

ICHEP2012 Melbourne

36th International Conference on High Energy Physics

4 – 11 July 2012 Melbourne Convention and Exhibition Centre

- LHCb Experiment Performance
- Physics Motivation for LHCb Upgrade
- LHCb Detector Upgrade
 - Trigger
 - Vertex Detector
 - Tracker
 - Particle Identification
- Conclusions

4-11 July 2012

Melbourne

ICHEP2012

HCb TDR 12

More information available LHCb Upgrade LoI, CERN/LHCC-2011-001 LHCb Upgrade Framework TDR, CERN/LHCC-2012-007

2

LHCb LHCb Performance

Very successful 2011 run

- LHCb operated at luminosities up to L =4 \times 10³² cm⁻² s⁻¹ 2x design luminosity
- Average # of visible interactions/crossing μ = 1.4 (nominal 0.4)
- Integrated $\int Ldt > 1.0 fb^{-1}$ on tape
- Luminosity levelling, great LHC performance
- 91% data taking efficiency, 99% of channels operational
- 3 kHz of physics data to tape

LHCb Operations 2012

• Excellent running in 2012 run

- Increased beam energy of 4.0 TeV results in ~15 % increase of bb cross section
- Luminosity L = 4×10^{32} cm⁻² s⁻¹
- Average # of visible interactions per crossing μ = 1.6
- Keep high data taking efficiency and quality
- High Level Trigger (HLT) upgraded farm
- HLT output increased from 3 to 4.5 kHz
- Recorded > 0.6 fb⁻¹ in 2012
- Expect ~ 1.5 fb⁻¹ of data in 2012

Hicp LHCb Plans/Upgrade

• Collect > 5 fb⁻¹ data sample over next five years

- 13 (14) TeV \rightarrow double b and c production
- Precision measurements of unitarity triangles
- Measure rare hadronic decays
- Probe/measure New Physics at 10% level in key measurements
- Be prepared for the unexpected \rightarrow follow the data
- LHCb upgrade
 - Current detector limited to 1 MHz trigger Level-0 trigger
 - Upgrade detectors to 40 MHz readout
 - Implement first level software trigger for all detectors
 - Operate detector at luminosities up to 2×10^{33} cm⁻² s⁻¹
- Expected annual physics yield with LHCb upgrade
 - Increase x10 in decays with muons
 - Increase at least x20 in hadronic channels
 - Collect ~50/fb
- Install upgraded LHCb in long shutdown of ~2018

LHCb Upgrade Motivation

Excellent results from LHCb

- Many world's best measurements, severely constrain new physics
- Demonstrated potential of Flavour Physics at the LHC

• LHCb upgrade physics reach

- Unique for NP searches in B_s system, very competitive for B_d
- Unprecedented charm yields
- General purpose experiment with forward geometry has potential for non-flavour physics
- LHCb upgrade will fully exploit LHC physics in forward region
 - LHCb upgrade is compatible with high luminosity LHC phase but does not require it
 - Complementary to ATLAS / CMS direct searches
- If new particles are discovered
 - LHCb upgrade will measure flavour couplings through loop diagrams
- If no new particles are found
 - LHCb upgrade will probe NP at multi-TeV energy scale

4-11 July 2012

$\frac{LHCb}{HCp} \text{ Rare decay } B_s \rightarrow \mu^*\mu^-$

• LHCb

1.0 fb⁻¹, Phys. Rev. Lett. 108 (2012) 231801

- Closing in on SM prediction BR($B_s \rightarrow \mu^+\mu^-$) = (3.2 ± 0.2) x 10⁻⁹
- New physics SUSY models with large tan β ~ ruled out
- LHCb upgrade
 - Precision measurement of $BR(B_s \rightarrow \mu^+ \mu^-)$
 - 50 events/year at SM
 - Measure $BR(B_d \rightarrow \mu^+\mu^-)/BR(B_s \rightarrow \mu^+\mu^-)$
 - Very sensitive to NP models

green – allowed regions black/red – exclusion limits from CMS yellow - exclusion region from LHCb $B_s \rightarrow \mu\mu$ result

$\frac{LHCb}{PHCp} CP Violation in B_{s} \rightarrow \phi \phi$

b→qqs penguin transitions

- Rare hadronic decay
- Sensitive to new physics in decay amplitude

• $B_s \rightarrow \varphi \varphi$ is golden mode for upgrade

- For probing CP violating weak phase ϕ_s in hadronic B_s decays
- In Standard Model cancellation between decay and mixing phases
- Prediction for ϕ_s very close to zero
- LHCb upgrade
 - Sensitivity $\sigma(\phi_s) \sim 0.03$
 - Comp. to $\sigma(\phi_s, \text{ theory}) \le 0.02$
 - Non zero ϕ_s result \rightarrow New Physics

M. Raidal, arXiv:hep-ph/0209091 M. Bartsch et al., arXiv:0810.0249

4-11 July 2012

LHCD CP Violation in Charm

- CP violation in charm
 - Was expected to be < 0.1%
- Evidence for direct CPV in $D \rightarrow hh$
 - $\Delta A_{CP} \equiv A_{CP} (KK) A_{CP} (\pi \pi)$ experimentally favourable
 - Measure ΔA_{CP} = (-0.82 ± 0.21 ± 0.11)%
 - Recently confirmed by CDF
 - Further LHCb studies underway
 - Theory community is reconsidering
- LHCb upgrade
 - Will collect unprecedentedly large charm samples
 - Expected sensitivity $\sigma(\Delta A_{CP}) \sim 0.12 \times 10^{-3}$

0.6 fb⁻¹, PRL 108, 111602 (2012)

Hich LHCb Upgrade Physics Reach

- Electroweak penguins
 - $\ B^0 \rightarrow \ K^{\star 0} \mu^{\scriptscriptstyle +} \ \mu^{\scriptscriptstyle -}$
 - Upgrade will allow to make precise
 measurements of asymmetries A_I, S₃, ...
- B_s mixing
 - $B_s \rightarrow J/\psi \phi$ very precise $\sigma(\phi_s) \sim 0.008$
 - A_{sl} sensitivity 0.2 x 10⁻³
- Gluonic penguins
 - $B_s \rightarrow K^{*0} \overline{K^{*0}}$ probes CPV phase ϕ_s in same way as $B_s \rightarrow \phi \phi$
 - Sensitivity $\sigma(\phi_s) \sim 0.02$ matches theoretical uncertainty
- Unitarity triangles
 - $\sigma(\gamma) \sim 0.9$ degrees

Hep Non-Flavour Physics

Electroweak

- Boson follows quark direction in forward region
- $sin^2 \Theta_{eff}^{lepton}$: measure A_{FB} of leptons in Z-decays
- Top quark forward-backward asymmetry

• QCD

- Constraints on PDFs
- Unexplored region at low x
- Flavour tagging of jets

• Central Exclusive Production

- $pp \rightarrow p + X + p$ with rapidity gap
- Central exclusive χ_b production
- Pomeron/ photon exchange
- Hidden Valley particles
 - long-lived, decay in LHCb vertex detector

Hicp Performance Benchmarks

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{ m fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{\rm fs}(B^0_s)$	$6.4 imes 10^{-3}$ [18]	0.6×10^{-3}	0.2×10^{-3}	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 o \phi \phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	-	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \rightarrow \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \rightarrow \phi \gamma)$	-	0.09	0.02	< 0.01
currents	$ au^{ m eff}(B^0_s o \phi \gamma)/ au_{B^0_s}$	_	5%	1 %	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{ m FB}(B^0 ightarrow K^{st 0} \mu^+ \mu^-)$	25% [14]	6%	2 %	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.25[15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8%	2.5 %	$\sim 10 \%$
Higgs	${\cal B}(B^0_s o \mu^+ \mu^-)$	$1.5 \times 10^{-9} [2]$	0.5×10^{-9}	0.15×10^{-9}	$0.3 imes 10^{-9}$
penguin	$\mathcal{B}(B^0 ightarrow \mu^+ \mu^-) / \mathcal{B}(B^0_s ightarrow \mu^+ \mu^-)$	-	$\sim 100 \%$	$\sim 35\%$	$\sim 5 \%$
Unitarity	$\gamma (B \rightarrow D^{(*)}K^{(*)})$	~ 10–12° [19, 20]	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \rightarrow D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \rightarrow J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	$2.3 imes 10^{-3}$ [18]	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	-

Hich Current LHCb Trigger

4-11 July 2012

- Level-0 Hardware trigger
 - limited to 1 MHz output
- HLT Software trigger
 - Implemented in CPU farm
- Luminosity upgrade
 - Event yields saturate for hadronic channels

Hicp VELO Upgrade

New VELO at 40 MHz readout

- Pixel detector (VELOPIX) read out with Timepix chip
 - 55 μ m x 55 μ m pixel size
- Strip detector
 - New F/E chip

R&D programme

- Module structure (X₀)
- Sensor options
 - planar Si, pixel
- Radiation hardness
- Electronics
- CO_2 cooling
- RF-foil

4-11 July 2012

• Testbeam telescope

- based on TimePix chip
- Excellent resolution O(µm)
- High rate capability

Hicp LHCb Tracker Upgrade

TT tracking station

- Silicon strip detector
- Upgrade Redesign silicon strips
- Share FE chip with strip VELO

Current tracking system

- Inner tracker (IT) Silicon strip
- Outer tracker (OT) Straw tubes

Tracker upgrade - Option A

- Same technologies
- Increase IT area by factor of 4
- Decrease mass
- Reduces occupancy in OT straw tubes to < 20%

4-11 July 2012

Hicp LHCb Tracker Upgrade

Tracker upgrade – Option B

- Scintillating fibre Central Tracker
- Straw tube outer tracker
- Central Tracker
 - Modules with 5 layers of scintillating fibres, 2.5 m long
 - Read out with silicon photomultipliers

4-11 July 2012

Hicp RICH Upgrade

- HPDs encapsulated readout electronics
- Need to be replaced
- Hamamatsu R11265 MaPMT
 - baseline
 - 80% area coverage

• RICH1 and RICH2

- Remove aerogel radiator due to occupancy
- Investigate change of RICH1 optics to reduce occupancy in central region

Performance studies

 Pattern recognition works well up to 2 x 10³³ cm⁻² s⁻¹

PID performance vs track multiplicity

4-11 July 2012

Hicp Calorimeter & Muon Upgrade

HCAL & ECAL

- Keep detector modules and PMTs
- Reduced PMT gain, increased FE amplification
- Modified 40 MHz FE electronics
- Muon Spectrometer
 - Keep chambers & FE electronics
 - Remove first station (M1)
 - High occupancy performance and aging under study

4-11 July 2012

LHCb THCp **Conclusions**

- LHCb and the LHC are a huge success
 - Large NP ruled out in many flavour physics observables
 - Large increase in statistics required to investigate small NP deviations
- LHCb upgrade plan is mature
 - Key element is 40 MHz Readout of all sub-detectors
 - Full Software Trigger increases trigger efficiency at least x2 in hadronic channels
 - LHCb key performance parameters are retained
 - Vertex Resolution, Track reconstruction efficiency, Particle Identification
- Installation of upgraded LHCb detectors in Long Shutdown 2018
- LHCb Upgrade is General Purpose Experiment for Forward region
 - Beauty, Charm, LFV, Electroweak, QCD, Exotica
 - Probe/measure New Physics at the percentage level

4-11 July 2012

4-11 July 2012

ICHEP2012 Melbourne

24

LHCD Challenge: Data Rates

- Full detector read-out @ 40 MHz
 - Current Vertex Locator: 225 G samples/s (analogue)
 - Upgraded Vertex Locator: 2-3 Tbit/s (digital)
- On-detector zero-suppression
 - Replace (almost) all FE electronics
- Massive read-out infrastructure

4-11 July 2012

4-11 July 2012