CMS CR -2012/119

Available on CMS information server

W\\ The Compact Muon Solenoid Experiment

C S\ CERN
—~— Conference Report

X \\
)
AN | Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

29 May 2012 (v2, 13 June 2012)

Alert Messaging in the CMS Distributed Workflow
System

Zdenek Maxa for the CMS Collaboration

Abstract

WDMAgent is the core component of the CMS workload management system. One of the features of
this job managing platform is a configurable messaging system aimed at generating, distributing and
processing alerts: short messages describing a given alert-worthy informational or pathological con-
dition. Apart from the framework’s sub-components running within the WMAgent instances, there is
a stand-alone application collecting alerts from all WMAgent instances running across the CMS dis-
tributed computing environment. The alert framework has a versatile design that allows for receiving
alert messages also from other CMS production applications, such as PhEDEx data transfer manager.
We present implementation details of the system, including its python implementation using ZeroMQ,
CouchDB message storage and future visions as well as operational experiences. Inter-operation with
monitoring platforms such as Dashboard or Lemon is described.

Presented at CHEP 2012: International Conference on Computing in High Energy and Nuclear Physics



Alert Messaging in the CMS Distributed Workflow
System

Zdenek Maxa!
! California Institute of Technology, Pasadena, California, USA

E-mail: zdenek.maxa®hep.caltech.edu

Abstract. WMAgent is the core component of the CMS workload management system. One
of the features of this job managing platform is a configurable messaging system aimed at
generating, distributing and processing alerts: short messages describing a given alert-worthy
information or pathological condition. Apart from the framework’s sub-components running
within the WMAgent instances, there is a stand-alone application collecting alerts from all
WDMAgent instances running across the CMS distributed computing environment. The alert
framework has a versatile design that allows for receiving alert messages also from other CMS
production applications, such as PhEDEx data transfer manager. We present implementation
details of the system, including its Python implementation using ZeroMQ, CouchDB message
storage and future visions as well as operational experiences. Inter-operation with monitoring
platforms such as Dashboard or Lemon is described.

1. Motivation

The efficiency of any large-scale distributed computing platform relies heavily on its ability to
either respond to monitoring requests or to propagate information about its internal status
to monitoring facilities. The presented Alerts framework is a messaging feature designed
for the CERN LHC/CMS (Compact Muon Solenoid) [1] distributed Workload Manager -
WMAgent [2], [13]. The main goal is to provide a messaging infrastructure for Alerts originating
from so called alert-worthy situations or conditions. These situations are considered to have some
adverse effect on an overall WMAgent job throughput and work efficiency needed to be known
to Operators in a timely fashion and shall be instrumental during troubleshooting.

2. Introduction
The presented messaging framework consists from (going from the transport network layer
upward):
e ZMQ [3] messaging library - TCP socket transport library with tens of language-specific
bindings!,
e Alert framework specific components of WMAgent,
o AlertCollector - central store and visualisation application for the Alerts framework?.

! The implementation language of WMAgent is Python which determines the ZMQ library binding.

2 The AlertCollector has been deployed within the CMS grid environment already. However, it only runs within
the WMAgent instances and its migration behind CMS web, in order to become a central Alert collecting
component, is the subject of the current development.



Like other projects within the scope of the CMS DMWM (Data Management Workload
Management) [4] set of projects, of which WMAgent is one, there is a significant utilisation of
the NoSQL CouchDB [5] database system. An implementation approach called Couchapp is
used in the AlertCollector application which is discussed later. Couchapp [6] is a concept of
executing an application, usually implemented in JavaScript, directly by the database server.

3. Alert framework design and implementation

Figure 1 displays the main blocks of the system hosted under a common WMAgent instance.
The AlertGenerator and AlertProcessor components are central in the Alert framework
implementation. Both of them are components® of WMAgent like other blocks in the two upper
rows of the diagram.

components of the Alerts nessaging framevork

and other
WMAgent components

JobCreator JobTracker PhEDExInjector senger
Sender Sender Sender _
Alertea. . _
Mert
WMAgent
component
TaskArchiver WorkQueueManager ErrorHandler AlertGenerator P
Sender Sender Sender Sender
Blert Mlert Alert
Alert
w

A" Receiver Z4

Processor
WMAgent component

AlertProcessor

Mert Alert Hlert Mert Hlert

- - r TN -~

Couchink RESTSnk FileSink EnailSink ForvardSink

Sender

WMAgent instance

Figure 1. Overview of the Alert framework design within the WMAgent.

An Alert instance is derived from a Python dictionary containing information on the cause(s)
of the alert or a JSON message [7] into which an Alert is converted before dispatching to network
and later storing into various Sinks. In other words, an Alert instance can be present in the
system in either format depending on the stage of the distribution chain.

3.1. Alert message example

As shown in the later example, an Alert defines Level parameter which carries the alert severity
information. Generally, there are two types of alert severity - soft and critical®. Just like any-
thing else about the Alerts system including Alert Sinks or Pollers (which are both discussed
later), soft, as well as critical Alert severity association, can be configured in the WMAgent
config file.

3 WMAgent component means a daemon service out of which WMAgent consists.
4 The philosophy is analogous to Unix soft, hard disk space quota.



An example of an Alert (JSON) encoded message®:

{... "Workload":"n/a", "Level":5, "TeamName":"mc",
"Source": "ComponentsCPUPoller",
"Details":

{"numChildrenProcesses":0,"average":"76.27%",

"component": "WorkQueueManager",

"period":30, "threshold":"60%", "numMeasurements":3, "pid":18009},
"Type":"WMAgent", "Timestamp":1328715746.41,
"HostName" :"vocms888.cern.ch",
"Component":"AlertGenerator", "AgentName":"WMAgentCommissioning"}

Figure 2. Example of an Alert message.

Interpretation:

e Alert was generated by the ComponentsCPUPoller, a poller which periodically checks
CPU utilisation of all daemon components of WMAgent,

e Alert severity 5 (depending on the particular WMAgent configuration, this can be a soft or
critical alert message),

e WMAgent’s component WorkQueueManager exceeded threshold of 60% on CPU
utilisation over a period of 30s, during these 30s period, there were 3 measurements
resulting into 76.27% average value,

¢ WorkQueueManager component runs under PID 18009 and this process has no child
processes. Otherwise, they would also be polled for their CPU utilisation and evaluation
would be done against their total sum.

The remaining items of the Alert message are self-explanatory.

3.2. AlertGenerator

A daemon component of WMAgent whose main duty is to maintain a set of configurable Pollers.
A poller is an independent unit checking a particular metric of interest. From the implementation
point of view, a poller is a thread which performs its check with a configurable frequency. The
evaluation of a particular metric may be based on an one-off evaluation (i.e. an alert is generated
immediately if the soft or the critical threshold is exceeded). Or the evaluation can be made
over a given period of time - as in the above example. In this case an average value resulting
from a configurable number of measurements over a configurable period of time is compared
with soft and critical thresholds. The thresholds are usually defined as a percentage of some
total (e.g. percentage of 100% CPU utilisation) or certain particular value (e.g. N GB of disk
space for MySQL database).

3.3. Pollers
The list of currently implemented pollers and explanation of their function:

e CPUPoller - checks overall CPU utilisation of the machine [percentage],

e MemoryPoller - checks overall memory utilisation of the machine, the aim is to trigger
notification when the machine starts swapping [percentage],

5 Real Alert messages include also details like purpose and name of the WM Agent instance and operator’s contact
details.



e DiskSpacePoller - checks free disks space, if any of the partitions listed by the Unix command
df exceeds a threshold, an Alert is generated [percentage],

e ComponentsCPUPoller - checks per WMAgent’s component CPU utilisation (uses
ProcessCPUPoller) [percentage],

e ComponentsMemoryPoller - checks per WMAgent’s component memory utilisation (uses
ProcessMemoryPoller) [percentage],

e MySQLCPUPoller - checks MySQL database processes CPU utilisation (uses Process-
CPUPoller) [percentage,

e MySQLMemoryPoller - checks MySQL database processes memory utilisation (uses
ProcessMemoryPoller) [percentage],

e MySQLDbSizePoller - checks size of the MySQL data directory [gigabytes],
e CouchDbSizePoller - checks size of the CouchDB data directory [gigabytes],

e CouchCPUPoller - checks CouchDB database processes CPU utilisation (uses Process-
CPUPoller) [percentage],

e CouchMemoryPoller - checks CouchDB database proceses memory utilisation (uses
ProcessMemoryPoller) [percentage],

e CouchErrorsPoller - checks ocurrences of the CouchDB database HTTP code responses [8]°
number of occurrences.

The aforementioned ProcessCPUPoller and ProcessMemoryPoller take as input the base
process PID number and perform checks also over all subprocesses so the resulting value of
CPU utilisation and memory utilisation, respectively, is the relevant sum.

The modular design of the poller harness implementation allows for an easy implementation
of other interesting metrics.

3.4. Other Alert sources
Besides AlertGenerator-maintained set of pollers, the other sources of Alert messages are various
conditions in other components (usually exception handlers and alike).

For a WMAgent developer, it is very trivial to initialise Alert Sender by a single statement
and then use the created send Alert() method whenever there is a need to propagate information
on an alert-worthy situation in the code flow.

3.5. AlertProcessor
This is another major block of the Alert framework which is also a daemon component of
WDMAgent. It consists of the following subcomponents:

e Receiver - Zero MQ [3] message receiver,

e Processor - maintains a set of configurable Sinks.

3.5.1. Sinks A sink is a target to which Alert messages received by the Receiver instance are
eventually stored by the Processor instance. The logic of Processor is very simple: it checks
whether an Alert according to its Level parameter is of soft or critical kind. Finally, an Alert is
sent to all sinks which the AlertProcessor has been configured” to maintain. Practically, there
is a pair for each kind of sink for soft and critical Alerts. The only difference is that soft sinks

6 In a typical configuration this poller would watch over number of 500 status responses (internal application
crash) or 404 status responses (document not found, non-existing URL). This poller takes an advantage of
CouchDB exposing this kind of statistics on its _stats URL handler.

7 In the WMAgent configuration file.



are buffered whereas critical Alerts are directed to critical sinks and sent off straight away.

The currently implemented sinks include:

e CouchSink - Alerts are stored into the WMAgent’s local CouchDB instance®,

e RESTSink - this has been intended as a generic REST client interface for a REST server.
The CouchDB server features a REST interface as well and this sink basically is just another
database within the local CouchDB instance. Its main point is later replication to a central
CouchDB store - the AlertCollector,

e FileSink - a pair (soft, critical) of flat text files into which JSON-formatted Alert instances

are stored,
e EmailSink - email account to which plain-text JSON-formatted Alert messages are sent,
e ForwardSink - implemented for the envisioned possibility to chain AlertProcessor

components - to forward Alerts to another AlertProcessor. The feature is not used in
the current production.

3.6. AlertCollector

This the last major component of the Alert framework. AlertCollector is a CouchDB database
instance equipped with applications (couchapps) [6] for visualisation. It is foreseen to generate
various statistics-based Alerts in the AlertCollector which will be forwarded to higher-level
CERN/CMS computing monitoring facilities such as Lemon [9], SLS [10] or Dashboard [15].

alerts from WMAgents'
local CouchDB via replication

AlertCollector

¥ Y r Y
a4 i 0 9
'é .Ei REST interface 0 %
. g
= @ CMS web central - <
0 ¢} , 3
4 E CouchDB instance @ 8
A =

Y Y

Figure 3. AlertCollector and its main sub-blocks including a screenshot of the Alert
visualisation application.

Figure 3 shows a schema of the AlertCollector component. The visualisation application
allows for browsing and filtering the content of the AlertCollector database in the web browser
in user-friendly way.

The implementation of the AlertCollector (excluding the statistics-based Alert generation)
is finished, but the deployment to the central CMS CouchDB database instance running on the
CMS web server [11] is the subject of the current development effort.

The AlertCollector has been developed on the local WMAgent CouchDB instance and the
main step in the CMS web migration requires to set up databases with continuous replication
between the local and central instance.

8 Each instance of WMAgent runs with both MySQL and CouchDB databases.



4. Conclusion and outlook

The described system is currently deployed on parts of the CMS data operations production in
the grid environment running WMAgent workload managers. The grid site efficiency translates
directly into WMAgents’ efficiency and their job throughput. The Alerts system is expected to
present significant contribution in terms of informing the Operators about efficiency degrading
conditions. During the time of submitting the abstract for the CHEP 2012 conference, it was
envisaged that the Alerts system would become an integral part of Operators’ set of tools and
sensors by the time of the conference. This level of adoption is yet to come.

Implementation-wise, the Alert framework is mostly independent on the WMAgent itself,
although the two are very well integrated. As the framework is very versatile and configurable,
it depends on the WMAgent Configuration store and both AlertGenerator and AlertProcessor
components take advantage of a so called Harness which is a general system daemon wrapper.
This means that the Alert system can be easily integrated into any larger-scale software project
requiring internal Alert messaging facility. The Alerts framework has been developed with over
90% unittest coverage and is subject to builds on the CMS/DMWM Continuous Integration
Jenkins [12] server.

The current development effort has been minimized into AlertCollector CMS web deployment
and further implementation will be dependent on the degree of adoption of the Alerts framework
by the CMS data operations team.

Future integration with other CMS/DMWM projects counts upon mainly RequestMan-
ager [13] and PhEDEx [14].

Acknowledgments
This work was supported by the US CMS Operations Program funded by the US Department
of Energy.

References

] CERN LHC/CMS - Compact Muon Solenoid experiment http://cms.cern.ch

] CMS Workload Management platform - WMAgent https://twiki.cern.ch/twiki/bin/view/CMS/WMAgent
| ZMQ - Zero Message Queue messaging library http://www.zeromq.org

] CMS DMWM - Data Management and Workload Management https://svnweb.cern.ch/trac/CMSDMWM

] CouchDB - NoSQL document-based database http://couchdb.apache.org

] Couchapp - application within CouchDB database http://couchapp.org/page/what-is-couchapp

] JSON - JavaScript Object Notation http://www.json.org

] HTTP status response codes http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

| Lemon - LHC Era Monitoring - CERN-IT monitoring system http://lemon.cern.ch

0] SLS - Service Level Status - CERN-IT monitoring system http://sls.cern.ch

1] CMS web, central CMS CouchDB instance https://cmsweb. cern.ch/couchdb

2] Jenkins - open source Continuous Integration server http://jenkins-ci.org

3] Stuart Wakefield - The CMS workload management system CHEP 2012, New York, USA

4] From toolkit to framework the past and future evolution of PhEDEx, poster 188 CHEP 2012, New York, USA
5] CERN Dashboard monitoring http://dashboard.cern.ch



