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Abstract

This paper outlines a software architecture where zero-copy operations are used comprehensively at
every processing point from the Application layer to the Physical layer. The proposed architecture is
being used during feasibility studies on advanced networking technologies for the CMS experiment
at CERN. The design relies on a homogeneous peer-to-peer message passing system, which is built
around memory pool caches allowing efficient and deterministic latency handling of messages of any
size through the different software layers. In this scheme portable distributed applications can be
programmed to process input to output operations by mere pointer arithmetic and DMA operations
only. The approach combined with the open fabric protocol stack (OFED) allows one to attain near
wire-speed message transfer at application level. The architecture supports full portability of user
applications by encapsulating the protocol details and network into modular peer transport services
whereas a transparent replacement of the underlying protocol facilitates deployment of several net-
work technologies like Gigabit Ethernet, Myrinet, Infiniband etc. Therefore, this solution provides
a protocol-independent communication framework and prevents having to deal with potentially dif-
ficult couplings when the underlying communication infrastructure is changed. We demonstrate the
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feasibility of this approach by giving efficiency and performance measurements of the software in the
context of the CMS distributed event building studies.
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 Abstract–This paper outlines a software architecture where 
zero-copy operations are used comprehensively at every 
processing point from the Application layer to the Physical layer. 
The proposed architecture is being used during feasibility studies 
on advanced networking technologies for the CMS experiment at 
CERN. The design relies on a homogeneous peer-to-peer message 
passing system, which is built around memory pool caches 
allowing efficient and deterministic latency handling of messages 
of any size through the different software layers. In this scheme 
portable distributed applications can be programmed to process 
input to output operations by mere pointer arithmetic and DMA 
operations only. The approach combined with the open fabric 
protocol stack (OFED) allows one to attain near wire-speed 
message transfer at application level. The architecture supports 
full portability of user applications by encapsulating the protocol 
details and network into modular peer transport services 
whereas a transparent replacement of the underlying protocol 
facilitates deployment of several network technologies like 
Gigabit Ethernet, Myrinet, Infiniband etc. Therefore, this 
solution provides a protocol-independent communication 
framework and prevents having to deal with potentially difficult 
couplings when the underlying communication infrastructure is 
changed. We demonstrate the feasibility of this approach by 
giving efficiency and performance measurements of the software 
in the context of the CMS distributed event building studies.  
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I. INTRODUCTION 

HE Compact Muon Solenoid (CMS) [1] is a general-
purpose particle detector at the Large Hadron Collider 

(LHC) [2] at CERN in Geneva, Switzerland. 
 

TABLE I. NOMINAL PARAMETERS OF THE CMS DAQ. 
 

Parameter Value 

Beam crossing rate  40 MHz  
Level-1 Trigger rate  100 kHz  
Number of front-ends  700 
Event Size  1 MByte  
Event Builder throughput  100 GByte/s  
Maximum rate after HLT  O(100) Hz  

 
Table I shows the main parameters of the Trigger and Data 
Acquisition (TriDAS) system in the case of proton-proton 
collisions at the design LHC luminosity of 1034 cm-2s-1. A 
rejection power of O(105) is require in order to reduce the 
event rate from the 40 MHz LHC beam crossing to an 
acceptable rate of O(100) Hz for physics analysis.  

Online event-selection is done using two trigger levels:  a 
hardware-based first-level trigger and a software-based high-
level trigger (HLT).  Fig. 1 shows the CMS Data Acquisition 
(DAQ) [3] architecture. The system is designed to read out 
event fragments of an average size of up to 2 kB from around 
700 detector Front-Ends Drivers (FEDs) at a rate of 100 kHz. 
For FEDs with smaller fragment size, the Frontend Readout 
Link (FRL) reads out two FEDs and merges the fragments in 
order to balance fragment sizes. Events are built in two stages: 
FED Builder and RU Builder. The first stage is the FED 
Builder and it receives ~500 event fragments coming from the 
FRLs. Readout Units (RUs) of parallel RU Builder slices 
assembles groups of 8 event fragments into super-fragments. 
In each slice there are 72 RUs connected to the FED Builders, 
which send the received data to the Builder Units. The Builder 
Units (~125 for each slice) build and analyze the full events 
and forward the selected events to mass storage. The DAQ is 
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Fig. 1. The CMS data acquisition architecture. Events are built in two stages: super-fragments are built in the Readout Unit (RU), full events are built in the 
Builder Unit (BU). The BUs also run the high-level trigger software. 

composed of few thousand hosts [4][5] and of O(20000) 
interdependent applications.   

The online applications are based on the XDAQ [6] 
framework that is a software platform designed specifically 
for the development of distributed data acquisition systems. 
The framework is a software middleware that eases the tasks 
of designing, programming and managing data acquisition 
applications by providing a simple, consistent and integrated 
distributed programming environment. XDAQ builds upon 
industrial standards, open protocols and libraries. 

Through the XDAQ software, CMS has successfully been 
recording proton-proton collisions at a center-of-mass energy 
of  7 TeV during 2010 and 2011 and at 8 TeV since the start of 
2012. A long shutdown is planned from 2013 to September 
2014 in order to upgrade the LHC machine for reaching the 
luminosity of 2x 1034 cm-2s-1 at 25 ns or 50 ns bunch spacing. 
During the long shutdown some CMS sub-detector front-end 
electronics and readout systems will be upgraded, and a new 
L1 trigger system will be deployed and operated in parallel to 
the existing system. Aging of existing hardware (PCs and 
networks at least 5 years old) and to accommodate sub-
detectors with upgraded off-detector electronics are the main 
motivations for the upgrade of CMS DAQ system. The 
upgrade plan for the DAQ system is to replace FED builder 
and RU builder networks with more recent network 
technologies. The DAQ team has started feasibility studies on 
advanced networking technologies to identify the network 
technology to use for the upgrade of the event builder 
network. In the present paper we describe the architecture of 
XDAQ, and the integration of RDMA-capable transports 
within the framework by means of uDAPL, the User Direct 

Access Programming Library [7]. We report on preliminary 
results of the 10 Gigabit Ethernet (10 GbE) and 4x QDR 
Infiniband performance tests. 

II. XDAQ FRAMEWORK 
The XDAQ distributed programming environment follows a 

layered middleware approach [8], designed according to the 
object-oriented model and implemented using the C++ 
programming language [9]. The distributed processing 
infrastructure is made scalable by the ability to partition 
applications into smaller functional units that can be 
distributed over multiple processing units. In this scheme each 
computing node runs a copy of an executive that can be 
extended at run-time with binary plugin components. The 
program exposes two types of interfaces: “core” and 
“application”. The core interfaces lie between the middleware 
and core plugin components, providing access to basic system 
functionalities and communication hardware. Core plugins 
manage basic system functions on behalf of the user 
applications, including network access, memory management 
and device access. The application interfaces provide access to 
the various functions offered by the core plugins and are 
placed between the middleware and the user application 
components as shown in Fig. 2. 

Middleware services include information dispatching to 
applications, data transmission, exception handling facilities, 
access to configuration parameters, and location lookup 
(address resolution) of applications and services. Other system 
services include locking, synchronization, task execution and 
memory management. Applications communicate with each 
other through the services provided by the executive according 



 

to a peer-to-peer message-passing model. This allows each 
application to act both as a client and a server.  
 

 

Fig. 2. Middleware interfaces. 
 
The general programming model follows the event driven 

processing scheme [10] where an event is an occurrence 
within the system. It can be an incoming message, an 
interrupt, the completion of an instruction, like a direct 
memory access transfer, or an exception. Messages are sent 
asynchronously and trigger the activation of user-supplied 
callback procedures when they arrive at the receiver side. 
Every event therefore corresponds to a message that follows a 
standardized format.  

The event-based processing model has been chosen because 
it is known to scale [13]. There is no need for a central place 
in which the incoming data have to be interpreted completely. 
It is the responsibility of each software component that listens 
to a given type of event (e.g. data received, timeout) to decide 
what it should do with the information received. Extensibility 
is thus achieved through the decoupling of the reception of a 
message and its processing. The procedure for a given 
message can be provided dynamically during run-time by 
downloading a software module that contains all code to react 
to an incoming message of a given type. Furthermore it is 
possible to add new functionality by defining new messages. 
The system provides a default procedure if for a given event 
no executable function has been supplied. This model results 
in a homogeneous structure of software components with an 
intrinsic fault-tolerant behavior.  

The software distribution comes with two ready to use 
communication protocols. One is based on the I2O 
specification [11] used for efficient and high performance data 
transmission, and the other on SOAP and XML [12] used for 
configuration purposes. 

A. Memory Management 
The executive program provides applications with efficient 

memory management facilities. These are based on a scheme 
called “buffer-loaning” which avoids fragmentation of 
memory over long run periods and presents a safe operation 
model that prevents extensive growth of memory 
consumption. With the buffer-loaning scheme, applications or 
core-plugins ask the executive for fixed-sized chunks of 
memory from one of various buffer pools. The principle is 
displayed graphically in Fig. 3. 

 

 

Fig. 3. Illustration of the buffer-loaning mechanism. A task loans a 
reference to an unused buffer that matches the closest requested data size from 
a buffer pool (step 1). The buffer can be passed to another task by forwarding 
the buffer reference (step 2) without copying the data. The buffer is released 
to the pool by destroying the buffer reference (step 3). It can now be re-
allocated to another task. 
 

The executive manages various types of pools, including 
ordinary user-space memory, a reserved amount of physical 
memory (e.g. the Linux “bigphys” kernel extension) and 
memory on network cards. The pools can be configured such 
that exceptions are raised if too little memory is available. All 
memory buffers are allocated from the available pool and are 
accessible through a reference that can be further lent to other 
software components.  
 
 

 
Fig. 4. The toolbox::mem::Reference structure is the primary vehicle 

through which XDAQ applications access or pass the data that resides in a 
memory pools established by the communicating applications. 

The executive routines deal with data in terms of memory 
buffer references toolbox::mem::References and abstract 
memory buffers toolbox::mem::Buffer for various kinds of 
memories (see Fig. 4).  

 

 
Fig. 5. I2O frame memory blocks. 

Core
plug-in

Core 
interfaces

Application 
interfaces

Application
plug-in

Middleware
executive

Buffer pool

Buffer 
reference

Task A Task B

Step 1 Step 2 Step 3



 

For example, a user application prepares a message and 
passes it on to a transport component that handles the network 
transmission. Eventually, the buffer must be returned to its 
pool. Built-in reference counting ensures that a buffer is not 
returned into its originating pool before the very last user has 
released it. 

XDAQ uses the toolbox::mem::Reference and the 
toolbox::mem::Buffer structures to track information 
necessary to manage the data in the I2O frames (see Fig. 5). A 
much more detailed description of I2O protocol and data 
format can be found in section II.C. 
 

 
Fig. 6. Chaining is one of the toolbox::mem::Reference feature. This lets 

XDAQ applications pass an arbitrarily large amount of data by passing the 
toolbox::mem::Reference at the head of a toolbox::mem::Reference chain. 

Various buffers can be chained together to allow arbitrarily 
sized data (see Fig. 6). The mechanism not only enables 
efficient zero-copy implementations, but also provides the 
foundation for transparent operation across network 
boundaries. Various high-speed interconnects and custom built 
electronics rely on non-standard memory models, that would 
otherwise require the instrumentation of user programs with 
special instructions. Buffer pools can be added to the 
executive to offer specific allocation through an interface that 
is common to all memory types. 

B. Data Transmission 

A message between two endpoints that are located on two 
different hosts might need to travel through a media. To 
determine how a message should be sent between two 
endpoints, a mechanism is required to allow a peer to discover 
the route information. The XDAQ framework provides peers 
with a mechanism for determining a route to an endpoint, 
allowing the peer to send data to the remote endpoint. Peer 
transports (see Fig. 7) are the entity responsible for conducting 
the actual exchange of information over a network. Peer 
transport encapsulate a set of network interfaces, allowing a 
peer to send and receiver data independently of the type of 
network being employed.  

Communication between ordinary applications is 
accomplished by means of an executive function. This 
function, when invoked, re-directs the outgoing message to the 
proper peer-transport that in turn delivers the data over the 
associated medium. In this way the framework is independent 
of any transport protocol or network and can be extended at 

any time to accommodate newly appearing communication 
technologies. 

 
 

Fig. 7. Communication over multiple networks through peer-transports. 

XDAQ offers two simple ways to send and receive 
messages: the Application Context Services and the Peer 
Transport Agent services. The Application Context Services 
are simply convenient wrappers for sending and receiving 
messages using a peer transport. A Peer Transport is an 
interface to a set of network transports that allows data to be 
sent across the network. Details on how data is to be formatted 
for transport across the network is the responsibility of a 
particular peer transport implementation. 

C. I2O Protocol and Data Format 
The framework supports the exchange of messages using 

the I2O binary data format. I2O (Intelligent Input Output) is 
originally a specification for an I/O architecture developed by 
a consortium of computer companies called the I2O special 
Interest Group (SIG). I2O is designed to eliminate I/O 
bottlenecks by utilizing special I/O processors (IOPs). In 
particular, I2O was also designed to facilitate intelligent I/O 
subsystems, with support for message-passing between 
multiple independent processors. This concept includes 
therefore a communication scheme for the data exchange 
among devices with processing capabilities namely Peer-to-
Peer message passing. The I2O Peer to Peer message passing 
as supported in XDAQ relies on three key properties: 

• Independence of the used transport protocol; 
• Asynchronous communication in connection with a 

callback engine; 
• A common data format for all messages. 

 I2O messages are datagrams with a maximum size of 256 
kB. For sizes larger than this maximum, the data have to be 
split and sent in a sequence of multiple frames. The common 
data format, as outlined in Fig. 8, encapsulates the destination 
identifier of the application that shall receive the message. The 
callback function that is invoked upon receive can be one of 
the standard I2O functions (Number is field Function ID), or a 
user supplied callback (Function ID = 0xFF and the extended 
header contains a numeric identifier in XFunction). The 
message also contains the sender identifier, the originator. 
Any user data can be inserted into the message after the 
extended header. 
 



 

 
Fig. 8. I2O header format. 

I2O messages are declared as C structures and are therefore 
statically defined at compile time. Any modification of the 
message structure requires the adaptation of the sender and the 
receiver, respectively. I2O defines, that the ordering of bytes 
on the network is Little Endian, aligned to 32 or 64 bit 
boundaries.  

 

 
Fig. 9. The interaction of the layers in XDAQ framework. 

 XDAQ performs the necessary conversion for the message 
header if messages are exchanged between machines of 
different native byte ordering. Asynchronous communication 
means that the sender will not block on waiting for successful 
reception of the message at the receiver side. 
 I2O is used as an application level protocol (see Fig. 9). I2O 
frames as shown above can be exchanged among XDAQ 
applications over several different transport protocols. The 
choice of communication protocol is made at configuration 
time through the selection of loadable peer-transport 
components, which implement the network dependent 
communication mechanisms. Thus, the application code 
remains invariant with respect to the various network 
technologies. This interface implements a buffer-loaning 
scheme where memory segments are exchanged among all 
components within the framework. With all the above 
mechanisms, it is therefore possible to confine data 
transmission for input and output to pure DMA operations and 
pointer arithmetics. 

III. DAPL INTEGRATION 
 In the last years, as the network speed has increased toward 
100 gigabits per second, the CPU must spend more time 
working to service the network. To process network requests 
for the de facto networking standard, TCP/IP, the processor 
must dedicate a large number of cycles and resources to data 

transfers. To avoid this problem, technology such as 
Infiniband [19], iWARP [20], and RDMA over Converged 
Ethernet (RoCE) [21] have been developed that not only allow 
for a very fast interconnect, but also provide a mechanism 
known as Remote Direct Memory Access (RDMA) [22] to 
bypass the operating system and CPU in order to directly 
move data into application memory.  
 The OpenFabrics Alliance (OFA) [23] develops, tests, 
licenses, supports and distributes OpenFabrics Enterprise 
Distribution (OFED™) [24] open source software to deliver 
high-efficiency computing, wire-speed messaging, ultra-low 
microsecond latencies and fast I/O. The goal of the 
OpenFabrics Alliance is to deliver a unified, cross-platform, 
transport-independent software stack for RDMA and kernel 
bypass. Transport independence means that users can utilize 
the same OpenFabrics RDMA and kernel bypass API and run 
their applications agnostically over Infiniband, iWARP or 
RoCE. The OFED is the software on the host that coordinates 
user-space and kernel-space access to the Infiniband or 
Ethernet hardware. 
 

 
 Fig. 10. The OFED Stack (source: OpenFabrics Alliance) 

 As shown Fig. 10, the OFED stack consists of many 
different components. These components can be categorized 
as kernel modules (drivers) and user/system libraries and 
utilities, commands and daemons for Infiniband or Ethernet 
administration, configuration, and diagnostics. The Direct 
Access Programming Library (DAPL) [25] developed by DAT 
collaborative is a distributed messaging technology that is 
both hardware-independent and compatible with current 
network interconnects. The architecture provides an API that 
can be utilized to provide high-speed and low-latency 
communications among peers in clustered applications. The 
DAT Collaborative’s goal is to define the interface between 
uDAPL Provider (DAT-compliant Interface Adapter driver) 
and DAT Consumer (Application). As shown in Fig. 11, 
uDAPL defines the API for the kernel level when uDAPL 
Provider is within OS and below, while DAPL defines the API 
for the user level when DAT Consumer is completely within 
application space. Each Interface Adapter is controlled by 
exactly one uDAPL Provider. Each uDAPL Provider can 
control multiple Interface Adapters. There can be multiple 



 

DAT Providers controlling disjoint sets of Interface Adapters 
on a host. 
 

 
 Fig. 11. DAT User Architecture Model. The diagram shows the DAT 
kernel API architecture model, including uDAPL Consumer, uDAPL 
Provider, OS, and Interface Adapter. 

 A new peer transport (ptuDAPL) has been implemented for 
DAT library using I2O messaging protocol and based on DAT 
Specification 2.0 [26].  

 
 Fig. 12. ptuDAPL integration with XDAQ framework. 

It uses smart memory pool based on uDAPL memory region 
allocator, and the random access to memory with no 
intermediate management is performed using cookies. All I/O 
operations are centered on dedicated uDAPL memory pool 
that allows a full zero-copy between XDAQ applications and 
DAPL driver. The API is optimized to minimize the latency 
profiting for inherent non-blocking and queuing of uDAPL. 
As shown in Fig. 12, the ptuDAPL can be integrated in the 
XDAQ framework without change of application code. 

IV. CLUSTER SETUP 
 To perform benchmark evaluation of the new peer transport 
ptuDAPL, we used a small cluster. The setup consisted in 8 
nodes of DELL PowerEdge R710 with dual sockets Intel Xeon 
E5530 4-core at 2.27 GHz and 3GB of memory. The operating 
system running on the nodes was Scientific Linux CERN 5 
(SLC5) with the 2.6.18-164.6.1.el5 kernel. Each node was 
equipped with an Infiniband Host Channel Adapter (HCA) 
supporting 4x Quad Data Rate (QDR) connections with data 
rate of 32Gbps (Qlogic HCA, qle7340 4x QDR PCIe), and 
iWARP adapter at 10 GbE (Chelsio T420-CR 10GBASE-SFP 
RNIC). Each node was connected with an Infiniband switch 

(Qlogic 12300-BS01- 4x QDR) and 10 GbE switch (Voltaire 
Vantage 6048). 

V. BENCHMARKS 
 To evaluate the different network technologies we have 
done three different benchmarks: 

• Latency of sending a packet between two nodes using 
ptuDAPL to measure the overhead of the XDAQ 
framework; 

• Measurement of the maximum throughput per node 
between one node to more nodes with a multi-
streams of I/O data; 

• Measurement of the maximum throughput per node 
between N nodes to N nodes with event builder 
software. 

A. Latency Measurements 
 We developed a XDAQ application called roundtrip to 
measurement the latency of sending a package between two 
nodes. A time packet is travelling from a specific source to a 
specific destination and back again; one-way latency is 
measured by timing a round-trip message and dividing the 
obtained result by two (see Fig. 13). 
 

 
  Fig. 13. Diagram of latency factors.  

 

 
 Fig. 14. Latency in us versus fragment size in Bytes for Infiniband - 4x 
QDR - Qlogic  (blue points) and Ethernet - iWARP - Chelsio (red points). The 
series with latency and fragment size correspond to log normal distributions. 

  Fig. 14 shows the latency for sending a package with 
different fragment size using ptuDALP over Infiniband (4x 



 

QDR) and Ethernet (iWARP). For a packet of 32 Bytes the 
overhead of XDAQ framework is less then 1 us for both 
network technologies.  

B. Maximum Throughput per Node with Stream of I/O Data 
 In order to calculate the maximum throughput per node we 
implemented a XDAQ application (Multi-Stream I/O) to send 
multiple streams I/O data from one source to many 
destinations. As shown in Fig. 15, throughput per node is 
measured sending continuously N messages to N receivers and 
time sampling is done at the receiver’s side. 
 

 
  Fig. 15. Diagram of the multi-stream I/O application. 

 

 
  Fig. 16.Throughput per node in MB/s using multi-stream I/O application 
versus fragment size in Bytes for uDAPL/iWARP (blue line) and TCP/IP (red 
line). The series fragment size corresponds to log normal distributions. 

 A configuration with one sender and four receivers has been 
tested using uDAPL/iWARP versus TCP/IP. The throughput 
per node as a function of fragment size is shown in Fig. 16. In 
the case of uDAPL/iWARP, it reaches a plateau of about 1200 
MB/s for packet sizes above 3 kB with an efficiency close to 
100%. The performance for TCP/IP, is also shown in Fig. 16, 
and it can be seen that the throughput per node is less than 
uDAPL/iWARP with a considerable difference for small 
fragments, as expected for the cost of TCP/IP stack. 

C. Maximum Throughput per Node with Event Builder 
 To perform the maximum throughput per node with the 
event builder application we used the CMS RU-Builder [28] 
software in emulation mode. RUs generate the event fragment 
data and BUs discard the event data once an event is fully 
assembled. The L1 trigger is not emulated and all 
measurements correspond to the saturation limit. Fig. 17 
shows the event builder protocol. With free capacity available, 
a BU requests the EVM to allocate it an event (step 1).  The 
EVM confirms the allocation by sending the BU the event ID 
and trigger data of an event (step 2).  This trigger data is the 
first super-fragment of the event.  The BU now requests the 
RUs to send it the rest of the event’s super-fragments (step 3).  
The BU builds the super-fragments it receives from the RUs 
(step 4) into a whole event within its resource table (step 5). 
FUs can ask a BU to allocate them events (step 6).  A BU 
services a FU request by sending the FU a whole event (step 
7).  When a FU has finished with an event, it tells the BU to 
discard it (step 8).  
 

 
Fig. 17. Event builder protocol. 

 

 
 Fig. 18. Throughput per node in MB/s using event builder application 
versus fragment size in Bytes for uDAPL/IB (blue line) and TCP/IPoIB (red 
line). The series fragment size corresponds to log normal distributions. 



 

 An event builder configuration with an EVM, 3 RUs and 3 
BUs has been tested using uDAPL/IB versus TCP/IPoIB (4x 
QDR). The throughput per node as a function of fragment size 
is shown in Fig. 18. In the case of uDAPL/IB, it reaches a 
plateau of about 2 GB/s for sizes above 20 kB with an 
efficiency ~ 55%.  The efficiency of Input-Queued Switches 
with random traffic (no traffic shaping) is ε=2-√2 ≈ 0.59 for N 
→ ∞ [27]. The performance for TCP/IPoIB is very low 
compered to uDAPL/IB. 

VI. SUMMARY 
 In this paper we have shown the XDAQ architecture and the 
integration of RDMA-capable transports within the framework 
by means of uDAPL. The new ptuDAPL provides a protocol-
independent communication framework and avoids any 
potential problem when the underlying communication 
infrastructure changes. The preliminary tests have given 
interesting results:  uDAPL/iWARP over 10 GbE shows a 
better throughput per node for small fragment sizes as 
compared to the traditional TCP/IP stack on the host, in 
Infiniband we saw that the TCP/IPoIB gives only ~ 12 % of 
efficiency.  
 To continue our feasibility studies for the CMS event 
builder we need a bigger cluster to check the scalability. We 
are setting up a new system with 32 nodes of DELL 
PowerEdge C6220 with dual sockets Xeon E5-2670 8-core at 
2.6 GHz and 32GB of memory. Each node is equipped with a 
Mellanox - ConnectX-3 VPI adapter (MCX353A-FCBT) 
supporting 4x Fourteen Data Rate (FDR) connections with 
data rate of 54.4 Gbps and 40 GbE. Using the new setup we 
can perform scalability tests, try to improve the Infiniband 
efficiency using the Quality of Service and test RoCE 
technology. 
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