
Available on CMS information server CMS CR -2012/135

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
10 June 2012 (v3, 15 June 2012)

A comprehensive zero-copy architecture for high
performance distributed Data Acquisition over
advanced network technologies for the CMS

experiment

G. Bauer6), U. Behrens1), J. Branson4), S. Bukowiec2), O. Chaze2),S. Cittolin4), J. A. Coarasa2), C. Deldicque2),
M. Dobson2), A. Dupont2), S. Erhan3), D. Gigi2), F. Glege2), R. Gomez-Reino2), C. Hartl2), A. Holzner4), L.

Masetti2), F. Meijers2), E. Meschi2), R. K. Mommsen5), C. Nunez-Barranco2), V. O’Dell5), L. Orsini2), C.
Paus6), A. Petrucci2), M. Pieri4), G. Polese2), A. Racz2), O. Raginel6), H. Sakulin2), M. Sani4), C. Schwick2), A

C Spataru2), F. Stoeckli6),K Sumorok6)

Abstract

This paper outlines a software architecture where zero-copy operations are used comprehensively at
every processing point from the Application layer to the Physical layer. The proposed architecture is
being used during feasibility studies on advanced networking technologies for the CMS experiment
at CERN. The design relies on a homogeneous peer-to-peer message passing system, which is built
around memory pool caches allowing efficient and deterministic latency handling of messages of any
size through the different software layers. In this scheme portable distributed applications can be
programmed to process input to output operations by mere pointer arithmetic and DMA operations
only. The approach combined with the open fabric protocol stack (OFED) allows one to attain near
wire-speed message transfer at application level. The architecture supports full portability of user
applications by encapsulating the protocol details and network into modular peer transport services
whereas a transparent replacement of the underlying protocol facilitates deployment of several net-
work technologies like Gigabit Ethernet, Myrinet, Infiniband etc. Therefore, this solution provides
a protocol-independent communication framework and prevents having to deal with potentially dif-
ficult couplings when the underlying communication infrastructure is changed. We demonstrate the

1) DESY, Hamburg, Germany
2) CERN, Geneva, Switzerland
3) University of California, Los Angeles, Los Angeles, California, USA
4) University of California, San Diego, San Diego, California, USA
5) FNAL, Chicago, Illinois, USA
6) Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

feasibility of this approach by giving efficiency and performance measurements of the software in the
context of the CMS distributed event building studies.

Presented at RT2012: 18th IEEE NPSS Real Time Conference

A Comprehensive Zero-copy Architecture for High
Performance Distributed Data Acquisition over
Advanced Network Technologies for the CMS

Experiment
Gerry Bauer, Ulf Behrens, James Branson, Sebastian Bukowiec, Member, IEEE, Olivier Chaze, Sergio Cittolin, Jose

Antonio Coarasa, Christian Deldicque, Marc Dobson, Aymeric Dupont, Samim Erhan, Dominique Gigi, Frank
Glege, Robert Gomez-Reino, Christian Hartl, Andre Holzner, Lorenzo Masetti, Frans Meijers, Emilio Meschi,

Remigius K. Mommsen, Carlos Nunez-Barranco-Fernandez, Vivian O'Dell, Luciano Orsini, Christoph Paus, Andrea
Petrucci, Marco Pieri, Giovanni Polese, Attila Racz, Olivier Raginel, Hannes Sakulin, Member, IEEE, Matteo Sani,

Christoph Schwick , Andrei Cristian Spataru, Fabian Stoeckli and Konstanty Sumorok

 Abstract–This paper outlines a software architecture where
zero-copy operations are used comprehensively at every
processing point from the Application layer to the Physical layer.
The proposed architecture is being used during feasibility studies
on advanced networking technologies for the CMS experiment at
CERN. The design relies on a homogeneous peer-to-peer message
passing system, which is built around memory pool caches
allowing efficient and deterministic latency handling of messages
of any size through the different software layers. In this scheme
portable distributed applications can be programmed to process
input to output operations by mere pointer arithmetic and DMA
operations only. The approach combined with the open fabric
protocol stack (OFED) allows one to attain near wire-speed
message transfer at application level. The architecture supports
full portability of user applications by encapsulating the protocol
details and network into modular peer transport services
whereas a transparent replacement of the underlying protocol
facilitates deployment of several network technologies like
Gigabit Ethernet, Myrinet, Infiniband etc. Therefore, this
solution provides a protocol-independent communication
framework and prevents having to deal with potentially difficult
couplings when the underlying communication infrastructure is
changed. We demonstrate the feasibility of this approach by
giving efficiency and performance measurements of the software
in the context of the CMS distributed event building studies.

Manuscript received June 15, 2012. This work was supported in part by the

DOE and NSF (USA) and the Marie Curie Program.
U. Behrens is with DESY, Hamburg, Germany.
S. Bukowiec, O. Chaze, J. A. Coarasa, C. Deldicque, M. Dobson, A.

Dupont, D. Gigi, F. Glege, R. Gomez-Reino, C. Hartl, L. Masetti, F. Meijers,
E. Meschi, C. Nunez-Barranco-Fernandez, L. Orsini, A. Petrucci
(corresponding author. phone: +41 22 76 70808, fax: +41 22 76 69051, e-
mail: Andrea.Petrucci@cern.ch), G. Polese, A. Racz, H. Sakulin, C. Schwick,
and A. C. Spataru are with CERN, Geneva, Switzerland.

S. Erhan is with University of California, Los Angeles, California, USA.
J. Branson, S. Cittolin, A. Holzner, M. Pieri and M. Sani are with

University of California San Diego, La Jolla, California, USA.
R. K. Mommsen and V. O’Dell are with FNAL, Batavia, Illinois, USA.
G. Bauer, C. Paus, O. Raginel, F. Stoeckli and K. Sumorok are with

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

I. INTRODUCTION

HE Compact Muon Solenoid (CMS) [1] is a general-
purpose particle detector at the Large Hadron Collider

(LHC) [2] at CERN in Geneva, Switzerland.

TABLE I. NOMINAL PARAMETERS OF THE CMS DAQ.

Parameter Value

Beam crossing rate 40 MHz
Level-1 Trigger rate 100 kHz
Number of front-ends 700
Event Size 1 MByte
Event Builder throughput 100 GByte/s
Maximum rate after HLT O(100) Hz

Table I shows the main parameters of the Trigger and Data
Acquisition (TriDAS) system in the case of proton-proton
collisions at the design LHC luminosity of 1034 cm-2s-1. A
rejection power of O(105) is require in order to reduce the
event rate from the 40 MHz LHC beam crossing to an
acceptable rate of O(100) Hz for physics analysis.

Online event-selection is done using two trigger levels: a
hardware-based first-level trigger and a software-based high-
level trigger (HLT). Fig. 1 shows the CMS Data Acquisition
(DAQ) [3] architecture. The system is designed to read out
event fragments of an average size of up to 2 kB from around
700 detector Front-Ends Drivers (FEDs) at a rate of 100 kHz.
For FEDs with smaller fragment size, the Frontend Readout
Link (FRL) reads out two FEDs and merges the fragments in
order to balance fragment sizes. Events are built in two stages:
FED Builder and RU Builder. The first stage is the FED
Builder and it receives ~500 event fragments coming from the
FRLs. Readout Units (RUs) of parallel RU Builder slices
assembles groups of 8 event fragments into super-fragments.
In each slice there are 72 RUs connected to the FED Builders,
which send the received data to the Builder Units. The Builder
Units (~125 for each slice) build and analyze the full events
and forward the selected events to mass storage. The DAQ is

T

Fig. 1. The CMS data acquisition architecture. Events are built in two stages: super-fragments are built in the Readout Unit (RU), full events are built in the
Builder Unit (BU). The BUs also run the high-level trigger software.

composed of few thousand hosts [4][5] and of O(20000)
interdependent applications.

The online applications are based on the XDAQ [6]
framework that is a software platform designed specifically
for the development of distributed data acquisition systems.
The framework is a software middleware that eases the tasks
of designing, programming and managing data acquisition
applications by providing a simple, consistent and integrated
distributed programming environment. XDAQ builds upon
industrial standards, open protocols and libraries.

Through the XDAQ software, CMS has successfully been
recording proton-proton collisions at a center-of-mass energy
of 7 TeV during 2010 and 2011 and at 8 TeV since the start of
2012. A long shutdown is planned from 2013 to September
2014 in order to upgrade the LHC machine for reaching the
luminosity of 2x 1034 cm-2s-1 at 25 ns or 50 ns bunch spacing.
During the long shutdown some CMS sub-detector front-end
electronics and readout systems will be upgraded, and a new
L1 trigger system will be deployed and operated in parallel to
the existing system. Aging of existing hardware (PCs and
networks at least 5 years old) and to accommodate sub-
detectors with upgraded off-detector electronics are the main
motivations for the upgrade of CMS DAQ system. The
upgrade plan for the DAQ system is to replace FED builder
and RU builder networks with more recent network
technologies. The DAQ team has started feasibility studies on
advanced networking technologies to identify the network
technology to use for the upgrade of the event builder
network. In the present paper we describe the architecture of
XDAQ, and the integration of RDMA-capable transports
within the framework by means of uDAPL, the User Direct

Access Programming Library [7]. We report on preliminary
results of the 10 Gigabit Ethernet (10 GbE) and 4x QDR
Infiniband performance tests.

II. XDAQ FRAMEWORK
The XDAQ distributed programming environment follows a

layered middleware approach [8], designed according to the
object-oriented model and implemented using the C++
programming language [9]. The distributed processing
infrastructure is made scalable by the ability to partition
applications into smaller functional units that can be
distributed over multiple processing units. In this scheme each
computing node runs a copy of an executive that can be
extended at run-time with binary plugin components. The
program exposes two types of interfaces: “core” and
“application”. The core interfaces lie between the middleware
and core plugin components, providing access to basic system
functionalities and communication hardware. Core plugins
manage basic system functions on behalf of the user
applications, including network access, memory management
and device access. The application interfaces provide access to
the various functions offered by the core plugins and are
placed between the middleware and the user application
components as shown in Fig. 2.

Middleware services include information dispatching to
applications, data transmission, exception handling facilities,
access to configuration parameters, and location lookup
(address resolution) of applications and services. Other system
services include locking, synchronization, task execution and
memory management. Applications communicate with each
other through the services provided by the executive according

to a peer-to-peer message-passing model. This allows each
application to act both as a client and a server.

Fig. 2. Middleware interfaces.

The general programming model follows the event driven

processing scheme [10] where an event is an occurrence
within the system. It can be an incoming message, an
interrupt, the completion of an instruction, like a direct
memory access transfer, or an exception. Messages are sent
asynchronously and trigger the activation of user-supplied
callback procedures when they arrive at the receiver side.
Every event therefore corresponds to a message that follows a
standardized format.

The event-based processing model has been chosen because
it is known to scale [13]. There is no need for a central place
in which the incoming data have to be interpreted completely.
It is the responsibility of each software component that listens
to a given type of event (e.g. data received, timeout) to decide
what it should do with the information received. Extensibility
is thus achieved through the decoupling of the reception of a
message and its processing. The procedure for a given
message can be provided dynamically during run-time by
downloading a software module that contains all code to react
to an incoming message of a given type. Furthermore it is
possible to add new functionality by defining new messages.
The system provides a default procedure if for a given event
no executable function has been supplied. This model results
in a homogeneous structure of software components with an
intrinsic fault-tolerant behavior.

The software distribution comes with two ready to use
communication protocols. One is based on the I2O
specification [11] used for efficient and high performance data
transmission, and the other on SOAP and XML [12] used for
configuration purposes.

A. Memory Management
The executive program provides applications with efficient

memory management facilities. These are based on a scheme
called “buffer-loaning” which avoids fragmentation of
memory over long run periods and presents a safe operation
model that prevents extensive growth of memory
consumption. With the buffer-loaning scheme, applications or
core-plugins ask the executive for fixed-sized chunks of
memory from one of various buffer pools. The principle is
displayed graphically in Fig. 3.

Fig. 3. Illustration of the buffer-loaning mechanism. A task loans a
reference to an unused buffer that matches the closest requested data size from
a buffer pool (step 1). The buffer can be passed to another task by forwarding
the buffer reference (step 2) without copying the data. The buffer is released
to the pool by destroying the buffer reference (step 3). It can now be re-
allocated to another task.

The executive manages various types of pools, including
ordinary user-space memory, a reserved amount of physical
memory (e.g. the Linux “bigphys” kernel extension) and
memory on network cards. The pools can be configured such
that exceptions are raised if too little memory is available. All
memory buffers are allocated from the available pool and are
accessible through a reference that can be further lent to other
software components.

Fig. 4. The toolbox::mem::Reference structure is the primary vehicle

through which XDAQ applications access or pass the data that resides in a
memory pools established by the communicating applications.

The executive routines deal with data in terms of memory
buffer references toolbox::mem::References and abstract
memory buffers toolbox::mem::Buffer for various kinds of
memories (see Fig. 4).

Fig. 5. I2O frame memory blocks.

Core
plug-in

Core
interfaces

Application
interfaces

Application
plug-in

Middleware
executive

Buffer pool

Buffer
reference

Task A Task B

Step 1 Step 2 Step 3

For example, a user application prepares a message and
passes it on to a transport component that handles the network
transmission. Eventually, the buffer must be returned to its
pool. Built-in reference counting ensures that a buffer is not
returned into its originating pool before the very last user has
released it.

XDAQ uses the toolbox::mem::Reference and the
toolbox::mem::Buffer structures to track information
necessary to manage the data in the I2O frames (see Fig. 5). A
much more detailed description of I2O protocol and data
format can be found in section II.C.

Fig. 6. Chaining is one of the toolbox::mem::Reference feature. This lets

XDAQ applications pass an arbitrarily large amount of data by passing the
toolbox::mem::Reference at the head of a toolbox::mem::Reference chain.

Various buffers can be chained together to allow arbitrarily
sized data (see Fig. 6). The mechanism not only enables
efficient zero-copy implementations, but also provides the
foundation for transparent operation across network
boundaries. Various high-speed interconnects and custom built
electronics rely on non-standard memory models, that would
otherwise require the instrumentation of user programs with
special instructions. Buffer pools can be added to the
executive to offer specific allocation through an interface that
is common to all memory types.

B. Data Transmission

A message between two endpoints that are located on two
different hosts might need to travel through a media. To
determine how a message should be sent between two
endpoints, a mechanism is required to allow a peer to discover
the route information. The XDAQ framework provides peers
with a mechanism for determining a route to an endpoint,
allowing the peer to send data to the remote endpoint. Peer
transports (see Fig. 7) are the entity responsible for conducting
the actual exchange of information over a network. Peer
transport encapsulate a set of network interfaces, allowing a
peer to send and receiver data independently of the type of
network being employed.

Communication between ordinary applications is
accomplished by means of an executive function. This
function, when invoked, re-directs the outgoing message to the
proper peer-transport that in turn delivers the data over the
associated medium. In this way the framework is independent
of any transport protocol or network and can be extended at

any time to accommodate newly appearing communication
technologies.

Fig. 7. Communication over multiple networks through peer-transports.

XDAQ offers two simple ways to send and receive
messages: the Application Context Services and the Peer
Transport Agent services. The Application Context Services
are simply convenient wrappers for sending and receiving
messages using a peer transport. A Peer Transport is an
interface to a set of network transports that allows data to be
sent across the network. Details on how data is to be formatted
for transport across the network is the responsibility of a
particular peer transport implementation.

C. I2O Protocol and Data Format
The framework supports the exchange of messages using

the I2O binary data format. I2O (Intelligent Input Output) is
originally a specification for an I/O architecture developed by
a consortium of computer companies called the I2O special
Interest Group (SIG). I2O is designed to eliminate I/O
bottlenecks by utilizing special I/O processors (IOPs). In
particular, I2O was also designed to facilitate intelligent I/O
subsystems, with support for message-passing between
multiple independent processors. This concept includes
therefore a communication scheme for the data exchange
among devices with processing capabilities namely Peer-to-
Peer message passing. The I2O Peer to Peer message passing
as supported in XDAQ relies on three key properties:

• Independence of the used transport protocol;
• Asynchronous communication in connection with a

callback engine;
• A common data format for all messages.

 I2O messages are datagrams with a maximum size of 256
kB. For sizes larger than this maximum, the data have to be
split and sent in a sequence of multiple frames. The common
data format, as outlined in Fig. 8, encapsulates the destination
identifier of the application that shall receive the message. The
callback function that is invoked upon receive can be one of
the standard I2O functions (Number is field Function ID), or a
user supplied callback (Function ID = 0xFF and the extended
header contains a numeric identifier in XFunction). The
message also contains the sender identifier, the originator.
Any user data can be inserted into the message after the
extended header.

Fig. 8. I2O header format.

I2O messages are declared as C structures and are therefore
statically defined at compile time. Any modification of the
message structure requires the adaptation of the sender and the
receiver, respectively. I2O defines, that the ordering of bytes
on the network is Little Endian, aligned to 32 or 64 bit
boundaries.

Fig. 9. The interaction of the layers in XDAQ framework.

 XDAQ performs the necessary conversion for the message
header if messages are exchanged between machines of
different native byte ordering. Asynchronous communication
means that the sender will not block on waiting for successful
reception of the message at the receiver side.
 I2O is used as an application level protocol (see Fig. 9). I2O
frames as shown above can be exchanged among XDAQ
applications over several different transport protocols. The
choice of communication protocol is made at configuration
time through the selection of loadable peer-transport
components, which implement the network dependent
communication mechanisms. Thus, the application code
remains invariant with respect to the various network
technologies. This interface implements a buffer-loaning
scheme where memory segments are exchanged among all
components within the framework. With all the above
mechanisms, it is therefore possible to confine data
transmission for input and output to pure DMA operations and
pointer arithmetics.

III. DAPL INTEGRATION
 In the last years, as the network speed has increased toward
100 gigabits per second, the CPU must spend more time
working to service the network. To process network requests
for the de facto networking standard, TCP/IP, the processor
must dedicate a large number of cycles and resources to data

transfers. To avoid this problem, technology such as
Infiniband [19], iWARP [20], and RDMA over Converged
Ethernet (RoCE) [21] have been developed that not only allow
for a very fast interconnect, but also provide a mechanism
known as Remote Direct Memory Access (RDMA) [22] to
bypass the operating system and CPU in order to directly
move data into application memory.
 The OpenFabrics Alliance (OFA) [23] develops, tests,
licenses, supports and distributes OpenFabrics Enterprise
Distribution (OFED™) [24] open source software to deliver
high-efficiency computing, wire-speed messaging, ultra-low
microsecond latencies and fast I/O. The goal of the
OpenFabrics Alliance is to deliver a unified, cross-platform,
transport-independent software stack for RDMA and kernel
bypass. Transport independence means that users can utilize
the same OpenFabrics RDMA and kernel bypass API and run
their applications agnostically over Infiniband, iWARP or
RoCE. The OFED is the software on the host that coordinates
user-space and kernel-space access to the Infiniband or
Ethernet hardware.

 Fig. 10. The OFED Stack (source: OpenFabrics Alliance)

 As shown Fig. 10, the OFED stack consists of many
different components. These components can be categorized
as kernel modules (drivers) and user/system libraries and
utilities, commands and daemons for Infiniband or Ethernet
administration, configuration, and diagnostics. The Direct
Access Programming Library (DAPL) [25] developed by DAT
collaborative is a distributed messaging technology that is
both hardware-independent and compatible with current
network interconnects. The architecture provides an API that
can be utilized to provide high-speed and low-latency
communications among peers in clustered applications. The
DAT Collaborative’s goal is to define the interface between
uDAPL Provider (DAT-compliant Interface Adapter driver)
and DAT Consumer (Application). As shown in Fig. 11,
uDAPL defines the API for the kernel level when uDAPL
Provider is within OS and below, while DAPL defines the API
for the user level when DAT Consumer is completely within
application space. Each Interface Adapter is controlled by
exactly one uDAPL Provider. Each uDAPL Provider can
control multiple Interface Adapters. There can be multiple

DAT Providers controlling disjoint sets of Interface Adapters
on a host.

 Fig. 11. DAT User Architecture Model. The diagram shows the DAT
kernel API architecture model, including uDAPL Consumer, uDAPL
Provider, OS, and Interface Adapter.

 A new peer transport (ptuDAPL) has been implemented for
DAT library using I2O messaging protocol and based on DAT
Specification 2.0 [26].

 Fig. 12. ptuDAPL integration with XDAQ framework.

It uses smart memory pool based on uDAPL memory region
allocator, and the random access to memory with no
intermediate management is performed using cookies. All I/O
operations are centered on dedicated uDAPL memory pool
that allows a full zero-copy between XDAQ applications and
DAPL driver. The API is optimized to minimize the latency
profiting for inherent non-blocking and queuing of uDAPL.
As shown in Fig. 12, the ptuDAPL can be integrated in the
XDAQ framework without change of application code.

IV. CLUSTER SETUP
 To perform benchmark evaluation of the new peer transport
ptuDAPL, we used a small cluster. The setup consisted in 8
nodes of DELL PowerEdge R710 with dual sockets Intel Xeon
E5530 4-core at 2.27 GHz and 3GB of memory. The operating
system running on the nodes was Scientific Linux CERN 5
(SLC5) with the 2.6.18-164.6.1.el5 kernel. Each node was
equipped with an Infiniband Host Channel Adapter (HCA)
supporting 4x Quad Data Rate (QDR) connections with data
rate of 32Gbps (Qlogic HCA, qle7340 4x QDR PCIe), and
iWARP adapter at 10 GbE (Chelsio T420-CR 10GBASE-SFP
RNIC). Each node was connected with an Infiniband switch

(Qlogic 12300-BS01- 4x QDR) and 10 GbE switch (Voltaire
Vantage 6048).

V. BENCHMARKS
 To evaluate the different network technologies we have
done three different benchmarks:

• Latency of sending a packet between two nodes using
ptuDAPL to measure the overhead of the XDAQ
framework;

• Measurement of the maximum throughput per node
between one node to more nodes with a multi-
streams of I/O data;

• Measurement of the maximum throughput per node
between N nodes to N nodes with event builder
software.

A. Latency Measurements
 We developed a XDAQ application called roundtrip to
measurement the latency of sending a package between two
nodes. A time packet is travelling from a specific source to a
specific destination and back again; one-way latency is
measured by timing a round-trip message and dividing the
obtained result by two (see Fig. 13).

 Fig. 13. Diagram of latency factors.

 Fig. 14. Latency in us versus fragment size in Bytes for Infiniband - 4x
QDR - Qlogic (blue points) and Ethernet - iWARP - Chelsio (red points). The
series with latency and fragment size correspond to log normal distributions.

 Fig. 14 shows the latency for sending a package with
different fragment size using ptuDALP over Infiniband (4x

QDR) and Ethernet (iWARP). For a packet of 32 Bytes the
overhead of XDAQ framework is less then 1 us for both
network technologies.

B. Maximum Throughput per Node with Stream of I/O Data
 In order to calculate the maximum throughput per node we
implemented a XDAQ application (Multi-Stream I/O) to send
multiple streams I/O data from one source to many
destinations. As shown in Fig. 15, throughput per node is
measured sending continuously N messages to N receivers and
time sampling is done at the receiver’s side.

 Fig. 15. Diagram of the multi-stream I/O application.

 Fig. 16.Throughput per node in MB/s using multi-stream I/O application
versus fragment size in Bytes for uDAPL/iWARP (blue line) and TCP/IP (red
line). The series fragment size corresponds to log normal distributions.

 A configuration with one sender and four receivers has been
tested using uDAPL/iWARP versus TCP/IP. The throughput
per node as a function of fragment size is shown in Fig. 16. In
the case of uDAPL/iWARP, it reaches a plateau of about 1200
MB/s for packet sizes above 3 kB with an efficiency close to
100%. The performance for TCP/IP, is also shown in Fig. 16,
and it can be seen that the throughput per node is less than
uDAPL/iWARP with a considerable difference for small
fragments, as expected for the cost of TCP/IP stack.

C. Maximum Throughput per Node with Event Builder
 To perform the maximum throughput per node with the
event builder application we used the CMS RU-Builder [28]
software in emulation mode. RUs generate the event fragment
data and BUs discard the event data once an event is fully
assembled. The L1 trigger is not emulated and all
measurements correspond to the saturation limit. Fig. 17
shows the event builder protocol. With free capacity available,
a BU requests the EVM to allocate it an event (step 1). The
EVM confirms the allocation by sending the BU the event ID
and trigger data of an event (step 2). This trigger data is the
first super-fragment of the event. The BU now requests the
RUs to send it the rest of the event’s super-fragments (step 3).
The BU builds the super-fragments it receives from the RUs
(step 4) into a whole event within its resource table (step 5).
FUs can ask a BU to allocate them events (step 6). A BU
services a FU request by sending the FU a whole event (step
7). When a FU has finished with an event, it tells the BU to
discard it (step 8).

Fig. 17. Event builder protocol.

 Fig. 18. Throughput per node in MB/s using event builder application
versus fragment size in Bytes for uDAPL/IB (blue line) and TCP/IPoIB (red
line). The series fragment size corresponds to log normal distributions.

 An event builder configuration with an EVM, 3 RUs and 3
BUs has been tested using uDAPL/IB versus TCP/IPoIB (4x
QDR). The throughput per node as a function of fragment size
is shown in Fig. 18. In the case of uDAPL/IB, it reaches a
plateau of about 2 GB/s for sizes above 20 kB with an
efficiency ~ 55%. The efficiency of Input-Queued Switches
with random traffic (no traffic shaping) is ε=2-√2 ≈ 0.59 for N
→ ∞ [27]. The performance for TCP/IPoIB is very low
compered to uDAPL/IB.

VI. SUMMARY
 In this paper we have shown the XDAQ architecture and the
integration of RDMA-capable transports within the framework
by means of uDAPL. The new ptuDAPL provides a protocol-
independent communication framework and avoids any
potential problem when the underlying communication
infrastructure changes. The preliminary tests have given
interesting results: uDAPL/iWARP over 10 GbE shows a
better throughput per node for small fragment sizes as
compared to the traditional TCP/IP stack on the host, in
Infiniband we saw that the TCP/IPoIB gives only ~ 12 % of
efficiency.
 To continue our feasibility studies for the CMS event
builder we need a bigger cluster to check the scalability. We
are setting up a new system with 32 nodes of DELL
PowerEdge C6220 with dual sockets Xeon E5-2670 8-core at
2.6 GHz and 32GB of memory. Each node is equipped with a
Mellanox - ConnectX-3 VPI adapter (MCX353A-FCBT)
supporting 4x Fourteen Data Rate (FDR) connections with
data rate of 54.4 Gbps and 40 GbE. Using the new setup we
can perform scalability tests, try to improve the Infiniband
efficiency using the Quality of Service and test RoCE
technology.

ACKNOWLEDGMENT
This work was supported in part by the DOE and NSF (USA)
and the Marie Curie Program.

REFERENCES
[1] The CMS Collaboration, The Compact Muon Solenoid Technical

Proposal, CERN/LHCC94-38 (1994)
[2] The LHC Study Group, The Large Hadron Collider Conceptual Design

Report, CERN/AC95-05 (1995).
[3] The CMS Collaboration, The Trigger and Data Aquisition project,

CERN/LHCC 2002-26, 15 December 2002.
[4] Antchev G et al 2001, The Data Acquisition System for the CMS

Experiment at LHC in Proc. 7th Intl. Conf. Adv. Tech. and Particle
Phys. Villa Olmo, Como, Italy (Oct. 15-19, 2001) World Scientific
Publishers (ISBN 981-238-180-5)

[5] Bauer G et al 2008 CMS DAQ Event Builder Based on Gigabit Ethernet
IEEE Trans. Nucl. Sci. 55(1) 198-202

[6] Bauer G et al., “The CMS data acquisition system software,” J. Phys.:
Conf. Ser. 219 022011,2010

[7] User-Level Direct Access Transport APIs (uDAPL),
http://www.datcollaborative.org/udapl.html

[8] P. Bernstein, “Middleware: A Model for Distributed Systems Services”,
Communications of the ACM, 39 (1996) 86.

[9] J. Gutleber and L. Orsini, “Software Architecture for Processing
Clusters Based on I2O”, Cluster Computing 5(1):55-65, Kluwer
Academic Publishers, 2002.

[10] B.N. Bershad et al.,”Extensibility, Safety and Performance in the SPIN
Operating System”, in Proceedings of the Fifteenth ACM Symposium
on Operating System Principles, pp. 267-284, 1995.

[11] I2O Special Interest Group, Intelligent I/O (I2O) Architecture
Specification v2.0, 1999, at http://www.intelligent-io.com

[12] J. Boyer, “Canonical XML Version 1.0, W3C Recommendation 15
March 2001”, http://www.w3.org/TR/xml-c14n

[13] P. Pardyak and B.N. Bershad, “Dynamic binding for an extensible
system”, in Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation, 1996, pp. 201-212.

[14] D. Box et al.,” Simple Object Access Protocol (SOAP) 1.1, W3C Note
08 May 2000”, http://www.w3.org/TR/SOAP

[15] R. Fielding et al.,”Hypertext Transfer Protocol - HTTP /1.1”, IETF RFC
2616, June 1999, http://www.w3.org/Protocols/rfc2616/rfc2616.html

[16] G. Glass, ”Web Services: building blocks for distributed systems”,
Prentice Hall, 2002.

[17] “Java API for XML Messaging (JAXM) Specification v1.0”, Sun
Microsystems, 901 San Antonio Road, Palo Alto, California 94303,
USA, October 2001.

[18] A. Le Hors et al.,”Document Object Model (DOM) Level 3 Core
Specification, Version 1.0, W3C Working Draft 13, September 2001”,
http://www.w3.org/TR/2001/WD-DOM-Level-3-Core-20010913

[19] InfiniBand Architecture Specification, InfiniBand Trade Association,
October 2004. URL http://www.infinibandta.org/specs/

[20] H. Shah et al. (October 2007). "Direct Data Placement over Reliable
Transports". RFC 5041. http://tools.ietf.org/html/rfc5041

[21] InfiniBand Trade Association, InfiniBand™ Architecture Specification
Release 1.2.1 Annex A16: RoCE, InfiniBand Trade Association, April
2010.
http://members.infinibandta.org/kwspub/spec/Annex_RoCE_final.pdf

[22] Jeff Hilland, Paul Culley, Jim Pinkerton, and Renato Recio. RDMA
Protocol Verbs Specification, April 2003.
http://www.rdmaconsortium.org/home/draft-hilland-iWARP-verbs-v1.0-
RDMAC.pdf

[23] OpenFabrics Alliance, www.openfabrics.org/
[24] OpenFabrics Enterprise Distribution (OFED™),

https://www.openfabrics.org/ofed-for-linux-ofed-for-windows/ofed-
overview.html

[25] Direct Access Programming Library (DAPL),
http://www.datcollaborative.org/

[26] uDAPL API Spec Version 2.0,
http://www.datcollaborative.org/uDAPL_v20.zip

[27] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, "Input Versus Output
Queueing on a. Space-Division Packet Switch," IEEE Transactions on
Communications, vol. 2, pp. 277-287, 1989.

[28] G. Bauer et al., The CMS event builder and storage system, 17th
International Conference on Computing in High Energy and Nuclear
Physics (CHEP 09), DOI: 10.1088/1742-6596/219/2/022038

