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Abstract

The CMS experiment at the LHC uses a two-stage trigger system, with events flowing from the first
level trigger at a rate of 100 kHz. These events are read out by the Data Acquisition system (DAQ),
assembled in memory in a farm of computers, and finally fed into the high-level trigger (HLT) software
running on the farm. The HLT software selects interesting events for offline storage and analysis at
a rate of a few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction
and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware.
Experience from the 2010-2011 collider run is detailed, as well as the current architecture of the CMS
HLT, and its integration with the CMS reconstruction framework and CMS DAQ. The short- and
medium-term evolution of the HLT software infrastructure is discussed, with future improvements
aimed at supporting extensions of the HLT computing power, and addressing remaining performance
and maintenance issues.
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Abstract–The CMS experiment at the LHC uses a two-stage 

trigger system, with events flowing from the first level trigger at a 

rate of 100 kHz. These events are read out by the Data 

Acquisition system (DAQ), assembled in memory in a farm of 

computers, and finally fed into the high-level trigger (HLT) 

software running on the farm. The HLT software selects 

interesting events for offline storage and analysis at a rate of a 

few hundred Hz. The HLT algorithms consist of sequences of 

offline-style reconstruction and filtering modules, executed on a 

farm of 0(10000) CPU cores built from commodity hardware. 

Experience from the 2010-2011 collider run is detailed, as well as 

the current architecture of the CMS HLT, and its integration 

with the CMS reconstruction framework and CMS DAQ. The 

short- and medium-term evolution of the HLT software 

infrastructure is discussed, with future improvements aimed at 

supporting extensions of the HLT computing power, and 

addressing remaining performance and maintenance issues. 

I. INTRODUCTION 

HE CMS [1] trigger and data acquisition system [2] (Fig. 1) 

is designed to cope with unprecedented luminosities and 

interaction rates. At the LHC design luminosity of 10
34

cm
-2

s
-1

, 

and bunch-crossing rates of 40 MHz, an average of about 20 

to 40 interactions take place at each bunch crossing. The 

trigger system must reduce the bunch-crossing rate to a final 

output rate of O(500) Hz, consistent with an offline archival 

storage capability of a few hundred MB/s. Only two trigger 

levels are employed in CMS: the Level-1 Trigger (L1T), 

implemented using custom electronics reduces the initial event 

rate by a factor of 100 [3] using custom electronics. Events 

accepted by the Level-1 are read-out and assembled by the 

DAQ Event Builder (EVB) [4]. The second trigger level, the 
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High Level Trigger (HLT) analyzes complete CMS events at 

the Level-1 accept rate of 100 kHz. The HLT provides further 

rate reduction by analyzing full-granularity detector data, 

using software reconstruction and filtering algorithms on a 

large computing cluster consisting of commercial processors, 

the Event Filter Farm. In this paper we describe recent 

experience with the CMS HLT during collision runs, as well 

as ongoing and planned development of the system. 

II. TRIGGER AND DAQ GENERAL ARCHITECTURE 

Due to the large number of channels and the short nominal 

interbunch time of the LHC (25 ns), only a limited portion of 

the detector information from the calorimeters and the muon 

chambers is used by the L1T system to perform the first event 

selection, while the full granularity data are stored in the 

detector front-end electronics modules, waiting for the L1T 

decision. The overall latency to deliver the trigger signal 

(L1A) is set by the depth of the front- end pipelines and 

corresponds to 128 bunch crossings. The L1T processing 

elements compute the physics candidates (muons, jets, etc.) 

based on which the final decision is taken. The latter is the 

result of the logical OR of a list of bits (up to 128), each 

corresponding to a selection algorithm. All the trigger 

electronics, and in particular the set of selection algorithms, 

are fully programmable [3]. 

 

 
Fig. 1.  Schematic architecture of the CMS DAQ and Trigger System 

 

Data fragments corresponding to events accepted by the 

L1T are read out from the front end modules and assembled 

into “super fragments” in a first stage of event building that 

uses Myrinet switches. They are then delivered to the Readout 

Units (RU). Builder Units (BU’s) receive super-fragments 

from the RUs via a large switch fabric based on Gigabit 

Ethernet, and assemble them into complete events. An Event 
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Manager (EVM) provides the flow control by steering the 

event building based on trigger information. The two-stage 

event building approach is described in detail in [4]. 

III. HIGH LEVEL TRIGGER ARCHITECTURE 

The second stage of event building, assembling full events 

into the memory of the BU, is organized in slices, built around 

a monolithic GE switch. Triggers are assigned to each of the 8 

independent slices in a round robin fashion, and each of the 

slices operates independently from the others. This principle is 

illustrated in Fig. 2. 

 

Fig. 2.  Event Builder and HLT nodes are arranged in slices. Components of 
the HLT are shown below the Readout Builder networks in each slice. 
 

Events are pre-assembled in the Builder Unit / Filter Unit 

processor memory. An independent process, running the 

physics algorithms, subsequently analyzes each event. 

Accepted events are forwarded to the Storage Manager 

System (SM) for storage in a large disk pool. Stored events are 

transferred over a redundant 10 Gb fiber optic connection 

running in the LHC tunnel to the CERN computer center, 

where they are processed for analysis and archived in a mass 

storage system. 

The complex of the BU/FU processing nodes and the SM 

form a large distributed computing cluster, the Event Filter 

Farm. Around 1000 rack-mounted commodity processors, 

connected to the Readout Builder by one or two GE 

connections, run the physics reconstruction and selection 

algorithms. The BUFU software structure is sketched in Fig. 

3. 

 

 
Fig. 3.  Block scheme of the BU/FU software 

 

A Resource Broker (RB) requests events for processing 

from the BU and hands the corresponding data to slave Event 

Processors (EP). These processes are forked by the master 

Event Processor in order to fully utilize the number of 

available cores on each node. Since physics algorithms are 

resource-intensive and dependent on the nature of event data, 

they are decoupled from data flow by running in separate 

processes. Selected events are handed back to the RB over the 

same IPC structure, along with data quality information. The 

RB transfers them to the Storage Managers over the same 

switched network used for event building. Additional 

information on the system is available in [5] and [6]. 

The CMS Run Control and Monitoring System (RCMS) is 

charged with controlling the HLT components by employing a 

hierarchical structure of finite state machines that define the 

state of the DAQ. Built using Java web technologies, it allows 

quick recovery from problems and is optimized for efficiency. 

More details on the run control framework and architecture are 

available in [7]. 

IV. RECENT EXPERIENCE WITH THE CMS HLT 

The CMS High Level Trigger operated efficiently during 

the LHC physics runs of 2010-2012. Thanks to the robustness 

and flexibility of the entire DAQ infrastructure, it was possible 

to adiabatically increase the CPU power of the (BU/FU) HLT 

farm by deploying more machines with multi-core processors, 

capable of handling the increasingly complex algorithms 

needed to recognize important events for physics. 

HLT availability is monitored by the central DAQ system. 

During stable beam periods of the LHC, the HLT availability 

was 99.7% in 2011.  

 
Fig. 4.  Central DAQ availability in 2011 and breakdown of issues 

 

 
Fig. 5.  Overall CMS data taking efficiency in 2011; left chart shows total 

luminosity recorded by the experiment, right chart provides a breakdown of 

causes for downtime. 

 

Most of the problems were caused by software, and were 

generally fixed as soon as identified. These issues could not be 

foreseen prior to deployment and running, since they were 

caused by changing operational conditions. When dealing with 

failed software or hardware in the Filter Farm, a new system 
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configuration has to be loaded, excluding the problematic 

components. In order to speed up and simplify this task for the 

on-call experts, the system has been recently integrated with 

the DAQ Doctor expert system. With the help of the expert 

system, a new configuration can be generated in around 40 

seconds. 

 

 
Fig. 6.  CPU utilization in the Filter Farm at the start of a physics fill; data 

from April 2012. 

 

Fig. 6 shows the CPU utilization in the HLT filter farm at 

the start of a physics fill. The state of every processing node is 

sampled every second. Colors on the graph indicate different 

HLT algorithms being run, while the light blue indicates idle 

time. CPU utilization reaches around 75% at the start of a 

physics fill, while the idle or “waiting for input” time presents 

a logarithmic evolution. 

The high availability achieved by the system is also due to 

the fault tolerant design of the DAQ system. In case of a 

crashing data flow node or software component, data taking 

continues uninterrupted, with reduced throughput. In order to 

exclude failed components a new configuration must be 

loaded, implying a stop and start of the data taking run. 

Restarting a failed component without excluding it requires 

stopping and restarting a run. Due to the sensitivity of the 

physics algorithms to data quality and detector conditions, 

occasional crashes or long processing times occur. The 

problematic processes are analyzed online using a dedicated 

data stream, and the input data stored for further analysis. New 

processes are automatically started during the run to replace 

pathological ones.  

V. EVOLUTION OF THE HLT INFRASTRUCTURE 

The CMS HLT flexible design allows continued extensions 

of both the software and hardware of the filter farm. In order 

to cope with a factor of 2 expected increase in the luminosity 

delivered to the detector in 2012, new hardware has been 

installed to accommodate running more complex algorithms 

and higher event selectivity. With higher luminosity also 

comes higher pile-up and thus more time consuming tracking, 

requiring more processing power in the farm. The recent 

deployment of new hardware conforms to the CMS DAQ 

strategy of procuring and deploying processing power just in 

time. 

Software improvements are aimed at long term 

maintainability, comprising both refactoring and redesigning 

operations of components. To this end, state model 

consolidation in the components is ongoing, while inter-

process communication methods between data flow and 

algorithm processes, leveraging the progress in memory and 

processor I/O speed, are being investigated. Further 

decoupling of physics algorithms and data flow processes, 

which are based on different software frameworks, is being 

considered, to streamline the installation and update process 

and better exploit large multi-core architectures and memory 

buses. 

 

 
Fig. 7.  Evolution of the HLT infrastructure. 

 

A. HLT State Models 

After a period of evolution and adaptation, consolidation of 

the state models for HLT applications is currently underway, 

with the aim of improving robustness and ease of maintenance 

over the lifetime of the experiment. The RB application was 

recently refactored, replacing the previous state machine 

implementation with one using the Boost Statechart library 

[8]. A significant improvement brought on by the use of this 

library is having state-local storage, resulting in a better 

definition of the system states and a lower coupling between 

them. The code becomes easier to maintain, as well as 

document, since classes are correlated to UML semantics. 

 

 
Fig. 8.  State machine diagram implemented in the recently refactored 

Resource Broker. 

 

The Statechart diagram in Fig. 8 shows the states and 

transitions for the Resource Broker. The Boost library used in 

the implementation allows declaring states and transitions 

between them, as well as inner states. Having state-dependent 

behavior provides a clearly established status of the system by 

avoiding conditional branches and using the State design 

pattern. Leveraging this advantage, the callback functions for 

messages received from the Builder Unit are implemented 

only in those states that can handle the messages. For states 



 

that cannot handle messages, a minimal implementation of the 

callback is provided, logging information of the type of 

message received and possible implications. 

By using inner states, reactions are easier to define and 

attribute to states. This is particularly useful when 

implementing behavior in case of failures. The Statechart 

framework will attempt to apply a transition to the current 

state and, if there is no reaction defined for it, will seek a 

reaction from all outer states. In case a Fail event occurs in 

Running state, reactions will be attempted in Running, 

Enabled, Ready and finally Normal, from which a transition to 

Failed state will be triggered. 

Status reporting to RCMS is simplified when using this 

approach, by having a custom implementation of reporting 

actions in each state. An inner state such as Running does not 

need to be reported to RCMS, and there may be more inner 

states implemented in the system without external visibility. 

Instead, reporting to the control structure is done by those 

states that are relevant to the entire system, such as Enabled, 

Ready, Halted, Failed, or the “transitional” states Configuring, 

Enabling, Stopping and Halting. 

 The Boost Statechart library is now used by all but one 

application in the filter farm, the Event Processor, which is in 

line for the refactoring process.  

B. Inter-Process Communication 

The current method of data transfer between the data flow 

components and the physics algorithms in the Event Filter is a 

custom shared memory structure, comprising three types of 

shared memory cells: raw cells, reco cells and DQM cells. The 

RB obtains events from the BU and places them in raw cells, 

which are then read by EP’s running selection algorithms. 

Accepted events are placed in reco cells along with by-

products of the selection process (e.g. tracks) which can ease 

event traceability. These are picked up by the RB and 

transferred to the SM for storage. EP’s also generate Data 

Quality Monitoring data (DQM) cells, which are also sent to 

the SM. 

Message queues are currently used as IPC method between 

master and slave Event Processors, for monitoring and control 

purposes. 

The direction of development of the IPC method between 

data flow components and physics algorithms is to replace the 

current implementation with one based on message queues. In 

this way, drawbacks of shared memory, such as the ad-hoc 

inter-process synchronization, large number of semaphores 

(with potential for deadlocks) and high overall code 

complexity can be avoided. Advantages of using message 

queues include internal inter-process synchronization (thus 

reducing code complexity), and a simpler way to create 

custom communication protocols. Components thus become 

easier to maintain and extend. 

 

 

 

 

 

TABLE I. IPC DEVELOPMENT STEPS FOR BUILDER UNIT – EVENT PROCESSOR 

COMMUNICATION (SM = SHARED MEMORY; MQ = MESSAGE QUEUES) 

 

 Data type Current Step 1 Step 2 

 Event SM SM MQ 

 Control SM MQ MQ 

 

The first step in IPC development is to implement control 

data transfer over message queues. High-volume data transfers 

can be handled by shared memory as in the current system, 

while control and time-sensitive messages to EP’s are sent via 

message queues. The second step implies event data being 

exchanged between processes by posting and retrieving 

messages from the queue. The RB receives events from the 

BU, caches them locally and places them on the queue, as with 

raw memory cells. The cache is necessary on the RB side in 

order to ensure that no data are lost in case an EP application 

fails. EP’s retrieve raw messages from the queue, process 

them, and either place a reco message on the queue if the 

event is accepted, or simply issue a message on the data flow 

control queue to instruct the RB to discard the event kept in 

local cache. 

In order to accommodate these modifications, the recent 

refactoring of the Resource Broker includes abstracting the 

IPC method in the implementation, thus reducing the impact 

of an eventual replacement of the IPC mechanism. A proof-of-

concept implementation for the utilization of message queues 

for event data transfer has proved feasible in terms of 

performance. 

C. Further Isolation of Physics Algorithms 

There are two software frameworks currently used in the 

HLT: XDAQ[5] for online components and CMSSW [5] for 

selection and reconstruction algorithms. In order to execute 

event filtering, the CMSSW framework has to be loaded by the 

master Event Processor. The two frameworks have different 

software lifecycles, so there is scope to completely isolate 

them, by moving the selection and reconstruction algorithms 

to standalone processes (independent of XDAQ), controlled by 

the master EP. In this way, slave processes running algorithms 

would become unaware of DAQ processes dealing with data 

flow. HLT algorithms could then be run like batch processes 

in complete analogy to offline. The elimination of direct 

dependencies among the two frameworks would also allow 

decoupling the release and deployment cycles. This 

development is currently in the design and planning stage. 

D. Deployment of New Hardware 

The CMS Filter Farm, composed entirely of commercial 

hardware, is extended according to evolving computing power 

requirements. The latest extension was completed in May 

2012. Higher luminosity implies a requirement for higher 

event selectivity and leads to more pile-up. As a consequence, 

more complex physics algorithms and more expensive 

tracking are required. 

 



 

 
 
Fig. 9.  Evolution of the HLT farm hardware; CPU models shown below units. 

 

The original HLT System of 720 units, totaling 5760 cores 

was first extended in May 2011 with 72 units (3456 cores and 

hyper-threading capability), and then in May 2012 with a 

further 64 units (4096 cores and hyper-threading 

capability).The current HLT Filter Farm size is 13200 cores, 

allowing for a per-event CPU budget of around 175 ms/event 

at a rate of 100 kHz. 

 

 
Fig. 10.  HLT CPU utilization at the start of a physics fill after the installation 

of new hardware in May 2012. 

 

 As shown in Fig. 6, the HLT CPU was almost fully utilized 

at the start of a physics fill before the installation of new 

machines in the filter farm, with physics algorithms tuned to 

the available computing power. Fig. 10 shows a snapshot of 

the CPU utilization from May 2012. The accelerator 

performance in 2012 has increased rapidly, reaching peak 

luminosities of 6.5E33, more than double of 2011. The last 

extension has increased the available CPU time by another 

50%, making the system capable of handling the even higher 

luminosity expected during 2012. 

 

 
Fig. 11.  HLT machine performance; the three generations of machines 

present in the farm are evaluated, running either Scientific Linux CERN 

version 5 or 6 (SLC5-6). 

Fig. 11 shows the event processing rate per machine in the 

High-Level Trigger farm as a function of the number of 

processes running on each one. The 8-core nodes level-off at 

one process per core, while the recently added nodes (with 12 

and 16 cores per node respectively) also benefit from a 30% 

gain due to hyper-threading. 

VI. SUMMARY 

This paper first described up to date experience with the 

CMS High Level Trigger, which has been taking physics data 

with high efficiency during the past years. Then, the recent 

extension of the filter farm hardware was outlined. Finally, 

different directions of development for software components 

were detailed. The CMS High Level Trigger System is in 

constant evolution in order to accommodate the increasing 

luminosities and interaction rates delivered by the LHC. 
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