
Available on CMS information server CMS CR -2012/167

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
28 June 2012 (v3, 02 July 2012)

Recent experience and future evolution of the
CMS High Level Trigger System

G Bauer6), U Behrens1), J Branson4) S Bukowiec2), O Chaze2), S Cittolin4), J A Coarasa2), C Deldicque2), M
Dobson2), A Dupont2), S Erhan3), D Gigi2), F Glege2), R Gomez-Reino2), C Hartl2), A Holzner4), L Masetti2), F

Meijers2), E Meschi2), R K Mommsen5), C Nunez-Barranco-Fernandez2), V O’Dell5), L Orsini2), C Paus6), A
Petrucci2), M Pieri4), G Polese2), A Racz2), O Raginel6), H Sakulin2), M Sani4), C Schwick2), A C Spataru2), F

Stoeckli6) K Sumorok6)

Abstract

The CMS experiment at the LHC uses a two-stage trigger system, with events flowing from the first
level trigger at a rate of 100 kHz. These events are read out by the Data Acquisition system (DAQ),
assembled in memory in a farm of computers, and finally fed into the high-level trigger (HLT) software
running on the farm. The HLT software selects interesting events for offline storage and analysis at
a rate of a few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction
and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware.
Experience from the 2010-2011 collider run is detailed, as well as the current architecture of the CMS
HLT, and its integration with the CMS reconstruction framework and CMS DAQ. The short- and
medium-term evolution of the HLT software infrastructure is discussed, with future improvements
aimed at supporting extensions of the HLT computing power, and addressing remaining performance
and maintenance issues.

Presented at RT2012: 18th IEEE NPSS Real Time Conference

1) DESY, Hamburg, Germany
2) CERN, Geneva, Switzerland
3) University of California, Los Angeles, Los Angeles, California, USA
4) University of California, San Diego, San Diego, California, USA
5) FNAL, Chicago, Illinois, USA
6) Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Recent experience and future evolution of the CMS

High Level Trigger System

Gerry Bauer, Ulf Behrens, James Branson, Sebastian Bukowiec, Member, IEEE, Olivier Chaze, Sergio Cittolin, Jose

Antonio Coarasa, Christian Deldicque, Marc Dobson, Aymeric Dupont, Samim Erhan, Dominique Gigi, Frank

Glege, Robert Gomez-Reino, Christian Hartl, Andre Holzner, Lorenzo Masetti, Frans Meijers, Emilio Meschi,

Remigius K. Mommsen, Carlos Nunez-Barranco-Fernandez, Vivian O'Dell, Luciano Orsini, Christoph Paus, Andrea

Petrucci, Marco Pieri, Giovanni Polese, Attila Racz, Olivier Raginel, Hannes Sakulin, Member, IEEE, Matteo Sani,

Christoph Schwick , Andrei Cristian Spataru, Fabian Stoeckli and Konstanty Sumorok

Abstract–The CMS experiment at the LHC uses a two-stage

trigger system, with events flowing from the first level trigger at a

rate of 100 kHz. These events are read out by the Data

Acquisition system (DAQ), assembled in memory in a farm of

computers, and finally fed into the high-level trigger (HLT)

software running on the farm. The HLT software selects

interesting events for offline storage and analysis at a rate of a

few hundred Hz. The HLT algorithms consist of sequences of

offline-style reconstruction and filtering modules, executed on a

farm of 0(10000) CPU cores built from commodity hardware.

Experience from the 2010-2011 collider run is detailed, as well as

the current architecture of the CMS HLT, and its integration

with the CMS reconstruction framework and CMS DAQ. The

short- and medium-term evolution of the HLT software

infrastructure is discussed, with future improvements aimed at

supporting extensions of the HLT computing power, and

addressing remaining performance and maintenance issues.

I. INTRODUCTION

HE CMS [1] trigger and data acquisition system [2] (Fig. 1)

is designed to cope with unprecedented luminosities and

interaction rates. At the LHC design luminosity of 10
34

cm
-2

s
-1

,

and bunch-crossing rates of 40 MHz, an average of about 20

to 40 interactions take place at each bunch crossing. The

trigger system must reduce the bunch-crossing rate to a final

output rate of O(500) Hz, consistent with an offline archival

storage capability of a few hundred MB/s. Only two trigger

levels are employed in CMS: the Level-1 Trigger (L1T),

implemented using custom electronics reduces the initial event

rate by a factor of 100 [3] using custom electronics. Events

accepted by the Level-1 are read-out and assembled by the

DAQ Event Builder (EVB) [4]. The second trigger level, the

Manuscript received June 30, 2012. This work was supported in part by the

DOE and NSF (USA) and the Marie Curie Program.

U. Behrens is with DESY, Hamburg, Germany.
S. Bukowiec, O. Chaze, J. A. Coarasa, C. Deldicque, M. Dobson, A.

Dupont, D. Gigi, F. Glege, R. Gomez-Reino, C. Hartl, L. Masetti, F. Meijers,

E. Meschi, C. Nunez-Barranco-Fernandez, L. Orsini, A. Petrucci, G. Polese,
A. Racz, H. Sakulin, C. Schwick, and A. C. Spataru (corresponding author.

phone: +41 22 76 62389, e- mail: Andrei.Cristian.Spataru@cern.ch) are with

CERN, Geneva, Switzerland.
S. Erhan is with University of California, Los Angeles, California, USA.

J. Branson, S. Cittolin, A. Holzner, M. Pieri and M. Sani are with

University of California San Diego, La Jolla, California, USA. S. Cittolin is
also with Eidgenössische Technische Hochschule, Zurich, Switzerland.

R. K. Mommsen and V. O’Dell are with FNAL, Batavia, Illinois, USA.

G. Bauer, C. Paus, O. Raginel, F. Stoeckli and K. Sumorok are with
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

High Level Trigger (HLT) analyzes complete CMS events at

the Level-1 accept rate of 100 kHz. The HLT provides further

rate reduction by analyzing full-granularity detector data,

using software reconstruction and filtering algorithms on a

large computing cluster consisting of commercial processors,

the Event Filter Farm. In this paper we describe recent

experience with the CMS HLT during collision runs, as well

as ongoing and planned development of the system.

II. TRIGGER AND DAQ GENERAL ARCHITECTURE

Due to the large number of channels and the short nominal

interbunch time of the LHC (25 ns), only a limited portion of

the detector information from the calorimeters and the muon

chambers is used by the L1T system to perform the first event

selection, while the full granularity data are stored in the

detector front-end electronics modules, waiting for the L1T

decision. The overall latency to deliver the trigger signal

(L1A) is set by the depth of the front- end pipelines and

corresponds to 128 bunch crossings. The L1T processing

elements compute the physics candidates (muons, jets, etc.)

based on which the final decision is taken. The latter is the

result of the logical OR of a list of bits (up to 128), each

corresponding to a selection algorithm. All the trigger

electronics, and in particular the set of selection algorithms,

are fully programmable [3].

Fig. 1. Schematic architecture of the CMS DAQ and Trigger System

Data fragments corresponding to events accepted by the

L1T are read out from the front end modules and assembled

into “super fragments” in a first stage of event building that

uses Myrinet switches. They are then delivered to the Readout

Units (RU). Builder Units (BU’s) receive super-fragments

from the RUs via a large switch fabric based on Gigabit

Ethernet, and assemble them into complete events. An Event

Detector Front-Ends

Computing Services

Readout

Systems

Filter

Systems

Event
Manager

Level 1
Trigger

Control
and

Monitor
Builder Network

T

mailto:Andrei.Cristian.Spataru@cern.ch

Manager (EVM) provides the flow control by steering the

event building based on trigger information. The two-stage

event building approach is described in detail in [4].

III. HIGH LEVEL TRIGGER ARCHITECTURE

The second stage of event building, assembling full events

into the memory of the BU, is organized in slices, built around

a monolithic GE switch. Triggers are assigned to each of the 8

independent slices in a round robin fashion, and each of the

slices operates independently from the others. This principle is

illustrated in Fig. 2.

Fig. 2. Event Builder and HLT nodes are arranged in slices. Components of
the HLT are shown below the Readout Builder networks in each slice.

Events are pre-assembled in the Builder Unit / Filter Unit

processor memory. An independent process, running the

physics algorithms, subsequently analyzes each event.

Accepted events are forwarded to the Storage Manager

System (SM) for storage in a large disk pool. Stored events are

transferred over a redundant 10 Gb fiber optic connection

running in the LHC tunnel to the CERN computer center,

where they are processed for analysis and archived in a mass

storage system.

The complex of the BU/FU processing nodes and the SM

form a large distributed computing cluster, the Event Filter

Farm. Around 1000 rack-mounted commodity processors,

connected to the Readout Builder by one or two GE

connections, run the physics reconstruction and selection

algorithms. The BUFU software structure is sketched in Fig.

3.

Fig. 3. Block scheme of the BU/FU software

A Resource Broker (RB) requests events for processing

from the BU and hands the corresponding data to slave Event

Processors (EP). These processes are forked by the master

Event Processor in order to fully utilize the number of

available cores on each node. Since physics algorithms are

resource-intensive and dependent on the nature of event data,

they are decoupled from data flow by running in separate

processes. Selected events are handed back to the RB over the

same IPC structure, along with data quality information. The

RB transfers them to the Storage Managers over the same

switched network used for event building. Additional

information on the system is available in [5] and [6].

The CMS Run Control and Monitoring System (RCMS) is

charged with controlling the HLT components by employing a

hierarchical structure of finite state machines that define the

state of the DAQ. Built using Java web technologies, it allows

quick recovery from problems and is optimized for efficiency.

More details on the run control framework and architecture are

available in [7].

IV. RECENT EXPERIENCE WITH THE CMS HLT

The CMS High Level Trigger operated efficiently during

the LHC physics runs of 2010-2012. Thanks to the robustness

and flexibility of the entire DAQ infrastructure, it was possible

to adiabatically increase the CPU power of the (BU/FU) HLT

farm by deploying more machines with multi-core processors,

capable of handling the increasingly complex algorithms

needed to recognize important events for physics.

HLT availability is monitored by the central DAQ system.

During stable beam periods of the LHC, the HLT availability

was 99.7% in 2011.

Fig. 4. Central DAQ availability in 2011 and breakdown of issues

Fig. 5. Overall CMS data taking efficiency in 2011; left chart shows total

luminosity recorded by the experiment, right chart provides a breakdown of

causes for downtime.

Most of the problems were caused by software, and were

generally fixed as soon as identified. These issues could not be

foreseen prior to deployment and running, since they were

caused by changing operational conditions. When dealing with

failed software or hardware in the Filter Farm, a new system

Available
99.7%

Hardware
0.1%

Software
0.2%

Problems
0.3%

configuration has to be loaded, excluding the problematic

components. In order to speed up and simplify this task for the

on-call experts, the system has been recently integrated with

the DAQ Doctor expert system. With the help of the expert

system, a new configuration can be generated in around 40

seconds.

Fig. 6. CPU utilization in the Filter Farm at the start of a physics fill; data

from April 2012.

Fig. 6 shows the CPU utilization in the HLT filter farm at

the start of a physics fill. The state of every processing node is

sampled every second. Colors on the graph indicate different

HLT algorithms being run, while the light blue indicates idle

time. CPU utilization reaches around 75% at the start of a

physics fill, while the idle or “waiting for input” time presents

a logarithmic evolution.

The high availability achieved by the system is also due to

the fault tolerant design of the DAQ system. In case of a

crashing data flow node or software component, data taking

continues uninterrupted, with reduced throughput. In order to

exclude failed components a new configuration must be

loaded, implying a stop and start of the data taking run.

Restarting a failed component without excluding it requires

stopping and restarting a run. Due to the sensitivity of the

physics algorithms to data quality and detector conditions,

occasional crashes or long processing times occur. The

problematic processes are analyzed online using a dedicated

data stream, and the input data stored for further analysis. New

processes are automatically started during the run to replace

pathological ones.

V. EVOLUTION OF THE HLT INFRASTRUCTURE

The CMS HLT flexible design allows continued extensions

of both the software and hardware of the filter farm. In order

to cope with a factor of 2 expected increase in the luminosity

delivered to the detector in 2012, new hardware has been

installed to accommodate running more complex algorithms

and higher event selectivity. With higher luminosity also

comes higher pile-up and thus more time consuming tracking,

requiring more processing power in the farm. The recent

deployment of new hardware conforms to the CMS DAQ

strategy of procuring and deploying processing power just in

time.

Software improvements are aimed at long term

maintainability, comprising both refactoring and redesigning

operations of components. To this end, state model

consolidation in the components is ongoing, while inter-

process communication methods between data flow and

algorithm processes, leveraging the progress in memory and

processor I/O speed, are being investigated. Further

decoupling of physics algorithms and data flow processes,

which are based on different software frameworks, is being

considered, to streamline the installation and update process

and better exploit large multi-core architectures and memory

buses.

Fig. 7. Evolution of the HLT infrastructure.

A. HLT State Models

After a period of evolution and adaptation, consolidation of

the state models for HLT applications is currently underway,

with the aim of improving robustness and ease of maintenance

over the lifetime of the experiment. The RB application was

recently refactored, replacing the previous state machine

implementation with one using the Boost Statechart library

[8]. A significant improvement brought on by the use of this

library is having state-local storage, resulting in a better

definition of the system states and a lower coupling between

them. The code becomes easier to maintain, as well as

document, since classes are correlated to UML semantics.

Fig. 8. State machine diagram implemented in the recently refactored

Resource Broker.

The Statechart diagram in Fig. 8 shows the states and

transitions for the Resource Broker. The Boost library used in

the implementation allows declaring states and transitions

between them, as well as inner states. Having state-dependent

behavior provides a clearly established status of the system by

avoiding conditional branches and using the State design

pattern. Leveraging this advantage, the callback functions for

messages received from the Builder Unit are implemented

only in those states that can handle the messages. For states

that cannot handle messages, a minimal implementation of the

callback is provided, logging information of the type of

message received and possible implications.

By using inner states, reactions are easier to define and

attribute to states. This is particularly useful when

implementing behavior in case of failures. The Statechart

framework will attempt to apply a transition to the current

state and, if there is no reaction defined for it, will seek a

reaction from all outer states. In case a Fail event occurs in

Running state, reactions will be attempted in Running,

Enabled, Ready and finally Normal, from which a transition to

Failed state will be triggered.

Status reporting to RCMS is simplified when using this

approach, by having a custom implementation of reporting

actions in each state. An inner state such as Running does not

need to be reported to RCMS, and there may be more inner

states implemented in the system without external visibility.

Instead, reporting to the control structure is done by those

states that are relevant to the entire system, such as Enabled,

Ready, Halted, Failed, or the “transitional” states Configuring,

Enabling, Stopping and Halting.

 The Boost Statechart library is now used by all but one

application in the filter farm, the Event Processor, which is in

line for the refactoring process.

B. Inter-Process Communication

The current method of data transfer between the data flow

components and the physics algorithms in the Event Filter is a

custom shared memory structure, comprising three types of

shared memory cells: raw cells, reco cells and DQM cells. The

RB obtains events from the BU and places them in raw cells,

which are then read by EP’s running selection algorithms.

Accepted events are placed in reco cells along with by-

products of the selection process (e.g. tracks) which can ease

event traceability. These are picked up by the RB and

transferred to the SM for storage. EP’s also generate Data

Quality Monitoring data (DQM) cells, which are also sent to

the SM.

Message queues are currently used as IPC method between

master and slave Event Processors, for monitoring and control

purposes.

The direction of development of the IPC method between

data flow components and physics algorithms is to replace the

current implementation with one based on message queues. In

this way, drawbacks of shared memory, such as the ad-hoc

inter-process synchronization, large number of semaphores

(with potential for deadlocks) and high overall code

complexity can be avoided. Advantages of using message

queues include internal inter-process synchronization (thus

reducing code complexity), and a simpler way to create

custom communication protocols. Components thus become

easier to maintain and extend.

TABLE I. IPC DEVELOPMENT STEPS FOR BUILDER UNIT – EVENT PROCESSOR

COMMUNICATION (SM = SHARED MEMORY; MQ = MESSAGE QUEUES)

 Data type Current Step 1 Step 2

 Event SM SM MQ

 Control SM MQ MQ

The first step in IPC development is to implement control

data transfer over message queues. High-volume data transfers

can be handled by shared memory as in the current system,

while control and time-sensitive messages to EP’s are sent via

message queues. The second step implies event data being

exchanged between processes by posting and retrieving

messages from the queue. The RB receives events from the

BU, caches them locally and places them on the queue, as with

raw memory cells. The cache is necessary on the RB side in

order to ensure that no data are lost in case an EP application

fails. EP’s retrieve raw messages from the queue, process

them, and either place a reco message on the queue if the

event is accepted, or simply issue a message on the data flow

control queue to instruct the RB to discard the event kept in

local cache.

In order to accommodate these modifications, the recent

refactoring of the Resource Broker includes abstracting the

IPC method in the implementation, thus reducing the impact

of an eventual replacement of the IPC mechanism. A proof-of-

concept implementation for the utilization of message queues

for event data transfer has proved feasible in terms of

performance.

C. Further Isolation of Physics Algorithms

There are two software frameworks currently used in the

HLT: XDAQ[5] for online components and CMSSW [5] for

selection and reconstruction algorithms. In order to execute

event filtering, the CMSSW framework has to be loaded by the

master Event Processor. The two frameworks have different

software lifecycles, so there is scope to completely isolate

them, by moving the selection and reconstruction algorithms

to standalone processes (independent of XDAQ), controlled by

the master EP. In this way, slave processes running algorithms

would become unaware of DAQ processes dealing with data

flow. HLT algorithms could then be run like batch processes

in complete analogy to offline. The elimination of direct

dependencies among the two frameworks would also allow

decoupling the release and deployment cycles. This

development is currently in the design and planning stage.

D. Deployment of New Hardware

The CMS Filter Farm, composed entirely of commercial

hardware, is extended according to evolving computing power

requirements. The latest extension was completed in May

2012. Higher luminosity implies a requirement for higher

event selectivity and leads to more pile-up. As a consequence,

more complex physics algorithms and more expensive

tracking are required.

Fig. 9. Evolution of the HLT farm hardware; CPU models shown below units.

The original HLT System of 720 units, totaling 5760 cores

was first extended in May 2011 with 72 units (3456 cores and

hyper-threading capability), and then in May 2012 with a

further 64 units (4096 cores and hyper-threading

capability).The current HLT Filter Farm size is 13200 cores,

allowing for a per-event CPU budget of around 175 ms/event

at a rate of 100 kHz.

Fig. 10. HLT CPU utilization at the start of a physics fill after the installation

of new hardware in May 2012.

 As shown in Fig. 6, the HLT CPU was almost fully utilized

at the start of a physics fill before the installation of new

machines in the filter farm, with physics algorithms tuned to

the available computing power. Fig. 10 shows a snapshot of

the CPU utilization from May 2012. The accelerator

performance in 2012 has increased rapidly, reaching peak

luminosities of 6.5E33, more than double of 2011. The last

extension has increased the available CPU time by another

50%, making the system capable of handling the even higher

luminosity expected during 2012.

Fig. 11. HLT machine performance; the three generations of machines

present in the farm are evaluated, running either Scientific Linux CERN

version 5 or 6 (SLC5-6).

Fig. 11 shows the event processing rate per machine in the

High-Level Trigger farm as a function of the number of

processes running on each one. The 8-core nodes level-off at

one process per core, while the recently added nodes (with 12

and 16 cores per node respectively) also benefit from a 30%

gain due to hyper-threading.

VI. SUMMARY

This paper first described up to date experience with the

CMS High Level Trigger, which has been taking physics data

with high efficiency during the past years. Then, the recent

extension of the filter farm hardware was outlined. Finally,

different directions of development for software components

were detailed. The CMS High Level Trigger System is in

constant evolution in order to accommodate the increasing

luminosities and interaction rates delivered by the LHC.

REFERENCES

[1] The CMS Collaboration, “The Compact Muon Solenoid Technical

Proposal”, CERN LHCC 94-38, 1994.
[2] The CMS Collaboration, CMS, “The TriDAS Project, Technical

Design Report, Volume 2: Data Acquisition and High-Level

Trigger”, CERN LHCC 2002-26, 2002.
[3] Klabbers P. for the CMS Collaboration,“Operation and performance

of the CMS Level-1 Trigger during 7 TeV Collisions”,

Technology and Instrumentation in Particle Physics, 2011.
[4] Bauer G. et al., “CMS DAQ Event Builder Based on Gigabit

Ethernet”, IEEE Real Time, Batavia, IL, USA, 2007.

[5] CMS Collaboration, “The CMS Experiment at the CERN LHC”,
Journal of Instrumentation, Vol. 3, 2008.

[6] CMS Collaboration, “Commissioning of the CMS High Level

Trigger”,Journal of Instrumentation, vol. 4, no. 10, 2009.
[7] Sakulin H. for the CMS Collaboration, “First operational experience

with CMS Run Control System”, Detectors and Experimental

Techniques, 2010.
[8] Boost.org. The Boost Statechart Library. [Online] 2012.

http://www.boost.org/doc/libs/1_35_0/libs/statechart/doc/index.h
tml

E5430 X5650 E5-2670

