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Abstract

We compare the physics potential of two representative options for a SuperBeam in Europe,

studying the achievable precision at 1σ with which the CP violation phase (δ) could be measured,

as well as the mass hierarchy and CP violation discovery potentials. The first setup corresponds to

a high energy beam aiming from CERN to a 100 kt liquid argon detector placed at the Pyhäsalmi

mine (2300 km), one of the LAGUNA candidate sites. The second setup corresponds to a much

lower energy beam, aiming from CERN to a 500 kt water Čerenkov detector placed at the Gran

Sasso underground laboratory (730 km). This second option is also studied for a baseline of 650

km, corresponding to the LAGUNA candidate sites of Umbria and the Canfranc underground

laboratory. All results are presented also for scenarios with statistics lowered by factors of 2, 4, 8

and 16 to study the possible reductions of flux, detector mass or running time allowed by the large

value of θ13 recently measured.
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I. INTRODUCTION

Daya Bay [1] and RENO [2] have recently confirmed the previous hints from T2K [3],

MINOS [4], Double-CHOOZ [5] and the interplay between solar and KamLAND data [6,

7] with the discovery of a large value of θ13 which saturates previous upper bounds [8].

Recent global fits [9, 10] give a best fit for θ13 between sin2 θ13 = 0.024 and 0.027 (with

the larger values for an inverted hierarchy) and a 1σ error close to a 10%. Such a large

value opens the window to fundamental measurements such as the existence of leptonic CP

violation and the neutrino mass hierarchy, critical for a comparison with double neutrinoless

beta decay searches probing the Majorana nature of the neutrino fields. The value of θ13

currently favoured would allow these searches to be performed at relatively modest upgrades

of conventional neutrino beams to SuperBeam setups, characterized with a beam power close

to (or above) 1 MW. In this work we will explore and compare the physics potential and

performance of two representative setups for a European SuperBeam experiment with a

neutrino flux produced at the CERN accelerator complex.

Seven possible detector sites have been studied within the LAGUNA [11] project: Fréjus

(France), Canfranc (Spain), Umbria (Italy), Sierozsowice (Poland), Boulby (UK), Slanic

(Romania) and Pyhäsalmi (Finland). In addition there is the Gran Sasso (Italy) under-

ground laboratory, which presently hosts the CNGS [12] physics program and is studying

the only existing neutrino beam in Europe. Here we will concentrate in two extreme se-

tups: the longest possible baseline of 2300 km corresponding to the distance from CERN

to Pyhäsalmi, and a shorter baseline of 730 km which corresponds to the present beamline

between CERN to Gran Sasso. We will also discuss the physics performance of alternative

LAGUNA sites with similar baselines to Gran Sasso such as Canfranc (650 km) or Umbria

(665 km).

An even shorter baseline of 130 km matching the CERN to Fréjus distance has also been

extensively studied [13–19]. The low energies needed to match this short baseline imply

correspondingly low cross sections and, typically, less statistics than other setups. If a high

beam power around 4 MW is achievable in order to compensate the reduced cross section

at these energies, this setup would provide an excellent sensitivity to leptonic CP violation,

given the negligible matter effects that could mimic its presence. However, the small matter

effects also imply no sensitivity to the mass hierarchy from the study of the oscillations
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of the neutrino beam alone, although some sensitivity can be gained in combination with

atmospheric neutrino oscillations at the same detector [18, 20]. For the large values of

θ13 currently favoured, an even more attractive option implies the observation of this low

energy beam at its second oscillation peak, which would increase the CP violation discovery

potential as well as the determination of the mass hierarchy, at a ∼ 650 km baseline [21].

However, as these high beam powers are not expected to be achieved in the near future,

in this work we will instead assume a more modest flux of ∼ 0.8 MW, similar to what is

being considered for LAGUNA-LBNO [22]. For the high energy and long baseline option

of 2300 km we will consider a 100 kt liquid argon (LAr) detector, while the lower energies

required for the oscillation at 730 km match better the water Čerenkov (WC) technology,

for which we consider a 500 kt fiducial volume. In order to explore if the large value of θ13

allows for more conservative setups with reduced power, detector mass or running time, we

will present all our results with reductions in the statistics by factors of 2, 4, 8 and 16.

The paper is organized as follows. In Section II we introduce the experimental setups

under study and the assumptions adopted to simulate their performance. In Section III

we show our comparison of the physics performance of the two setups for the precision on

their measurement of the CP violating phase δ, their CP violation discovery potential and

their sensitivity to the mass hierarchy. Finally, in Section IV we summarize and discuss the

results and draw our conclusions in Section V.

II. SETUPS

We will compare the physics performance of two CERN-based SuperBeam setups in

combination with either a 100 kt LAr detector at 2300 km or a 500 kt WC detector at

730 km. To match these two baselines so as to have the oscillation probability roughly at

the first oscillation peak we consider two different possible fluxes. A more energetic one

with a mean neutrino energy around ∼ 5 GeV will be considered for the CERN-Pyhäsalmi

baseline, while a lower energy flux peaking around ∼ 1.5 GeV is better suited for the shorter

730 km baseline (see Fig. 1). These fluxes were kindly provided by A. Longhin and were

computed for 50 GeV protons and 3 · 1021 protons on target per year [23], corresponding to

the capabilities of an upgraded accelerator complex. For the analysis presented in this work

we have decreased the number of protons on target by factor of 3, corresponding to a beam

3



è

è

è
è

èèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèè

ø

ø

ø
ø

ø
øø

ø
ø

øøøøøøøøøøøøøøøøø
ø

ø
ø

øø
ø

ø

ø
ø

øø
øøøø

øøø
øøø

øø
øø

ø
øø

ø
øø

øøøøøø
ø

ø

ø

øø
øø

ø

ø

øø

ø

ø
øø

ø

øøø
ø

ø

ø
ø

ø

ø
ø

ø

ø

øøø

ø

øø

ø

ø

ò

ò

ò
ò

òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

��

�
�

�
�

���������������������������
��������

��
�

���
��

�

�

�

�

���
��

�
�

�
��

�

�

�

�
�

�

�

�
�

�

�

�
��

�

�

��

�

�

�����

�
�

�

�

����
�

�
�

ø ΝΜ � ΝΜ

è Νe

ò Νe

0 2 4 6 8 10
0.1

1

10

100

1000

EΝHGeVL

10
10

Ν�y
r�G

eV
�m

2

è

è

è

è
è

è
èèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèè

ø

ø
ø

ø
ø

ø
ø

ø
ø

ø
ø

øøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøøø
øøøøø

øøøøø
øø

øøøø
ø

ø
øø

øøøø

øø
ø

øø

ø
øø

øø
ø

ø

ø

ø

ø

ò

ò
ò

òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò
òòòòòò

òòòò
òò

�

�
�

�����������������������
���

������
�

�����
�

��������
���

�
��

�
����

�

�

��

���

�
��

�
���

�

�

�
��

�
��

�

�

�
�

�

�
�

��

�
�

�

�

�

��

0 2 4 6 8 10
0.1

1

10

100

1000

EΝHGeVL

10
10

Ν�y
r�G

eV
�m

2

FIG. 1: Neutrino fluxes for the two beam configurations that have been used in this paper. Left

and right panels show the fluxes that have been used to simulate the results for the 730 and 2300

km baselines, respectively. The different symbols correspond to the main component of the beam

and its intrinsic contamination in ν mode, as indicated in the legend. The composition of the beam

in ν̄ mode is very similar. Fluxes have been taken from Ref. [23], where 3 × 1021 PoT per year

and 50 GeV protons were assumed. However, for the simulations presented in this paper we have

reduced the number of PoT per year by a factor of three, corresponding to an integrated luminosity

of 0.8 MW per year (assuming 107 useful seconds).

power of 0.8 MW per year (assuming 107 useful seconds).

In order to simulate the WC detector response, we have followed the T2HK letter of

intent [24]. In particular we take the signal and background efficiencies from Tables VIII

and IX in Ref. [24], for neutrino and antineutrino running modes respectively. Notice that,

since the energy range for the considered flux is about a factor two higher than for the

T2HK beam, a lower quasi-elastic (QE) event rate is expected, with a consequent reduced

efficiency when the 1-ring cut is imposed compared to Tables VIII and IX of Ref. [24]. In

order to take this into account, we rescale all charged current efficiencies in those tables by

removing the 1-ring cut but we only consider QE events for the charged current processes,

which should constitute the dominant component that passes the 1-ring cut. This entails

a 77% (82%) efficiency for the νe (ν̄e) apperance channels. The background for the νe (ν̄e)

appearance channel is given by the full νe and ν̄e intrinsic contamination of the beam, plus

a 0.06% (0.03%) of the νµ events (which are misidentified as νe) and a 1.0% (1.3%) of the

neutral current events. Finally, efficiencies of 75.4% and 68.1% have also been considered
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for the oscillated background arising from the opposite polarity component of the beam

(ν̄µ → ν̄e and νµ → νe for neutrino and antineutrino modes, respectively). We have assumed

a 90% efficiency for the νµ and ν̄µ disapperance channels with the same neutral current

background contamination as for apperance. We have assumed these values to be constant

in the neutrino energy range considered, between 0.4 and 4.4 GeV. A Gaussian energy

resolution of 85 MeV was also considered as suggested by Fig. 2 of Ref. [25].

In order to simulate the LAr detector response, we followed Refs. [26–28]. This corre-

sponds to an efficiency of 90% in all signal channels (appearance and disappearance). A

0.5% neutral current events, a 1% fraction of the νµ missidentified and the full intrinsic

contamination of the beam were considered as backgrounds (including the oscillated events

arising from the contamination with opposite polarity for each beam). The background re-

jection efficiencies were assumed to be constant over a neutrino energy window between 0.5

and 10 GeV. A constant Gaussian energy resolution of 150 MeV was assumed for electrons

and positrons and 0.2
√
E for muons, following Ref. [26]. Migration matrices for the NC

backgrounds have been kindly provided by the LBNE collaboration [29] and included.

A further background component which could play a potentially important role is the

decay of τ leptons. Indeed, at the oscillation peak, most of the original νµ have oscillated into

ντ . The energy of this beam is high enough so as to be above threshold for the ντ charged

current cross section. Thus, τ leptons will be produced and their decay products can lead

to an additional background. This phenomenon, known as the τ -contamination, has been

studied in the context of the Neutrino Factory [30–32]. This background will, however, be

mostly reconstructed at low energies close to the second oscillation peak. While the second

peak can potentially provide very useful information, specially regarding CP violation, it is

very statistically limited compared to the first peak and largely affected by neutral current

backgrounds from the high energy part of the flux. Thus, in agreement with Ref. [33], we

find that the physics reach of the setups studied here are not significantly affected when

removing the second oscillation peak and we therefore expect no significant impact from the

τ -induced background.

The following input values for the neutrino oscillation parameters have been chosen based

in the most recent global analyses in Refs. [9, 10, 34]: θ13 = 9◦, θ12 = 34.2◦, ∆m2
12 =

7.64 × 10−5 eV2, θ23 = 45◦, ∆m2
31 = 2.45 × 10−3 eV2. All results have been obtained

after marginalization over the rest of the oscillation parameters, assuming the following 1σ
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Gaussian priors: 3% for θ12, 2.5% for ∆m2
12, 8% for θ23 and 4% for ∆m2

31. For theta13 we

have assumed a prior of 0.005 in sin2 2θ13, which corresponds to the expected performance

of Daya Bay once it is systematics dominated. However, we have found that this prior does

not have a significant impact in any of the results shown. No prior has been assumed for

δ (i.e., it has been left completely free during marginalization). Finally, the matter density

has been computed from the PREM profile [35], assuming a 2% uncertainty. Constant

systematic uncertainties of 5 and 10% have been assumed for the signal and background

channels, respectively, for both detectors. These are fully correlated between the different

bins of a particular channel and uncorrelated among the different channels. The simulation

of both facilities was performed with the GLoBES software [36, 37].

III. RESULTS

In this section we compare the physics performance of the two scenarios under study.

In Fig. 2 we compare the CP violation (CPV) discovery potential for the two setups under

study. Both panels show the χ2 value with which each facility would be able to disfavour

CP-conservation as a function of δ. The left panel shows the results for a true normal

hierarchy (NH), while the right panel shows the results for inverted hierarchy (IH). Top

lines correspond to the maximum exposure for each setup, while the subsequent lines in

each band imply a reduction of the total exposure by factors of 2, 4, 8 and 16, to show how

much a reduction of the beam power, detector mass or running time can be born without

spoiling the physics performance of the facility. The CPV discovery potential for the two

setups would thus correspond to the areas where the lines for each facility are above the

corresponding value of the χ2 for a given confidence level. As an example, the 3 and 5σ lines

are shown.

This figure shows the better performance of the shorter baseline setup combined with

the WC detector for the CPV search, particularly in the case of reduced statistics. For

a reduction of the statistics by more than a factor 8 neither facility has CPV discovery

potential at the 3σ level. However, in the case of a factor 4 less statistics and for a NH,

the shorter baseline provides 3σ discovery potential for a 37% of the possible values of δ,

while the longer baseline only has sensitivity for 8%. For the IH scenario the situation is

more favourable, as we will discuss in the following, and these numbers increase to 43%
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FIG. 2: Comparison of the CPV discovery potential for NH (left panel) and IH (right panel) for

the two facilities under study. The top lines show the results for the maximum exposure considered

for each setup, while subsequent lines show the results after reducing the statistics by factors of 2,

4, 8 and 16.

and 30% respectively, a very remarkable improvement in the case of the longer baseline.

With a factor 2 reduction in statistics the Gran Sasso setup has some sensitivity at 5σ for

12% (21%) of the values of δ for NH (IH), while the Pyhäsalmi option has none. For the

maximum exposures considered for each setup, the performance of the Pyhäsalmi baseline

is significantly improved to 54% (17%), but it is still outperformed by the shorter baseline

option with 64% (37%) at 3σ (5σ). This is still true for the IH case even if the Pyhäsalmi

option performs much better in this scenario, with increased sensitivity up to 62% (30%) of

the values of δ at 3σ (5σ) to be compared with the 66% (41%) that the WC option could

provide.

The better performance of the WC detector for the CPV measurement is in part due

to the higher statistics for the setup at Gran Sasso, which has a more massive detector.

However, as can be seen in Tab. I, the number of signal (anti)neutrino events for NH (IH)

at the LAr detector is actually not very different from those at the WC. Indeed, the strong

matter effects affecting the neutrino evolution will strongly enhance these channels and
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suppress their CP conjugate ones. This makes the event distribution between neutrinos and

antineutrinos rather asymmetric at the LAr detector, negatively affecting its sensitivity to

CPV. This unbalance is much less pronounced in the IH case. In this case, while matter

effects tend to suppress the neutrino oscillation probability, the higher neutrino fluxes and

cross sections with respect to the antineutrino ones ensure a more symmetric distribution

of the events, leading to a remarkable enhancement in sensitivity to CPV for the LAr

alternative, as discussed in Fig. 2.

500 kt WC; L = 730 km 100 kt LAr; L = 2300 km

Hierarchy δ Nν Nν̄ Nν Nν̄

NH

π/2 1526 931 1374 230

0 2012 782 1650 195

−π/2 2464 546 1989 113

IH

π/2 965 1329 250 884

0 1296 1074 338 769

−π/2 1717 852 525 621

Background 1094 743 264 120

TABLE I: Number of νe and ν̄e events at the 500 kt fiducial WC detector located at 730 km and at

the 100 kt LAr detector placed at 2300 km. Signal events are show for normal (NH) and inverted

(IH) mass hierarchy and for three values of δ to show the dependence on these two parameters.

Background events are shown for δ = 0 and NH. The values for the rest of the oscillation parameters

are the ones listed in Sec. II.

Fig. 3 shows the results for the achievable precision on δ and the mass hierarchy discovery

potential. A normal hierarchy has been assumed in this case for both panels. In the left

(right) panels, the bottom (top) lines show the results for the maximum exposure considered,

while subsequent lines show the results after reducing the statistics by factors of 2, 4, 8 and

8



16. The left panel shows ∆δ, defined as 1/2 of the 1σ allowed region in the measurement

of the CP violating phase δ. We plot this as a function of the true value of δ since this

dependence is quite strong for this observable (see Ref. [38] for a detailed study). We find

that the 730 km option consistently performs better in this measurement than the 2300 km

option. Furthermore, when reducing the statistics the deterioration of the Pyhäsalmi setup

in this measurement is faster than for the shorter baseline option, as shown by the more

widely spaced lines.

The mass hierarchy discovery potential is depicted in the right panel in Fig. 3 for both

setups under study. In this case, the χ2 value with which each facility can disfavour the

wrong mass hierarchy is shown as a function of the true value of δ. We only show the

results assuming a true normal hierarchy in this case: the results for inverted hierarchy are

very similar to these under the inversion δ → −δ. In this measurement, the much stronger

matter effects at the Pyhäsalmi baseline would allow to perform this measurement with

much smaller exposure, clearly outperforming the shorter baseline by far. However, a 5σ

determination of the mass hierarchy at the shorter baseline is still possible for any value of

δ. Even reducing the statistics by a factor two the 5σ level can be reached in almost all the

parameter space. Thus, the short baseline seems also adequate to perform this measurement

if no higher significance is required.

It is well-known that the size of the Gran Sasso underground laboratory is physically

limited and therefore it may have difficulties in hosting a very massive detector. As it can

be seen from Figs. 2 and 3, the physics reach for this setup after a reduction of the detector

mass by a factor of 2 is still quite good, though. However, if a WC detector of the desired

volume cannot be accommodated at Gran Sasso, the closest alternative options are Canfranc

(650 km) and Umbria (665 km). In Fig. 4 we compare the same performance indicators as in

Figs. 2 and 3 but for the Gran Sasso and Canfranc baselines. As expected, the 1σ precision

on the measurement of δ is unaffected since at 1σ the mass hierarchy is always solved. The

mass hierarchy discovery potential is, however, affected due to the smaller matter effects at

this baseline, and an overall reduction of the significance for which the wrong hierarchy can

be ruled out takes place for all values of δ. This in turn limits the CPV discovery potential

since the sign degeneracy can mimic CP conservation for some CP-violating values of δ.

This loss in sensitivity can be seen in Fig. 4 for a small area around δ = π/2 for NH. A

similar effect takes place around δ = −π/2 for IH. Apart from this small region, the rest

9
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FIG. 3: Comparison of the achievable precision at 1σ in δ (left panel) and the mass hierarchy

discovery potential (right panel) for the two facilities under study. In the left (right) panels, the

bottom (top) lines show the results for the maximum exposure considered for each setup, while

subsequent lines show the results after reducing the statistics by factors of 2, 4, 8 and 16. A normal

hierarchy has been assumed.
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FIG. 4: Comparison of ∆δ (left panel), the mass hierarchy (middle panel) and the CPV discovery

potential (right panel) for the WC detector placed at Gran Sasso or Canfranc. For all observables,

the best results correspond to the maximum exposure considered while the different lines show the

results after reducing the statistics by factors of 2, 4, 8 and 16.
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of the CPV discovery potential is unaffected by the change in baseline. It should also be

noted that in the full statistics scenario the mass hierarchy can still be determined at 5σ

for any value of δ. Thus, while the Gran Sasso baseline provides a better physics reach, the

Canfranc alternative always performs very similarly, providing a reasonable compromise.

IV. SUMMARY AND DISCUSSION

In this work we have studied the physics performance of a long baseline neutrino oscilla-

tion experiment based on a neutrino beam from the CERN accelerator complex. In general,

for a fixed beam power, very energetic neutrino beams aiming to correspondingly long base-

lines (so that L/E is close to the first oscillation peak) tend to give the best performance.

Indeed, while longer baselines imply a flux reduction with L−2, the linear increase of the

neutrino cross section with the energy and the higher focusing of the beam at high energies

lead to an overall increase in statistics which is more or less linear in energy. However,

the detector response can greatly vary at different energies, depending on the chosen detec-

tor technology. The detection technology also determines the maximum mass that can be

reached in each case.

In this work we have compared the physics reach of two representative setups for a

SuperBeam in Europe. These correspond to very different baselines, and therefore make use

of the different detector technologies which better match their needs. The very good CPV

discovery potential of the SPL (L = 130 km) is very well-known and has been widely studied

in the literature. However, it has no sensitivity to the mass hierarchy from long baseline

oscillations alone, and relies on the availability of a 4 MW beam which is not expected to

be at hand in the near future. Therefore, longer baselines have been considered for all the

setups presented in this work, and reduced beam powers of 0.8 MW. We considered 5 years

data taking with each beam polarity.

On one hand, we have considered a baseline around 600 − 700 km. Several possible un-

derground laboratories match this baseline from CERN. The Gran Sasso laboratory, placed

at L = 730 km, has the advantage of an existing beamline from CERN. An interesting

alternative would be offered by the existing underground laboratory at Canfranc (L = 650

km), one of the seven LAGUNA candidate sites. In order to match the first oscillation peak

at these baselines, the neutrino flux should be peaked around 1-2 GeV. It is well-known
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that WC detectors perform optimally for neutrino energies precisely in this range, where

the QE cross section peaks. They can also be built on very large scales. Therefore, we have

considered a 500 kt WC for these baselines. On the other hand, we have also considered

a setup with a very long baseline (L = 2300 km). This matches the distance from CERN

to Pyhäsalmi, which is also one of the considered sites within LAGUNA. In this case, the

neutrino flux should be peaked around 4-5 GeV. Consequently, most of the events would lie

in the deep inelastic scattering regime where the WC detector is no longer optimal due to its

poor efficiency for multi-ring events. Instead, LAr constitutes an ideal detector technology

for this setup, with very high efficiencies and extremely good energy resolution for deep

inelastic events. We have considered a maximum fiducial mass of 100 kt for this detector

instead.

We have compared the physics reach of these three setups (WC at 730 and 650 km,

and LAr at 2300 km) under three different performance indicators: the precision in their

measurement of the CP violating phase δ, their CPV discovery potential and their mass

hierarchy discovery potential. For each of these indicators we have also studied scenarios

with reduced statistics to explore if reductions of the beam power, detector mass and/or

running times are possible given the large value of θ13 recently discovered.

We find that, for the mass hierarchy discovery potential, the much stronger matter effects

at the 2300 km LAr option greatly outperform the shorter baselines. Indeed, a ∼ 10σ

exclusion of the wrong hierarchy can be accomplished even with a reduction of the statistics

by a factor of 16. However, the shorter baselines can also provide an adequate determination

of the mass hierarchy. Indeed, the Canfranc option can rule out the wrong mass hierarchy

at 5σ with the maximum exposure considered. The situation is slightly better for the setup

at Gran Sasso, which due to its slightly larger matter effects can do it even after a reduction

of statistics by almost a factor 2.

Regarding the measurement of the CP violating phase, the short baselines are clearly

preferable. Indeed, the strong matter effect enhancement of the oscillation probability at

high energies also leads to a very asymmetric distribution of the events between the two beam

polarities and to a reduction of their dependence on δ, deteriorating its measurement. We

find that the setups with shorter baselines can provide a measurement of δ with an error at 1σ

which ranges from 10◦ to 12◦ depending on the value of δ, while for the setup at Pyhäsalmi

this ranges between 12◦ to 15◦ for the maximum exposure scenario. As the statistics is
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reduced, the measurement is deteriorated faster for the detector placed at L = 2300 km.

For example, if the exposure is reduced by a factor 8 the 1σ error on delta would be between

20◦ − 30◦ for WC, while for the LAr option it would be around 26◦ − 38◦. Similarly, the

CPV discovery potential is better at the shorter baselines. At Gran Sasso, CPV could be

found for a 64% (37%) of the possible values of δ at 3σ (5σ). These numbers are reduced

to 54% (17%) for LAr at the longer baseline. For the more favourable inverted hierarchy

scenario the coverage of both facilities improves, specially for the LAr option, reaching 66%

(41%) for the WC and 62% (30%) for LAr.

V. CONCLUSIONS

We conclude that a long baseline neutrino oscillation experiment with a CERN-produced

beam aiming to a large detector in an underground laboratory in Europe can provide excel-

lent sensitivities to the two remaining unknowns among the neutrino oscillation parameters:

the mass hierarchy and the existence of leptonic CPV. A liquid argon (LAr) detector placed

at a very long baseline would grant an exceptional discovery potential to the mass hierarchy

through its strong matter effects. On the other hand, the very same matter effects limit

its sensitivity to δ. The opposite is true for a water Čerenkov (WC) detector placed at a

shorter baseline. The smaller matter effects translate in an enhanced sensitivity to δ but a

much poorer mass hierarchy discovery potential.

The ability to observe CP violation (CPV) in a large fraction of the parameter space

is related to the precision which can be achieved for a measurement of δ. It is therefore

desirable to maximize it, given that it is not possible to be sensitive to CPV in the whole

parameter space. Regarding the mass hierarchy discovery potential, on the other hand,

once the desired confidence level has been reached a more accurate measurement is not

particularly helpful, since it is a discrete parameter. For these reasons we conclude that,

under the assumptions made for the simulation of each detector (detailed in Section II), the

shorter baseline options combined with a WC detector are generally preferable, since they

reach a better precision in the measurement of δ and hence provide a larger coverage for

CPV while they still achieve 5σ sensitivity to the mass hierarchy for any value of δ.
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