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Abstract

We report the first measurement of the net–charge fluctuations in Pb–Pb collisions at
√

sNN = 2.76 TeV,
measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations
per unit entropy are observed to decrease when going from peripheral to central collisions. An addi-
tional reduction in the amount of fluctuations is seen in comparison to the results from lower energies.
We examine the dependence of fluctuations on the pseudo–rapidity interval, which may account for
the dilution of fluctuations during the evolution of the system. We find that the ALICE data points
are between the theoretically predicted values for a hadrongas and a Quark–Gluon Plasma.
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The ALICE experiment [1] at the Large Hadron Collider (LHC) is a multi–purpose detector designed to
study the formation and evolution of nuclear matter at high temperatures and energy densities. One of
the major goals of the experiment is to explore as many signals as possible towards characterizing the
properties of the Quark–Gluon Plasma (QGP), the deconfined state of quarks and gluons, produced in
high energy heavy–ion collisions. The study of event–by–event fluctuations provides a powerful tool to
characterize the thermodynamic properties of the system. The fluctuations of conserved quantities, like
net–charge of the system, are predicted to be one of the most sensitive signals of the QGP formation and
phase transition, and may provide complementary understanding of strong interactions [2, 3, 4, 5, 6, 7,
8, 9].

In the QGP phase, the charge carriers are quarks with fractional charges, whereas the particles in a
hadron gas (HG) carry unit charge. The fluctuations in the net–charge depend on the squares of the
charge states present in the system. Consequently, the net–charge fluctuations in the QGP phase are
significantly smaller compared to that of a HG [2]. At the sametime, if the initial QGP phase is strongly
gluon dominated, the fluctuation per entropy may further be reduced as the hadronization of gluons
increases the entropy [3]. Thus the net–charge fluctuationsare strongly dependent on which phase they
originate from. However, the net–charge fluctuations may get affected by uncertainties arising from
volume fluctuations, so one considers the fluctuations of theratio, R = N+/N−. HereN+ andN− are the
numbers of positive and negative particles respectively, measured in a specific transverse momentum (pt)
and pseudo–rapidity (η) window. The parameterR is related to the fluctuations of the net–charge via the
D–measure as per the following expression [2, 4, 5]:

D = 〈Nch〉〈δR2〉 ≈ 4
〈δQ2〉
〈Nch〉

, (1)

which provides a measure of the charge fluctuations per unit entropy. Here the〈...〉 denotes an average
of the quantity over an ensemble of events. The term〈δQ2〉 is the variance of net charge,Q = N+−N−
andNch = N++N−. TheD–measure has been estimated for several different theoretical considerations
including those of the lattice calculations. In a simple picture by neglecting quark–quark interactions,
D is found to be approximately 4 times smaller for a QGP compared to a HG [2]. Lattice calculations
which include the quark–quark interactions give a quantitatively different estimate for a QGP phase, still
significantly smaller than for a HG. It has been shown thatD = 4 for an uncorrelated pion gas, and
after taking resonance yields into account, the value decreases toD ≃ 3. For a QGP,D is significantly
lower and has been calculated to beD ≃ 1.0–1.5 where the uncertainty arises from the uncertainty of
relating the entropy to the number of charged particles in the final state [5]. Thus, a measurement ofD
can be effectively used as a probe for distinguishing the twophases, the HG and the QGP. However in
reality, these fluctuations may get diluted in the rapidly expanding medium due to diffusion of particles
in rapidity space [8, 9]. Several other effects, such as collision dynamics, radial flow and final state
interactions may also affect the amount of measured fluctuations [2, 10, 11].

In the experiment, the net–charge fluctuations are best studied [13, 14, 15, 12, 11, 16] by calculating the
quantityν(+−,dyn) defined as:

ν(+−,dyn) =
〈N+(N+−1)〉

〈N+〉2 +
〈N−(N−−1)〉

〈N−〉2

−2
〈N−N+〉
〈N−〉〈N+〉

, (2)

which is a measure of the relative correlation strength of particle pairs. A negative value ofν(+−,dyn) sig-
nifies the dominant contribution from correlations betweenpairs of opposite charges. On the other hand,
a positive value indicates the significance of the same charge pair correlations. Theν(+−,dyn) has been
found to be robust against random efficiency losses [16, 17, 18]. D–measure andν(+−,dyn) are related to
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each other by [5]:

〈Nch〉ν(+−,dyn) ≈ D−4. (3)

The values ofν(+−,dyn) need to be corrected for global charge conservation [16]. The predictions for the
D–measure are based on the assumption of vanishing net–charge in the system. However, in a realistic
situation, the system under consideration has a small but finite net–charge. A correction due to finite
net–charge effect also needs to be applied [4].

In this letter, we report the first measurements of net–charge fluctuations, by calculatingν(+−,dyn) and
theD–measure, as a function of collision centrality in Pb–Pb collisions at

√
sNN = 2.76 TeV at the LHC

with the ALICE detector. We also make a comparison of the experimental results to the theoretical
predictions.

Details of the ALICE experiment and its detectors can be found in [1]. For this analysis, we have used
the Time Projection Chamber (TPC) [19] to reconstruct charged particle tracks. The detector provides a
uniform acceptance with an almost constant tracking efficiency of about 80% in the analyzed phase space
(|η |< 0.8 and 0.2 GeV/c < pt < 5 GeV/c). The interaction vertex was measured using the Silicon Pixel
Detector (SPD), the innermost detector of the Inner Tracking System (ITS) of ALICE. In the analysis,
we have considered events with a vertex|vz| < 10 cm to ensure a uniform acceptance in the central
pseudo–rapidity region. The minimum bias trigger of ALICE consisted of a coincidence of at least one
hit on each of the two VZERO scintillator detectors, positioned on both sides of the interaction point,
while at the startup of data taking period an additional requirement of having a coincidence with a signal
from the SPD was also introduced. The background events coming from parasitic beam interactions are
removed by a standard offline event selection procedure, which requires the VZERO timing information
and hits in the SPD.

We present the results as a function of centrality that reflects the collision geometry. The collision
centrality is determined by cuts on the VZERO multiplicity as described in [20]. A study based on
Glauber model fits [21, 22, 23] to the multiplicity distribution in the region corresponding to 90% of
the most central collisions, where the vertex reconstruction is fully efficient, facilitates the determination
of the cross section percentile and the number of participants. The resolution in centrality is found
to be< 0.5% RMS for the most central (0-5%) collisions, increasing towards 2% RMS for peripheral
(70-80%) collisions [20].

We require tracks in the TPC to have at least 80 reconstructedspace points with aχ2 per TPC cluster
of the momentum fit less than 4. We reject tracks with distanceof closest approach (dca) to the vertex
larger than 3 cm both in the transverse plane and in the longitudinal direction. We have performed an
alternative analysis with tracks reconstructed using the combined tracking of ITS and TPC. In this case,
the dca cuts were 0.3 cm in the transverse plane as well as in the longitudinal direction. The results
obtained with both tracking approaches are in agreement.

The data analysis has been performed for Pb–Pb collisions at
√

sNN = 2.76 TeV and pp collisions at the
same centre–of–mass energy. An identical analysis procedure has been followed for both Pb–Pb and pp
data. We calculate theν(+−,dyn) from the experimental measurements of positive and negative charged
particles counted in∆η windows, defined around mid–rapidity (for example,∆η = 1 corresponds to
−0.5 ≤ η ≤ 0.5) and in thept range from 0.2 to 5.0 GeV/c. In Figure 1, we present theν(+−,dyn) as
a function of centrality, expressed in terms of the number ofparticipating nucleons. Moving from left
to right along thex–axis of the figure corresponds to moving from peripheral to central collisions. The
results are presented for∆η = 1 and 1.6, for both Pb–Pb and pp collisions. In all cases, the magnitude
of ν(+−,dyn) is observed to be negative, indicating the dominance of the correlation term in Eq. 2. The
absolute values ofν(+−,dyn) for pp collisions are larger compared to those measured for Pb–Pb collisions.
When going from peripheral to central events, the absolute values ofν(+−,dyn) are seen to decrease
monotonically.



Net-Charge Fluctuation 3

 

-0.04

-0.03

-0.02

-0.01

0

     = 1.0η∆ 

     = 1.6η∆ 

     = 1.0η∆ 

     = 1.6η∆ 

PbPb    pp

(+-,dyn)ν {
(+-,dyn)
corrν {

〉
part

N〈
0 50 100 150 200 250 300 350 400

   

-0.2

-0.1

0

Fig. 1: Dynamical net–charge fluctuations,ν(+−,dyn) and their corrected values,νcorr
(+−,dyn), for charged particles

produced in Pb–Pb collisions at
√

sNN = 2.76 TeV as a function of centrality expressed in terms of the number of
participating nucleons.νcorr

(+−,dyn) points are shifted along x-axis for better representation.Superimposed are the
results for pp collisions at

√
s = 2.76 TeV. The results are shown for two different∆η windows. The statistical

(bar) and systematic (box) errors are plotted.

The values ofν(+−,dyn) have to be corrected for global charge conservation and finite acceptance [16].
If all charges are accepted, the global charge conservationwould lead to vanishing fluctuations. This
will yield the minimum value ofν(+−,dyn) to be -4/〈Ntotal〉, where〈Ntotal〉 is the average total number of
charged particles multiplicity produced over full phase space. The corrected value ofν(+−,dyn) is then:

νcorr
(+−,dyn) = ν(+−,dyn)+

4
〈Ntotal〉

. (4)

Since the value of〈Ntotal〉, has not been reported by experiments, we have obtained these values from
HIJING [24] and PYTHIA [25] event generators for Pb–Pb and ppcollisions, respectively. The corrected
values,νcorr

(+−,dyn), are calculated and plotted in Figure 1 as a function of the number of participating
nucleons for Pb–Pb as well as pp collisions. The absolute values ofνcorr

(+−,dyn)are smaller compared to
ν(+−,dyn)in all cases. The differences are more apparent for pp and peripheral Pb–Pb collisions than for
central collisions.

The calculations of theD–measure were consequently done starting from the corrected values ofν(+−,dyn) in
Eq. 3. A systematic check of correcting theD–measure has been performed by usingD→D/(CµCη),

whereCµ = 〈N+〉2

〈N−〉2 andCη = 1− 〈Nch〉2
〈Ntotal〉 [4]. A difference of 3–7% (depending on the∆η window) has

been included as one of the systematic errors toD. For the rest of the manuscript the corrected values of
ν(+−,dyn) andD are presented.

The systematic uncertainties have additional contributions from the following sources: (a) uncertainty in
the determination of the interaction vertex, (b) differentmagnetic field polarities, (c) contamination from
secondary tracks (dca cuts), (d) centrality definition using different detectors, (e) selection criteria at the
track level, and (f) different tracking scenarios. The total systematic error onνcorr

(+−,dyn) amounts to 6–10%
in going from peripheral to central collisions. The error onthe product of number of charged particles
and νcorr

(+−,dyn) remains within 7–13% at all centralities. The systematic and statistical uncertainties in
all the figures are represented by boxes and error bars, respectively. The statistical errors are small and
within the sizes of the symbols in most cases.

Figure 2 presents the values of〈Nch〉νcorr
(+−,dyn)andD in the left and right axes, respectively, as a function

of the number of participating nucleons. The〈Nch〉 values have been measured for different centralities
and∆η windows, and corrected for detector inefficiencies [20]. Both the results from the Pb–Pb and pp
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Fig. 2: 〈Nch〉νcorr
(+−,dyn) (left axis) andD (right axis) as a function of the number of participants for∆η = 1 and 1.6 in

Pb–Pb collisions at
√

sNN = 2.76 TeV and pp collisions at
√

s = 2.76 TeV. Also shown are results from the HIJING
event generator for both the∆η windows. Both statistical (error bar) and systematic (box)errors are shown.

analyses are shown. The shaded bands in the figure indicate the predictions for a HG and a QGP. The
figure also shows the results from the HIJING event generatorfor ∆η = 1 and 1.6, which are observed
to be close to the HG line and at the same time independent of centrality. The pp results for∆η = 1.6
agrees very well with the HG prediction. The experimental results for Pb–Pb for both the∆η windows
are observed to be below the HG predictions and above those ofthe QGP. The values ofD for ∆η = 1.6
are lower compared to those for∆η = 1 for all centralities.

A decreasing trend ofD has been observed while going from peripheral to central collisions, as seen in
Figure 2. This centrality dependence may arise partly because of the presence of radial flow [10]. The
radial flow velocity could lead to the kinetic focussing of the produced particles, causing a narrowing
of the opening angles. Therefore, it is expected that the number of positive and negative particles may
get redistributed in a finite phase space. This may affect themagnitude of net–charge fluctuations. The
effect of radial flow onν(+−,dyn) has been estimated by using two different methods. First, wehave
used an afterburner [26] on the HIJING events where the particles get a boost in the transverse momenta
because of the radial flow velocity. The magnitudes ofν(+−,dyn) andD are observed to be close to each
other for both HIJING and HIJING with the afterburner. In thesecond method,D is calculated using the
AMPT model [27]. Both versions of this generator, the stringmelting and the default, were studied. The
observed centrality dependence in the data are not seen withthe AMPT model. These studies indicate
that the presence of radial flow may not be responsible for thecentrality dependence of theD–measure.

The measured fluctuations may get diluted during the evolution of the system from hadronization to
kinetic freeze-out because of the diffusion of charged hadrons in rapidity. In ref. [8, 9], this has been
addressed where a diffusion equation has been proposed to study the rapidity dependence of net–charge
fluctuations. It has been conjectured that, taking the dissipation into account, the asymptotic value of
fluctuations may be close to the primordial fluctuations in large rapidity windows corresponding to the
hadronization stage. This has been explored for the ALICE data points by plotting〈Nch〉νcorr

(+−,dyn) andD
as a function of∆η for three centrality bins, as shown in Figure 3. We observe that for a given centrality
bin, theD–measure shows a strong decreasing trend with the increase of ∆η . In fact, the curvature of
D has a decreasing slope with a flattening tendency at large∆η windows. Following the prescriptions
of [8, 9], we fit the data points with the functional form, erf(∆η/

√
8σf), which represents the diffusion

in rapidity space. Here,σf characterizes the diffusion at freeze–out. The resulting values ofσf are
0.42±0.04, 0.48±0.06 and 0.53±0.05 for the 0-5%, 30-40% and 50-60% centralities, respectively. The
fitted curves are shown as solid lines in Figure 3. The dashed lines are extrapolations of the fitted curves
to higher∆η , which yield the asymptotic values ofD. For the top 5% centrality, the measured values of
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Fig. 3: 〈Nch〉νcorr
(+−,dyn) (left axis) andD (right axis) as a function of∆η window for three different centrality bins

in Pb–Pb collisions at
√

sNN = 2.76 TeV. The data points are fitted with the functional form, erf(∆η/
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8σf). The
dashed lines correspond to the extrapolation of the fitted curves. Both statistical (error bar) and systematic (box)
errors are shown.

 (GeV)NNs
10 210 310

 
(+

-,
dy

n)
co

rr
ν 〉

ch
N〈

-3

-2.5

-2

-1.5

-1

-0.5

0

1

1.5

2

2.5

3

3.5

4

DHadron Gas
QGP

STAR Au-Au 
 = 1.0η∆ALICE Pb-Pb 
 = 1.6η∆ALICE Pb-Pb 

Fig. 4: Energy dependence of the net–charge fluctuations, measuredin terms of〈Nch〉νcorr
(+−,dyn) (left axis) andD

(right axis), for the top central collisions. The results from the STAR [11] and ALICE experiments are presented
for ∆η = 1 after the correction for charge conservation. The ALICE results are further extrapolated to obtain the
asymptotic value, shown by the solid red circle. Both statistical (error bar) and systematic (box) errors are shown.

D are 2.47±0.01(stat.)±0.13(sys.) for ∆η = 1 and 2.10±0.02(stat.)±0.12(sys.) for ∆η = 1.6. The
extrapolated value ofD is 1.99±0.09(stat.)±0.17(sys.).

The evolution of the net–charge fluctuations with beam energy can be studied by combining the ALICE
data for Pb–Pb collisions with those of the STAR experiment [11] for Au–Au collisions at four RHIC
energies. In Figure 4, we present the values of〈Nch〉νcorr

(+−,dyn) (left axis) andD (right axis) for the top
central collisions from ALICE at

√
sNN = 2.76 TeV and for STAR, Au–Au collisions at four different

energies. The ALICE data points correspond to∆η = 1 and 1.6, whereas for STAR the values for∆η = 1
are shown. For the STAR data,(dNch/dη)νcorr

(+−,dyn) is plotted instead of〈Nch〉νcorr
(+−,dyn), wheredNch/dη

is approximately equal to〈Nch〉 for ∆η = 1 at central rapidity. The theoretical predictions for a hadron
gas and a QGP are also indicated in the figure.

In Figure 4, we observe a monotonic decrease in the magnitudeof the net–charge fluctuations with
increasing beam energy. For the top RHIC energy of

√
sNN = 200 GeV, the measured data of STAR is

close to the prediction for a hadron gas. Below this energy, the data points are above the hadron gas value.
We note that the STAR results are obtained for∆η = 1 where the fluctuations may still be significantly
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affected by diffusion. At 2.76 TeV, we observe that the values of D for both the∆η windows are within
the predictions for a hadron gas and a QGP. At∆η = 1.6 the value ofD is closer to that of the QGP
prediction.

In summary, we have presented the first measurements of dynamic net–charge fluctuations at the LHC
in Pb–Pb collisions at

√
sNN = 2.76 TeV in terms ofν(+−,dyn), and their corrected values,νcorr

(+−,dyn) (cor-
rected for charge conservation and finite acceptance effect). The results for pp collisions at the same
center–of–mass energy are found to be in agreement with hadron gas prediction. The values ofν(+−,dyn) and
νcorr
(+−,dyn)are seen to be negative in all cases, indicating the dominance of the correlation of positive and

negative charges. A decrease in fluctuations is observed while going from peripheral to central collisions.
TheD–measure, which gives the charge fluctuations per entropy, is calculated fromνcorr

(+−,dyn) and from
the measured average charged particle multiplicity. A decreasing trend ofD is observed in going from
peripheral to central collisions. Model studies indicate that the presence of radial flow may not be the
cause of this decrease. The dissipation of signal during theevolution of the fireball from the hadroniza-
tion to freeze-out has been estimated by fittingD as a function of the∆η window. The extrapolation
of the fit function yields the asymptotic value ofD, which is not very different from the measurement
at ∆η = 1.6. The beam energy dependence of charge fluctuations has beenstudied by comparing the
ALICE data with those from the STAR experiment at RHIC for Au–Au collisions at four energies. A
monotonic decrease in the value ofD, measured at∆η = 1, has been observed. The STAR data points
at RHIC top energy are close to the prediction for a hadron gas. This may be due to the fact that the
fluctuation may be not strong enough to be measured or becauseof the dilution of fluctuation during
the evolution process. The ALICE data points are below the prediction for a hadron gas and above that
of the QGP. Moreover, these data points show an additional decrease ofD at ∆η = 1.6. For the top
central collisions, the measured value ofD turns out to be 2.10±0.02(stat.)±0.12(sys.) which is to be
compared with theoretical predictions.
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43 Institute for High Energy Physics, Protvino, Russia
44 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
45 Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University,

Utrecht, Netherlands
46 Institute for Theoretical and Experimental Physics, Moscow, Russia
47 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
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