP_BERT weights276

The same analysis described in Section 5.1 was performed with simulated data of the physics list277
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QGSP_BERT.
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Figure 12. Left: Energy resolution of test beam data with a single weight factor (black points) and with
the weights applied (blue circles) which were extracted from the cluster energy density weighting approach
which was determined with QGSP_BERT Monte Carlo data.
Right: Ratio of energy resolution.

278

The improvement in energy resolution for each beam energy individually is shown on the right side279

of Figure 12. For low beam energies the gain in energy resolution is between 0.79 and 0.9 and280

therefore better than for the results obtained with the physics list FTF_BIC. For higher energies281

the ratio is similar to the ratio obtained with FTF_BIC weights. Overall, the energy resolution was282

improved by 15 %.283

Figure 13 shows the linearity of the original reconstructed energy and the reconstructed energy284

with the weighting technique. The difference between reconstructed energy with the weighting285

technique and beam energy is better that 4 %, with a constant offset of approx. 2 %.286

287

5.3 Conclusion288

The cluster energy weighting technique gives similar results on test beam data for weights extracted289

from FTF_BIC and QGSP_BERT. The energy resolution improved by 13 % for FTF_BIC weights290

and 15 % for QGSP_BERT weights. The difference is mainly because the gain in energy resolu-291

tion is slightly better for QGSP_BERT weights in the energy range from 10 to 40 GeV. For higher292

energy of both physics lists perform similar.293

The linearity for the weights extracted from FTF_BIC data is better than 3 %, using the QGSP_BERT294

weights results in a similar linearity, but a constant offset in the reconstructed test beam energy of295

about 2 % in introduced.296

297
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Figure 13. Linearity of test beam data with a single weight factor (black points) and with the weights
applied (blue circles) which were extracted from the cluster energy density weighting approach which was
determined with QGSP_BERT Monte Carlo data.

6. Neural Network Technique using TMVA298

6.1 Overview299

The use of a neural network for the reconstruction of the energy of hadronic showers from shower300

properties was studied. The program TMVA (Toolkit for Multivariate Data Analysis with ROOT)301

was used to perform a regression analysis. A neural network was built, trained and tested. In the302

training phase, the neural network was fed with cluster variables and one target value (the beam303

energy). The neural network was trained with a special set of simulated data, which had to be304

produced for this purpose. The trained neural network provides an energy estimation for each305

set of input variables. The goodness of the chosen neural network architecture can the tested by306

applying the trained neural network on other data sets. In the testing phase, the target variable was307

not used.308

A regression method with neural network consists of a certain number of layers and each layer309

of a certain number of neurons or nodes. The first layer is always the input layer in which the310

input variables are defined as the input nodes. The last layer is the output layer with the output311

node of the neural network, in this case the reconstructed energy in GeV. The layers in between are312

called hidden layers. The number of hidden layers and the nodes in each hidden layer have to be313

defined by the user of the neural network. Working with the neural network means, in this case, to314
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find suitable input variables and a reasonable number of nodes in the hidden layers and the target315

variable.316

6.2 Training and Testing of the neural network317

In the training phase an input data set was used, which covered the whole energy range between318

5 GeV to 105 GeV of beam energies to be used as target values for the neural net.319

The neural network could not be trained with test beam data, because the test beam data was only320

available in steps of 5 GeV. Taking test beam data in the training phase resulted in unrealistic good321

reconstructed energies, for the used beam energies, since the network picked up the quantization322

of the beam energy in the training phase. Consequently, events with different energies would not323

reconstructed correctly. Therefore, a training data sample was simulated with continuous small324

steps of beam energy. For training, 200000 π− events were simulated in energy steps of 0.1 GeV325

with the physics list QGSP_BERT and FTF_BIC in the energy range between 5 and 105 GeV.326

Several neural network architectures were trained with the input variables shown in Figure 5.327

A number of network architectures were tried to find the one with the best performance. The328

chosen architecture of the neural net consists of one hidden layer with N+5 neurons, where N is329

the number of input variables. For both physics list the same architecture was chosen to have330

comparable results.331

In the training phase of the neural network, it was necessary to introduce a so called “weight332

expression”. This “weight expression” is not a physics driven weighting but it gives some events333

more weight. The neural network is trained to minimize the absolute deviations of the reconstructed334

values from the target values. Large target values are thus overemphasized in the context of a335

hadronic calorimeter. With the used weight expression lower energies (target values) are taken into336

account more in the training phase. The function which was used for this weight expression is337

f (target) = 500/(target− 5). The effect of this "weight expression“ is shown in Figure 20 in the338

Appendix.339

Testing the neural network means applying the neural network on a data set which has not340

been used for the training of the neural network. Two neural network were trained with the physics341

lists FTF_BIC and QGSP_BERT. The neural networks were applied on the test beam data sample342

and on the Monte Carlo data sample of the physics list which was not used in the training phase.343

6.3 Results344

The section is divided in two parts. In the subsection 6.3.1 the results obtained with the network345

trained on data simulated with FTF_BIC applied to test beam data are discussed. The linearity of346

the reconstructed energy, the energy resolution and the gain in energy resolution for the test beam347

data are studied. In the subsection 6.3.2 the results obtained with a neural network trained with348

QGSP_BERT simulated data and applied on test beam data are presented.349

6.3.1 Energy reconstruction with a Neural Net trained with simulations with FTF_BIC350

Figure 14 and 15 show the results of the energy reconstruction of test beam data with a neural351

network trained with FTF_BIC. The black points show the single weight cluster result, described352

in Section 3, and are shown as a reference. The red circles show the result of the energy reconstruc-353

tion with the neural network. The distributions of the reconstructed energies were fitted with the354
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described two step Gaussian fit. The difference between the fitted peak value and the beam energy355

is shown in the bottom of Figure 14.356

The energy of the test beam data had to be adjusted after the energy reconstruction with the neu-357

ral network. Without a scaling factor, all energies would have been reconstructed with an energy358

approximately 2.75 % higher than the beam energy. To get a linearity of better than 2 % all recon-359

structed energies had to be scaled down by 2.75 %.360

The gain in energy resolution can mainly be seen on the right plot of Figure 15. The improvement
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Figure 14. Linearity of test beam data with a single weight factor (black points) and with the weights
applied (red circles) which were extracted from a neural network which was trained with FTF_BIC Monte
Carlo data.

361

in energy resolution is, except for the 10 GeV point, between 19 % to 25 %. As shown on the right362

of Figure 15, the improvement of the energy resolution is largest in the middle energy range and363

reduces slightly for higher beam energies.364

6.3.2 Energy reconstruction with a Neural Net trained with simulations with QGSP_BERT365

The results of the energy reconstruction of test beam data with a neural network trained with366

QGSP_BERT simulated data are presented in Figure 16 and 17. As in the case for the FTF_BIC367

trained network a scaling factor of 2.75 % has been applied to the data. The largest improvement in368

energy resolution could be achieved at the medium energy range, shown on the right plot of Figure369

17. An improvement of energy resolution, which is better than 19 %, can only be achieved in the370

energy range between 17 to 50 GeV. For higher energies the gain is less than for a neural network371
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Figure 15. Left: Energy resolution of test beam data with a single weight factor (black points) and with the
weights applied (red circles) which were extracted from a neural network which was trained with FTF_BIC
Monte Carlo data.
Right: Ratio of energy resolution.
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Figure 16. Linearity of test beam data with a single weight factor (black points) and with the weights
applied (blue circles) which were extracted from a neural network which was trained with QGSP_BERT
Monte Carlo data.

trained with FTF_BIC data. The neural network trained with QGSP_BERT data, gives a linearity372

of test beam data which is better than 2 %.373
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Figure 17. Left: Energy resolution of test beam data with a single weight factor (black points) and with
the weights applied (blue circles) which were extracted from a neural network which was trained with
QGSP_BERT Monte Carlo data.
Right: Ratio of energy resolution.

6.4 Conclusion374

With the neural network technique an improvement in the energy resolution of around 23 % is375

reached with the two neural networks. Also, the reconstructed energy is closer to the beam ener-376

gies over the full energy range than for the single cluster weight, leading to a significantly improved377

linearity.378

The main difference between the application of the neural networks on test beam compared to379

Monte Carlo data is a residual discrepancy of the reconstructed energy. The test beam data had380

to be readjusted by a constant factor of 2.75 % and this is therefore a calibration effect. This is381

correlated with the fact, that the reconstructed cluster energy is the most important input variable382

in the neural network and need to be very similar for the training and testing data samples.383

The network trained with FTF_BIC data gives the better energy resolution improvement over the384

full energy range, which is shown by the ratio of the energy resolutions.385

386
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7. Summary387

Two analyses were presented which study software compensation with a weighting technique and388

a neural network on the hadronic cluster level. For the techniques only simulated data was used to389

extract weights and train neural networks respectively. It is the first time for CALICE analyses that390

Monte Carlo data is used to develop a software compensation techniques which then were success-391

fully applied on test beam data.392

The best results of the neural network technique, provided the neural network trained with FTF_BIC393

simulated data. An improvement of the energy resolution around 23 % could be achieved with a394

significantly improved linearity as well.395

The simple technique using one weight per cluster, based on the energy density of the hadronic396

shower, improved the energy resolution by 15 %. These method has the advantage that it is straight397

forward to handle and understand. Here the physics list QGSP_BERT gave a slightly better perfor-398

mance, when applied to test beam data.399

These software compensation techniques are also well suited for the integration into complex event400

reconstruction algorithms for a complete linear collider detector, such as the PandoraPFA particle401

flow algorithm [8].402

– 21 –



References403

[1] J. Repond et al. [CALICE Collaboration], Design and Electronics Commissioning of the Physics404

Prototype of a Si-W Electromagnetic Calorimeter for the International Linear Collider, JINST 3,405

P08001 (2008).406

[2] C. Adloff et al. [CALICE Collaboration], Construction and Commissioning of the CALICE Analog407

Hadron Calorimeter Prototype, submitted to JINST.408

[3] A. Dyshkant, Tail Catcher Muon Tracker for the CALICE test beam, AIP Conf. Proc. 867 (2006)409

592-599.410

[4] G. Bondarenko et al., Limited Geiger-mode microcell silicon photodiode: New results, Nucl. Instrum.411

Meth. A 442, 187 (2000).412

[5] A. Lucaci-Timoce, Description of the Analog HCAL Prototype in Mokka,413

http://www.desy.de/ lucaci/Others/hcalTBeam.pdf414

[6] A. Höcker, P. Speckmayer, J. Stelzer, F. Tegenfeldt, H. Voss, K. Voss et al., TMVA - Toolkit for415

Multivariate Data Analysis with ROOT, [arXiv:physics/0703039]416

[7] F. Simon, K. Seidel [CALICE Collaboration], Initial Study of Hadronic Energy Resolution in the417

Analog HCAL and the Complete CALICE Setup, CALICE Analysis Note CAN-015 (2009).418

[8] M. Thomson, Particle flow calorimetry and the PandoraPFA algorithm, Nuclear Instruments and419

Methods in Physics Research Section A, Volume 611, Issue 1, p. 25-40.420

A. List of Runs421

Run Number Beam Energy in GeV Partcile Type
330850 10 π−

330647 15 π−

330771 20 π−

330650 25 π−

331298 30 π+

330551 35 π−

330412 40 π−

331282 60 π+

331280 80 π+

Table 1. The background is potentially quite different for the test beam runs due to the different particle type.
π+ runs have mainly proton background and π− runs have mainly electron background. The Cherenkov
trigger was used to eliminate this background sources.

B. Software Version422

Test beam data reconstruction:423

name version
calice calice-v02-00

424
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Simulation:425

name version
geant4 4.9.3
mokka 7.02

detector model TBCern0707_p0709
calice calice-v02-00

426

C. Composition of physics lists427

FTF_BIC: BIC up to 5 GeV; FTFB above 4 GeV428

QGSP_BERT: BERT up to 9.9 GeV, LEP from 9.5 GeV up to 25 , QGSP above 12 GeV429

D. Additional figures430
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Figure 18. Cluster energy density for a 40 GeV run. The subdivision of the energy density into eight
different bins is illustrated by the color shading.
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Figure 19. Cluster energy density of a 20 GeV. The subdivision of the energy density into eight different
bins is illustrated by the color shading. The energy density is not as broad as for higher energies. Therefore
less energy density bins are effectively used. There choice of the bin borders was strongly correlated to the
energy density dependence of the individual weights.
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Figure 20. Difference of reconstructed and beam energy for test beam data and a neuronal net, trained with
FTF_BIC simulated data. The reconstructed cluster energy in Monte Carlo of the training data set was not
corrrected as described in Section 4. At low energies (< 40 GeV) the linearity is larger than 4 %. Without the
“weight expression“ in the training phase of the neural net the difference between reconstructed and beam
energy would be even higher at low energies.
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Figure 21. Energy resolution (left) and linearity (right) of test beam (black points), QGSP_BERT (blue
squares) simulated and FTF_BIC (red triangles) simulated data without clustering (all energy in AHCAL
and TCMT) and a single weight factor (MIP to GeV 0.028).
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Figure 22. Energy resolution of test beam (black points), QGSP_BERT (green squares) simulated clustered
data. Left: Neural Net trained with FTF_BIC simulated data applied on both data set. Right: Weights
extracted with FTF_BIC simulated data applied on both data set.
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Figure 23. Ratio of energy resolution of test beam (black points), QGSP_BERT (green squares) simulated
clustered data. Left: Neural Net trained with FTF_BIC simulated data applied on both data set. Right:
Weights extracted with FTF_BIC simulated data applied on both data set.
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Figure 24. Linearity of test beam (black points), QGSP_BERT (green squares) simulated clustered data.
Left: Neural Net trained with FTF_BIC simulated data applied on both data set. Right: Weights extracted
with FTF_BIC simulated data applied on both data set.
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E. Energie Density Weighting - Weights on Monte Carlo data431

The results of the cluster energy density weighting technique on one Monte Carlo data set with432

weights extracted from the other Monte Carlo data set and vice versa, are presented in Figures 25,433

26 and 27.434

The linearity, see Figure 27, is better than 4 %, for both data sets.435

The ratio of energy resolutions (right plots of Figure 25 and 26) are similar for energies between436

10 to 40 GeV. At higher energies the weights obtained with data from the physcis list QGSP_BERT437

give better results. The gain in energy resolution is around 20 %.
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Figure 25. Left: Energy resolution of test QGSP_BERT data with a single weight factor (dark red squares)
and with the weights applied (open red squares) which were extracted with the cluster energy density weight-
ing approach of FTF_BIC Monte Carlo data.
Right: Ratio of energy resolution.
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Figure 26. Left: Energy resolution of test FTF_BIC data with a single weight factor (dark blue triangles)
and with the weights applied (open blue triangles) which were extracted with the cluster energy density
weighting approach of QGSP_BERT Monte Carlo data.
Right: Ratio of energy resolution.
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Figure 27. Left: Linearity of QGSP_BERT data with a single weight factor (dark red squares) and with the
weights applied (open red squares) which were extracted with the cluster energy density weighting approach
of FTF_BIC Monte Carlo data.
Right: Linearity of FTF_BIC data with a single weight factor (dark blue traingles) and with the weights ap-
plied (open blue triangles) which were extracted from a neural network which was trained with QGSP_BERT
Monte Carlo data.

F. Neural Network on Monte Carlo data439

To check the stability of this neural network technique with respect to the choice of the chosen440

physics list, the weights of the FTF_BIC physics list were also applied on the QGSP_BERT simu-441

lated data and vice versa.442

Figures 28 and 29 show the energy resolutions and the ratios of the energy resolutions with and443

without the neural network applied.444

The neural network trained with FTF_BIC data shows the higher gain in energy resolution of445

around 23 % (Figure 29). Over a larger energy range the improvement is bigger compared to the446

neural network trained with QGSP_BERT data (Figure 28). The linearity, see Figure 30, is better447

than 3 % for both neural networks over the full energy range.448
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Figure 28.
Left: Energy resolution of FTF_BIC data with a single weight factor (dark blue points) and with the weights
applied (blue points) which were extracted from a neural network which was trained with QGSP_BERT
Monte Carlo data.
Right: Ratio of energy resolution.
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Figure 29.
Left: Energy resolution of test QGSP_BERT data with a single weight factor (dark red points) and with the
weights applied (red points) which were extracted from a neural network which was trained with FTF_BIC
Monte Carlo data.
Right: Ratio of energy resolution.
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Figure 30.
Left: Linearity of QGSP_BERT data with a single weight factor (dark red points) and with the weights
applied (red points) which were extracted from a neural network which was trained with FTF_BIC Monte
Carlo data.
Right: Linearity of FTF_BIC data with a single weight factor (dark blue points) and with the weights applied
(blue points) which were extracted from a neural network which was trained with QGSP_BERT Monte Carlo
data.
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