Production of HPDs for the LHCb RICH Detectors

- LHCb RICH Detectors
- Hybrid Photon Detector
- Production
- Photo Detector Test Facilities
- Test Results
- Conclusions

IEEE Nuclear Science Symposium Wyndham, 24th - 26th October 2005 Franz Muheim University of Edinburgh for the LHCb RICH group

LHCb RICH Detectors

• LHCb Experiment

IEEE

- Precision measurements of CP violation in B meson decays, search for New Physics
- Ring Imaging Cherenkov Detectors
 - Charged particle identification
 - 2 RICH detectors RICH1 and RICH2
 - 3 radiators aerogel, C₄F₁₀, CF₄
- See talks in N25 R Linder & C d'Ambrosio
 - IEEE NSS, Wyndham 25 Oct 2005 F. Muheim

- **RICH Photon Detector Requirements**
 - single photon sensitivity: 200 600 nm
 - quantum efficiency: >20%
 - photo detector area: 3.0 m²
 - active area fraction: 65%
 - spatial resolution /pixel size: 2.5 x 2.5 mm²
 - read-out at LHC int. rate 40MHz
 - radiation tolerant: 3kRad/year

Hybrid Photon Detector - HPD

• HPD = Hybrid Device

- Visible light photon detector
- Pixelised silicon sensor and readout electronics
- Encapsulated in vacuum tube

Photon detector

- Multi alkali photo cathode (S20), quartz window
- 20 kV photo cathode high voltage
- Cross-focusing optics de-magnification: ~5

Silicon anode

- Si-sensor array with 256×32 pixels
- bump-bonded to binary readout chip
- Single photo electron (p.e) at 20 kV
 ~5000 e⁻ hole pairs in silicon
- LHCb readout mode 8-fold binary OR effective 32×32 pixel array
- Pixel size 500 μ m imes 500 μ m

HPD Production - Anode

HPD Production – Photon Detector

Hybrid photon detector production

(Photonis DEP - NL)

HPD Quality Assurance

Hybrid Photon Detector (HPD) 83 mm

HPD Production

- Series production of ~500 HPDs started 21 (+9 pre-series) HPDs delivered
- Production rate 30 HPDs/month over 18 months

Photo Detector Test Facilities (PDTF)

- Provide quality assurance (QA) and verify/measure HPD specifications/properties
- Two PDTF sites: at Edinburgh and Glasgow Univ. with two fully equipped test stations/ PDTF site
- Automation wherever possible
- Testing rate one HPD / work day / site
- Extended tests for subsample (~10%) of HPDs

PDTF Test Programme

- Mandatory for all HPDs
- Max. threshold:
- Noise:
- Chip leakage current:
- HV operation:
- Pixel response:
- Tube intrinsic coverage: >80%
- Ion feedback rate:
- Dark Count Rate:

- <2000 e⁻ <250 e⁻ typ. 1µA @ 80V bias stable @ 20kV >95% for light
- ic coverage: >80%
 - <10⁻² rel. to signal <5kHz/cm²

threshold scans IV scan & Bias V scan High voltage scan

long LED run

time delay scan Dark count runs

- for 10% sub-sample of HPDs
- Ph.e. detection eff.: typ. 85%
- Quantum Efficiency: at 270, 400, 520 nm

Backpulse measurement QE measurement

Measurements of 9 pre-series HPDs tested at CERN Results generally well within specification

Quantum Efficiency

Bias & High Voltage Scans

High Voltage Scans

PDTF Results

IEEE

- HV curves are very similar
- >90% relative efficiency > 10kV
- large stable operating range
- LED light yields vary between typ. 2 - 4 p.e./event

- Bias Voltage Scans
 - Strobe Timing is critical
 - drift velocity increases with V_{Bias}
 - depletion voltage and saturation yield depend on drift velocity
- PDTF measurements
 - Excellent agreement between PDTF sites
 - difference to CERN due to timing

of photo electrons vs bias voltage

Long LED Run

High statistics LED run (200k events, ~3 npe/event)

- HPD response
 - Full photo cathode area active
 - measure sensor positions
 - measure demagnification
 - cylindrical structures due to reflection on Al coating at edge

- HPD edges will be shadowed mu-metal shielding
- 9 pre-series HPD results
 - uniform response over full active area (apart from reflections)
 - pixel response:
 - 8 HPDs >99%
 - 1 HPD > 94.8% (1 missing column)
 - Specifications: >95%

Ion Feedback

Ion Feedback signal

IEEE

Ion Feedback

- photo electron ionises residual gas molecule
- \rightarrow travels back to the photo cathode
- \rightarrow releases cluster of photoelectrons
- Delayed signal of clustered photo electrons
- \rightarrow peaks ~200ns after direct photon signal
- indicator of vacuum quality

- 9 pre-series HPD results
 - ion feedback rate <10⁻³ x direct photon signal
 - consistent with specifications (<10⁻²)

Dark Counts

High statistics Dark Count run (5M events)

- Sources of dark counts
 - Thermionic electron emission (temperature)
 - Field emission (electric field)
 - Ion feedback (vacuum quality)

related to red response in QE

Long Term Performance - Ageing

Pixel Mask Measurement

- Prototype pin-hole mask
 - hole diameter: 1 mm
 - hole separation: ~11 mm

• Method

IEEE

- Mask placed at 3 cm distance to HPD
- Illuminate mask & HPD with point-like light source (fibre)
- Fit light spot positions

Response to LED light with pin-hole mask (200k events)

- Goals
 - Compare spots to hole positions
 - Test for image distortion

- Hybrid Photon Detectors meet requirements for LHCb RICH detectors
- Pre-series HPDs have been tested extensively and their performance is within specifications
- Production of ~500 HPDs has started
 21 HPDs have been delivered
- Photo detector test facilities built and commissioned
- Automated test procedures are in place
- Series testing of HPDs has started

Results of 9 pre-series HPDs tested at CERN

Item	Specification	Results	Note
Pixel response	> 95%	> 99%	missing column in 1 HPD
Min. threshold Noise	<2000e- <250e-	Тур. 1200е- Тур. 160е-	
Leakage current	Typ. 1uA @ 80V bias	< 1uA	4.3uA for 1 HPD see page 10
Dark count rate	Max. 5kHz/cm ²	0.03-3kHz/cm ²	Correlated to red response
Ion feedback rate	Max. 10 ⁻² rel. to signal	<10 ⁻³	
P.e. detection efficiency	Тур. 85%	79-89%	No dead channel correction
Quantum efficiency	see page 9	Generally well above specs	1 HPD below specs in UV

