
Physics Letters B 717 (2012) 151–161
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

K0
s K0

s correlations in pp collisions at
√

s = 7 TeV from the LHC ALICE experiment ✩

.ALICE Collaboration

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 June 2012
Received in revised form 23 August 2012
Accepted 7 September 2012
Available online 11 September 2012
Editor: M. Doser

Identical neutral kaon pair correlations are measured in
√

s = 7 TeV pp collisions in the ALICE
experiment. One-dimensional K0

s K0
s correlation functions in terms of the invariant momentum difference

of kaon pairs are formed in two multiplicity and two transverse momentum ranges. The femtoscopic
parameters for the radius and correlation strength of the kaon source are extracted. The fit includes
quantum statistics and final-state interactions of the a0/f0 resonance. K0

s K0
s correlations show an increase

in radius for increasing multiplicity and a slight decrease in radius for increasing transverse mass, mT, as
seen in ππ correlations in pp collisions and in heavy-ion collisions. Transverse mass scaling is observed
between the K0

s K0
s and ππ radii. Also, the first observation is made of the decay of the f′2(1525) meson

into the K0
s K0

s channel in pp collisions.
© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

In this Letter we present results from a K0
s K0

s femtoscopy study
by the ALICE experiment [1,2] in pp collisions at

√
s = 7 TeV

from the CERN LHC. Identical boson femtoscopy, especially iden-
tical charged ππ femtoscopy, has been used extensively over the
years to study experimentally the space–time geometry of the
collision region in high-energy particle and heavy-ion collisions
[3]. Recently, the ALICE and CMS collaborations have carried out
charged ππ femtoscopic studies for pp collisions at

√
s = 7 TeV

[4,5]. These studies show a transverse momentum dependence of
the source radius developing with increasing particle multiplic-
ity similar to the one observed in heavy-ion collisions, where the

transverse momentum of a particle is defined as pT =
√

p2
x + p2

y ,

where px and p y are the components of the particle momentum
transverse to the direction of the initial colliding beams. The main
motivations to carry out the present K0

s K0
s femtoscopic study to

complement this ππ study are 1) to extend the transverse pair
momentum range of the charged ππ studies which typically cuts
off at about 0.8 GeV/c due to reaching the limit of particle iden-
tification, whereas K0

s ’s can easily be identified to 2 GeV/c and
beyond, 2) since K0

s is uncharged, K0
s K0

s pairs close in phase space
are not suppressed by a final-state Coulomb repulsion as is the
case of charged ππ pairs, 3) K0

s K0
s pairs close in phase space are

additionally enhanced by the strong final-state interaction due to
the a0/f0 resonance giving a more pronounced signal, and 4) one
can, in principle, obtain complementary information about the col-
lision interaction region by using different types of mesons [6–8].
The physics advantage of items 1) and 4) is to study the transverse

✩ © CERN for the benefit of the ALICE Collaboration.

mass scaling of the source size which is considered a signature
of collective behaviour in heavy-ion collisions [3], where trans-

verse mass is defined as mT =
√

p2
T + m2

0, where m0 is the particle

rest mass. By definition, mT scaling occurs when the source sizes
from different particle species fall on the same curve vs. mT. Thus,
comparing results from ππ and K0

s K0
s at the same mT would be

a good test of this scaling. Item 3) can be used as an advantage
since the final-state interaction of K0

s K0
s via the a0/f0 resonance

can be calculated with a reasonable degree of precision. Previous
K0

s K0
s studies have been carried out in LEP e+e− collisions [9–11],

HERA ep collisions [12], and RHIC Au–Au collisions [13]. Due to
statistics limitations, a single set of femtoscopic source parameters,
i.e. radius, R , and correlation strength, λ, was extracted in each
of these studies. The present study is the first femtoscopic K0

s K0
s

study to be carried out a) in pp collisions and b) in more than
one multiplicity and transverse pair momentum, kT, range, where
kT = |�pT1 + �pT2|/2 and �pT1 and �pT2 are the transverse momenta of
the two K0

s ’s from the pair.

2. Description of experiment and data selection

The data analyzed for this work were taken by the ALICE exper-
iment during the 2010

√
s = 7 TeV pp run at the CERN LHC.

Particle identification and momentum determination were per-
formed with particle tracking in the ALICE Time Projection Cham-
ber (TPC) and ALICE Inner Tracking System (ITS) [1,2]. The TPC was
used to record charged-particle tracks as they left ionization trails
in the Ne–CO2 gas. The ionization drifts up to 2.5 m from the cen-
tral electrode to the end caps to be measured on 159 padrows,
which are grouped into 18 sectors; the position at which the track
crossed the padrow was determined with resolutions of 2 mm and
3 mm in the drift and transverse directions, respectively. The ITS
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was used also for tracking. It consists of six silicon layers, two
innermost Silicon Pixel Detector (SPD) layers, two Silicon Drift De-
tector (SDD) layers, and two outer Silicon Strip Detector (SSD)
layers, which provide up to six space points for each track. The
tracks used in this analysis were reconstructed using the informa-
tion from both the TPC and the ITS; such tracks were also used to
reconstruct the primary vertex of the collision. For details of this
procedure and its efficiency see Ref. [2].

A minimum-bias trigger was used for this analysis. Event trig-
gering was accomplished using several sets of detectors. The for-
ward scintillator detectors, VZERO, are placed along the beam line
at +3 m and −0.9 m from the nominal interaction point. They
cover a region 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively.
They were used in the minimum-bias trigger and their timing sig-
nal was used to reject the beam–gas and beam–halo collisions.
The minimum-bias trigger required a signal in either of the two
VZERO counters or one of the two inner layers of the SPD. Within
this sample, events were selected based on the measured charged-
particle multiplicity within the pseudorapidity range |η| < 1.2.
Events were required to have a primary vertex within 1 mm of
the beam line and 10 cm of the centre of the 5 m long TPC. This
provides almost uniform acceptance for particles with |η| < 1 for
all events in the sample. It decreases for 1.0 < |η| < 1.2. In ad-
dition, we require events to have at least one charged particle
reconstructed within |η| < 1.2.

Event multiplicity, Nch, was defined as the number of charged
particles falling into the pseudorapidity range |η| < 0.8 and trans-
verse momentum range 0.12 < pT < 10 GeV/c. The two event mul-
tiplicity ranges used in this analysis, 1–11 and >11, correspond to
mean charged particle densities, 〈dNch/dη〉, of 2.8 and 11.1, respec-
tively, with uncertainties of ∼10%. Events from the Monte Carlo
event generator PYTHIA [14,15] were used to estimate 〈dNch/dη〉
from the mean charged-particle multiplicity in each range as was
done for Table I of Ref. [4], which presents ALICE ππ results for
pp collisions at

√
s = 7 TeV, event multiplicity having been deter-

mined in the same way there as in the present work.
The decay channel K0

s → π+π− was used for particle identifi-
cation, with a typical momentum resolution of ∼1% [16]. The dis-
tance of closest approach (DCA) of the candidate K0

s decay daugh-
ters was required to be � 0.1 cm. Fig. 1 shows invariant mass
distributions of candidate K0

s vertices for the four multiplicity–kT
ranges used in this study (see below) along with a Gaussian + lin-
ear fit to the data. The invariant mass at the peaks was found to be
0.497 GeV/c2, which is within 1 MeV/c2 of the accepted mass of
the K0

s [17]. The average peak width was σ = 3.72 MeV/c2 demon-
strating the good K0

s momentum resolution obtained in the ALICE
tracking detectors. A vertex was identified with a K0

s if the invari-
ant mass of the candidate π+π− pair associated with it fell in the
range 0.490–0.504 GeV/c2. As seen in Fig. 1, the ratio of the K0

s
signal to signal + background, S/(S + B), in each of the four ranges
is determined to be 0.90 or greater. The minimum K0

s flight dis-
tance from the primary vertex was 0.5 cm. Additional cuts on the
K0

s were made in η and pT, i.e. |η| < 0.8 and 0.4 < pT < 3.5 GeV/c.
A cut was imposed to prevent K0

s K0
s pairs from sharing the same

decay daughter. Minimum bias events with two or more K0
s ’s were

selected for use in the analysis. Three or more K0
s ’s occurred in

19% of the events, and all pair combinations of these which satis-
fied cuts were used.

3. Results

Fig. 2 shows a K0
s K0

s correlation function, C(Q inv), in the invari-

ant momentum difference variable Q inv =
√

Q 2 − Q 2
0 , where Q 2

and Q 2
0 are the squared 3-momentum and energy differences be-

Fig. 1. Invariant mass distributions of π+π− pairs in the four multiplicity–kT

ranges used in the study. K0
s used in this analysis were identified by the cut

0.490 GeV/c2 < m < 0.504 GeV/c2. Also shown is a Gaussian + linear fit to the
data points.

Fig. 2. Inclusive (all event multiplicities and kT) K0
s K0

s Q inv correlation function. Plot-
ted in the insert to the figure is the invariant K0

s K0
s mass distribution, dN/dm(K0

s K0
s ),

in the vicinity of the small peak at Q inv ≈ 1.15 GeV/c.

tween the two particles respectively, for all event multiplicities and
kT. The experimental C(Q inv) is defined as

C(Q inv) = a
NR(Q inv)

NB(Q inv)
(1)

where NR(Q inv) is the number of “real” K0
s K0

s pairs from the same
event, NB(Q inv) is the number of “background” K0

s K0
s pairs con-

structed by mixing of K0
s candidates from ten adjacent events in

the same kT and event multiplicity range as the real pairs, and
a is a normalization constant which is adjusted to set the large-
Q inv value of C(Q inv) to be in the vicinity of unity. Only events
with two or more K0

s ’s were used in event mixing. As a test, back-
ground formed using only single-K0

s events was found to agree
with the default one within the statistical uncertainties. Bins in
Q inv were taken to be 20 MeV/c which is greater than the aver-
age resolution of Q inv resulting from the experimental momentum
resolution. Also, the enhancement region in Q inv of the correla-
tion functions for source sizes of ∼ 1 fm is ∼ 200 MeV/c. Thus
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the smearing of the correlation function by the experimental mo-
mentum resolution has a negligible effect on the present measure-
ments. The three main features seen in this correlation function
are 1) a well-defined enhancement region for Q inv < 0.3 GeV/c,
2) a non-flat baseline for Q inv > 0.3 GeV/c, and 3) a small peak at
Q inv ≈ 1.15 GeV/c.

Considering feature 3) first, fitting a quadratic + Breit–Wigner
function to the invariant K0

s K0
s mass distribution, dN/dm(K0

s K0
s ),

around this peak, where m(K0
s K0

s ) = 2
√

(Q inv/2)2 + m2
K, we ob-

tain a mass of 1518 ± 1 ± 20 MeV/c2 and full width (Γ ) of
67 ± 9 ± 10 MeV/c2 (giving the statistical and systematic errors,
respectively). This is plotted in the insert to Fig. 2. Comparing
with the Particle Data Group meson table [17], this peak is a
good candidate for the f′2(1525) meson (m = 1525 ± 5 MeV/c2,
Γ = 73+6

−5 MeV/c2). This is the first observation of the decay of
this meson into the K0

s K0
s channel in pp collisions. A similar invari-

ant mass plot to that shown in Fig. 2 was made using PYTHIA for
comparison since it contains the f′2(1525) meson. No similar peak
was seen above background, thus showing that PYTHIA underesti-
mates the production of this meson in the present system.

In order to disentangle the non-flat baseline from the low-Q inv
femtoscopic enhancement, PYTHIA was used to model the baseline.
PYTHIA contains neither quantum statistics nor the K0

s K0
s → a0/f0

channel, but does contain other kinematic effects which could lead
to baseline correlations such as mini-jets and momentum and en-
ergy conservation effects [4]. PYTHIA events were reconstructed
and run through the same analysis method as used for the cor-
responding experimental data runs to simulate the same condi-
tions as the experimental data analysis. The PYTHIA version of
the invariant mass distributions shown for experiment in Fig. 1

yielded similar S/(S + B) values. As a test, the K0
s K0

s background
obtained from event mixing using PYTHIA events was compared
with that from experiment. Since the background pairs do not
have femtoscopic effects, these should ideally be in close agree-
ment. A sample plot of the experimental to PYTHIA ratio of the
background vs. Q inv is shown in Fig. 3 for the range Nch 1–11,
kT < 0.85 GeV/c. The average of the ratio is normalized to unity.
It is found that PYTHIA agrees with the Q inv-dependence of the
experimental backgrounds within 10%, even though PYTHIA under-
predicts the overall scale of K0

s K0
s production by about a factor of 2.

Since only ratios of PYTHIA K0
s K0

s distributions are used in disen-
tangling the experimental non-flat baseline, the overall scale factor
cancels out. The method of determining the systematic error of
using PYTHIA for this purpose is discussed later. The Monte Carlo
event generator PHOJET [18,19] was also studied for use in mod-
elling the baseline. When it was compared with the experimental
data using the same method shown for PYTHIA in Fig. 3, it was
found to not represent the shape of the experimental background
as well as PYTHIA, differing from experiment by >20%. It was thus
decided to not use PHOJET for this study.

K0
s K0

s correlation functions in Q inv were formed from the data
in four ranges: two event multiplicity (1–11, > 11) ranges times
two kT (< 0.85, > 0.85 GeV/c) ranges. About 3 × 108 experimen-
tal minimum bias events were analyzed yielding 6 × 106 K0

s K0
s

pairs. About 2.3 × 108 PYTHIA minimum bias events used for the
baseline determination were also analyzed. This was found to give
sufficient statistics for the PYTHIA correlation functions such that
the impact of these statistical uncertainties on the measurement
of the source parameters was small compared with the systematic
uncertainties present in the measurement.

The femtoscopic variables R and λ were extracted in each
range by fitting a model correlation function to the double ratio of
the experimental correlation function divided by the PYTHIA cor-

Fig. 3. Ratio of K0
s K0

s experimental background to PYTHIA background vs. Q inv for
the range Nch 1–11, kT < 0.85 GeV/c. The average of the ratio is normalized to
unity.

relation function, CDR(Q inv) = [C(Q inv)]exp/[C(Q inv)]PYTHIA, where
C(Q inv) is calculated via the ratio given in Eq. (1). The model cor-
relation function used in the fitting was the Lednicky correlation
function [13], CL(Q inv), based on the model by R. Lednicky and
V.L. Lyuboshitz [20]. This model takes into account both quantum
statistics and strong final-state interactions from the a0/f0 reso-
nance which occur between the K0

s K0
s pair. The K0

s spatial distribu-
tion is assumed to be Gaussian with a width R in the parametriza-
tion and so its influence on the correlation function is from both
the quantum statistics and the strong final-state interaction. This is
the same parametrization as was used by the RHIC STAR collabora-
tion to extract R and λ from their K0

s K0
s study of Au–Au collisions

[13]. The correlation function is

CL(Q inv) = λC ′(Q inv) + (1 − λ) (2)

where

C ′(Q inv) = 1 + e−Q 2
inv R2 + α

[∣∣∣∣ f (k∗)
R

∣∣∣∣
2

+ 4� f (k∗)√
π R

F1(Q inv R)

− 2� f (k∗)
R

F2(Q inv R)

]
(3)

and where

F1(z) =
z∫

0

dx
ex2−z2

z
; F2(z) = 1 − e−z2

z
. (4)

f (k∗) is the s-wave K0K̄0 scattering amplitude whose main contri-
butions are the s-wave isoscalar and isovector f0 and a0 resonances
[13], R is the radius parameter and λ is the correlation strength
parameter (in the ideal case of pure quantum statistics λ = 1).
α is the fraction of K0

s K0
s pairs that come from the K0K̄0 system

which is set to 0.5 assuming symmetry in K0 and K̄0 production
[13]. As seen in Eq. (3), the first term is a Gaussian function for
quantum statistics and the second term describes the final-state
resonance scattering and both are sensitive to the radius parame-
ter, R , giving enhanced sensitivity to this parameter. The scattering
amplitude, f (k∗), depends on the resonance masses and decay
couplings which have been extracted in various experiments [13].
The uncertainties in these are found to have only a small effect on
the extraction of R and λ in the present study. An overall normal-
ization parameter multiplying Eq. (2) is also fit to the experimental
correlation function.

Fig. 4 shows the experimental and PYTHIA K0
s K0

s correlation
functions for each of the four multiplicity–kT ranges used. Whereas
the experimental correlation functions show an enhancement for
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Fig. 4. Experimental and PYTHIA K0
s K0

s correlation functions for the four
multiplicity–kT ranges.

Fig. 5. Experimental K0
s K0

s correlation functions divided by PYTHIA correlation func-
tions for the four multiplicity–kT ranges with femtoscopic fits using the full Led-
nicky parametrization (solid lines) and the contribution due to quantum statistics
(dashed lines).

Q inv < 0.3 GeV/c2, the PYTHIA correlation functions do not show
a similar enhancement. This is what would be expected if the
experimental correlation functions contain femtoscopic correla-
tions since PYTHIA does not contain these. PYTHIA is seen to de-
scribe the experimental baseline rather well in the region Q inv >

0.4 GeV/c2 where it is expected that effects of femtoscopic corre-
lations are insignificant. Fig. 5 shows CDR(Q inv), the experimental
correlation functions divided by the PYTHIA correlation functions
from Fig. 4, along with the fits with the Lednicky parametrization
from Eqs. (2)–(4) (solid lines). Also shown for reference is the con-
tribution of the quantum statistics part in Eq. (3) (dashed lines),
which are seen to account for roughly one-half of the overall value

Fig. 6. λ parameters extracted by fitting the Lednicky parametrization to K0
s K0

s cor-
relation functions as shown in Fig. 5. Statistical (darker lines) and total uncertainties
are shown. The Nch > 11 points are offset by 0.05 GeV/c2 for clarity.

Fig. 7. R parameters extracted by fitting the Lednicky parametrization to K0
s K0

s cor-
relation functions as shown in Fig. 5. Also shown for comparison are R parameters
extracted in the same event multiplicity ranges from a ππ femtoscopic study by
ALICE [4] in pp collisions at

√
s = 7 TeV. Statistical (darker lines) and total un-

certainties are shown. The highest mT pion Nch > 11 point and lower mT kaon
Nch > 11 point have been shifted by 0.03 GeV/c2 for clarity.

of the correlation functions. The full Lednicky model fits are seen
to qualitatively describe the correlation functions within the error
bars, which are statistical.

Figs. 6 and 7 and Table 1 present the results of this study for
λ and R parameters extracted by fitting the Lednicky parametriza-
tion to K0

s K0
s correlation functions as shown in Fig. 5. The source

parameters are plotted versus the average mT =
√

〈kT〉2 + m2
K to

observe whether mT scaling is present (as discussed earlier) and
statistical + systematic error bars are shown. The statistical uncer-
tainties include both the experimental and the PYTHIA statistical
uncertainties used to form the correlation functions, as shown in
Fig. 4.

The largest contributions to the systematic uncertainties are 1)
the non-statistical uncertainty in using PYTHIA to determine the
baseline and 2) the effect of varying the Q inv fit range by ±10%.
These were found to be on the order of or greater than the size of
the statistical uncertainties, as can be seen in Table 1. The method
used to estimate the systematic uncertainty of using PYTHIA was
to set the PYTHIA K0

s K0
s background distribution equal to the ex-

perimental background distribution in the ratio of correlation func-
tions, e.g. forcing the ratio plotted in Fig. 3 to be exactly unity for
all Q inv. The ratio of correlation functions then becomes the ratio
of the experimental to PYTHIA real pair distributions, which is then
fit with the Lednicky parametrization to extract the source param-
eters. Parameters extracted from these correlation functions were



ALICE Collaboration / Physics Letters B 717 (2012) 151–161 155
Table 1
K0

s K0
s source parameters from Lednicky fits for

√
s = 7 TeV pp collisions. Statistical and systematic uncertainties are shown.

kT range (GeV/c) Nch range 〈kT〉 (GeV/c) 〈dNch/dη〉 λ R (fm)

< 0.85 1–11 0.52 2.8 0.66 ± 0.07 ± 0.04 0.99 ± 0.04 ± 0.04
> 0.85 1–11 1.32 2.8 0.48 ± 0.04 ± 0.06 0.75 ± 0.02 ± 0.07
< 0.85 > 11 0.52 11.1 0.53 ± 0.07 ± 0.05 1.15 ± 0.05 ± 0.05
> 0.85 > 11 1.32 11.1 0.54 ± 0.04 ± 0.09 1.00 ± 0.02 ± 0.07

Table 2
K0

s K0
s source parameters comparing α = 0.5 (quantum statistics + FSI) and α = 0 (quantum statistics only) fits to Fig. 5 using Eqs. (2)–(4). Statistical uncertainties are shown.

kT range (GeV/c) Nch range λ R (fm) λ R (fm)
(α = 0.5) (α = 0.5) (α = 0) (α = 0)

< 0.85 1–11 0.64 ± 0.07 0.96 ± 0.04 1.36 ± 0.15 1.35 ± 0.07
> 0.85 1–11 0.50 ± 0.04 0.81 ± 0.02 1.07 ± 0.09 1.05 ± 0.04
< 0.85 >11 0.51 ± 0.07 1.12 ± 0.05 0.97 ± 0.15 1.64 ± 0.11
> 0.85 >11 0.56 ± 0.05 1.03 ± 0.02 0.89 ± 0.10 1.37 ± 0.07
then averaged with those from Fig. 5 and are given in Figs. 6 and 7
and Table 1. This method is similar to that used in estimating sys-
tematic uncertainties in other K0

s K0
s measurements [10,12]. Other

systematic uncertainties were also studied, including the effects of
varying the K0

s candidate invariant mass acceptance window, us-
ing different sets of resonance masses and decay couplings in the
scattering amplitude, f (k∗), used in fitting CL(Q inv) in Eq. (3), and
momentum resolution effects (as discussed earlier). These were
found to be smaller than the statistical uncertainties. The effects
of all systematic uncertainties studied on R and λ were added in
quadrature to calculate the total systematic uncertainties given in
Table 1.

To see the effect of the a0/ f0 final-state interaction (FSI) term
in the Lednicky parametrization, the correlation functions in Fig. 5
were fit with Eqs. (2)–(4) for two cases: 1) quantum statistics
+ FSI terms, i.e. α = 0.5 in Eq. (2), and 2) quantum statistics
term only, i.e. α = 0 in Eq. (3). Case 2) corresponds to a Gaus-
sian parametrization for R and λ. The results of these fits are
shown in Table 2. Including the FSI term in the fit is seen to
significantly reduce both R and λ, i.e. R by ∼ 30% and λ by
∼ 50%. The FSI is thus seen to enhance the correlation function
for Q inv → 0 making λ appear larger and making the enhance-
ment region narrower. This results in an apparent larger R and
λ when fitting with the pure Gaussian quantum statistics model.
A reduction in R and λ when including the FSI term was also ob-
served, but to a lesser extent, in the STAR Au–Au K0

s K0
s study [13].

A larger effect of the a0/ f0 resonance on the correlation func-
tion in pp collisions compared with Au–Au collisions is expected
since the two kaons are produced in closer proximity to each other
in pp collisions, enhancing the probability for final-state interac-
tions.

Within the uncertainties, the mT dependence of λ is seen
in Fig. 6 to be mostly flat with λ lying at an average level of
∼ 0.5–0.6, similar to that found in the ALICE ππ results for pp
collisions at

√
s = 7 TeV [4]. In ππ studies the λ value smaller

than 1 has been shown at least in part to be due to the presence
of long-lived meson resonances which distort the shape of the
source so that the Gaussian assumption, which the fitting functions
are based on, is less valid [21]. This same explanation is possible
for the present λ parameters extracted from the K0

s K0
s correlation

functions. For example, the φ and K∗ mesons with full widths of
Γ ∼ 4 and Γ ∼ 50 MeV/c2, respectively, could act as long-lived
resonances compared with the extracted source scale of R ∼ 1 fm,
the larger scales being unresolved in the first few Q inv bins but
still depressing the overall correlation function.

In Fig. 7 the dependence of the extracted radius parameters on
the transverse mass and event multiplicity are shown. Also shown

for comparison are R parameters extracted in the same event mul-
tiplicity ranges from a ππ femtoscopic study by ALICE [4] in 7 TeV
pp collisions. Looking at the mT dependence first, the K0

s K0
s re-

sults alone suggest a tendency for R to decrease with increasing
mT for both multiplicity ranges. The ππ measurements also show
this decreasing trend for the high multiplicity range, but show the
opposite trend for the low multiplicity range, R increasing slightly
for increasing mT. Taken with the ππ results the K0

s K0
s results for

R extend the covered range of mT to ∼ 1.3 GeV/c, which is more
than twice the range as for ππ . The lower mT points for K0

s K0
s

which are in close proximity in mT to the highest mT points for ππ
are seen to overlap within errors, showing mT scaling. The mT de-
pendence of R combining both particle species is seen to be weak
or non-existent within the error bars. Looking at the multiplicity
dependence, a tendency for R to increase overall for increasing
event multiplicity is seen for both ππ and K0

s K0
s measurements

as is observed in ππ heavy-ion collision studies [22].
The multiplicity–mT dependence of the pion femtoscopic radii

in heavy-ion collisions is interpreted as a signature for collec-
tive hydrodynamic matter behaviour [3]. Such dependences have
also been discussed in e+e− collisions [23,24]. The correspond-
ing measurements in pp collisions at

√
s = 7 TeV also show a

multiplicity–mT dependence [4,5]. However, important differences
with heavy-ion collisions remain, for example at low multiplicities
the pion R seems to increase with increasing mT rather than de-
creasing as with heavy-ion collisions, as already mentioned earlier.
The interpretation of these pp results for pions is still not clear, al-
though model calculations exist that attempt to explain them via a
collective phase created in high-multiplicity pp collisions [25–27].
If such a collective phase is hydrodynamic-like, the mT dependence
of the radii should extend to heavier particles such as the K0

s as
well, as shown in Ref. [27]. The measurements presented in this
Letter provide a cross-check of the collectivity hypothesis. The in-
terpretation is, however, complicated by the fact that in such small
systems particles coming from the decay of strong resonances play
a significant role [28]; simple chemical model calculations show
that this influence should be relatively smaller for kaons than for
pions. So far, no model calculations are known in the literature for
any KK correlations in pp collisions for mT � 0.7 GeV/c2, but the
results measured in the present study should act as a motivation
for such calculations.

4. Summary

In summary, identical neutral kaon pair correlations have
been measured in

√
s = 7 TeV pp collisions in the ALICE exper-

iment. One-dimensional K0
s K0

s correlation functions in terms of
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the invariant momentum difference of kaon pairs were formed in
two multiplicity and two transverse momentum ranges. The fem-
toscopic kaon source parameters R and λ have been extracted. The
fit includes quantum statistics and final-state interactions of the
a0/f0 resonance. K0

s K0
s correlations show an increase in R for in-

creasing multiplicity and a slight decrease in R for increasing mT
as seen in ππ correlations in the pp system and in heavy-ion col-
lisions. Within uncertainties, mT scaling is also observed for the
K0

s K0
s and ππ radii.
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Federal Agency of Science of the Ministry of Education and Sci-
ence of Russian Federation, International Science and Technology
Center, Russian Academy of Sciences, Russian Federal Agency of
Atomic Energy, Russian Federal Agency for Science and Innovations
and CERN-INTAS;

Ministry of Education of Slovakia;
Department of Science and Technology, South Africa;
CIEMAT, EELA, Ministerio de Educación y Ciencia of Spain,

Xunta de Galicia (Consellería de Educación), CEADEN, Cubaenergía,
Cuba, and IAEA (International Atomic Energy Agency);

Swedish Research Council (VR) and Knut & Alice Wallenberg
Foundation (KAW);

Ukraine Ministry of Education and Science;
United Kingdom Science and Technology Facilities Council

(STFC);
The United States Department of Energy, the United States Na-

tional Science Foundation, the State of Texas, and the State of Ohio.

Open access

This article is published Open Access at sciencedirect.com. It
is distributed under the terms of the Creative Commons Attribu-
tion License 3.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original authors and
source are credited.

References

[1] K. Aamodt, et al., ALICE Collaboration, JINST 3 (2008) S08002.
[2] K. Aamodt, et al., ALICE Collaboration, Eur. Phys. J. C 68 (2010) 345.
[3] M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55 (2005)

357.
[4] K. Aamodt, et al., ALICE Collaboration, Phys. Rev. D 84 (2011) 112004,

arXiv:1101.3665.
[5] V. Khachatryan, et al., CMS Collaboration, JHEP 1105 (2011) 029, arXiv:

1101.3518 [hep-ex].
[6] H.J. Lipkin, Phys. Lett. B 219 (1989) 474.
[7] H.J. Lipkin, Phys. Rev. Lett. 69 (1992) 3700, hep-ph/9212255.
[8] G. Alexander, H.J. Lipkin, Phys. Lett. B 456 (1999) 270, hep-ph/9903205.
[9] P. Abreu, et al., DELPHI Collaboration, Phys. Lett. B 379 (1996) 330.

[10] S. Schael, et al., ALEPH Collaboration, Phys. Lett. B 611 (2005) 66.
[11] G. Abbiendi, et al., OPAL Collaboration, Eur. J. Phys. C 21 (2001) 23.
[12] S. Chekanov, et al., ZEUS Collaboration, Phys. Lett. B 652 (2007) 1.
[13] B.I. Abelev, et al., STAR Collaboration, Phys. Rev. C 74 (2006) 054902.
[14] T. Sjostrand, L. Lonnblad, S. Mrenna, P. Skands, hep-ph/0603175, March 2006.
[15] P.Z. Skands, arXiv:0905.3418, 2009.
[16] K. Aamodt, et al., ALICE Collaboration, Eur. Phys. J. C 71 (2011) 1594, arXiv:

1012.3257 [hep-ex].
[17] K. Nakamura, et al., Particle Data Group, J. Phys. G 37 (2010) 075021.
[18] R. Engel, Z. Phys. C 66 (1995) 203.
[19] R. Engel, J. Ranft, Phys. Rev. D 54 (1996) 4244, hep-ph/9509373.
[20] R. Lednicky, V.L. Lyuboshitz, Sov. J. Nucl. Phys. 35 (1982) 770.
[21] T.J. Humanic, Phys. Rev. C 76 (2007) 025205.
[22] K. Aamodt, et al., ALICE Collaboration, Phys. Lett. B 696 (2011) 328,

arXiv:1012.4035 [nucl-ex].
[23] A. Bialas, M. Kucharczyk, H. Palka, K. Zalewski, Phys. Rev. D 62 (2000) 114007,

hep-ph/0006290.
[24] A. Bialas, K. Zalewski, Acta Phys. Polon. B 30 (1999) 359, hep-ph/9901382.
[25] P. Bozek, Acta Phys. Polon. B 41 (2010) 837, arXiv:0911.2392 [nucl-th].
[26] K. Werner, K. Mikhailov, I. Karpenko, T. Pierog, arXiv:1104.2405 [hep-ph].
[27] D. Truesdale, T.J. Humanic, J. Phys. G: Nucl. Part. Phys. 39 (2012) 015011.
[28] A. Kisiel, Phys. Rev. C 84 (2011) 044913, arXiv:1012.1517 [nucl-th].

ALICE Collaboration

B. Abelev 68, J. Adam 33, D. Adamová 73, A.M. Adare 120, M.M. Aggarwal 77, G. Aglieri Rinella 29,
A.G. Agocs 60, A. Agostinelli 21, S. Aguilar Salazar 56, Z. Ahammed 116, A. Ahmad Masoodi 13, N. Ahmad 13,
S.A. Ahn 62, S.U. Ahn 63,36, A. Akindinov 46, D. Aleksandrov 88, B. Alessandro 94, R. Alfaro Molina 56,
A. Alici 97,9, A. Alkin 2, E. Almaráz Aviña 56, J. Alme 31, T. Alt 35, V. Altini 27, S. Altinpinar 14,

http://www.sciencedirect.com


ALICE Collaboration / Physics Letters B 717 (2012) 151–161 157

I. Altsybeev 117, C. Andrei 70, A. Andronic 85, V. Anguelov 82, J. Anielski 54, C. Anson 15, T. Antičić 86,
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D.B. Piyarathna 110, M. Płoskoń 67, J. Pluta 118, T. Pocheptsov 59, S. Pochybova 60, P.L.M. Podesta-Lerma 106,
M.G. Poghosyan 29,25, K. Polák 49, B. Polichtchouk 43, A. Pop 70, S. Porteboeuf-Houssais 63, V. Pospíšil 33,
B. Potukuchi 80, S.K. Prasad 119, R. Preghenella 97,9, F. Prino 94, C.A. Pruneau 119, I. Pshenichnov 44,



ALICE Collaboration / Physics Letters B 717 (2012) 151–161 159

S. Puchagin 87, G. Puddu 18, J. Pujol Teixido 51, A. Pulvirenti 23,29, V. Punin 87, M. Putiš 34,
J. Putschke 119,120, E. Quercigh 29, H. Qvigstad 17, A. Rachevski 92, A. Rademakers 29, S. Radomski 82,
T.S. Räihä 37, J. Rak 37, A. Rakotozafindrabe 11, L. Ramello 26, A. Ramírez Reyes 8, S. Raniwala 81,
R. Raniwala 81, S.S. Räsänen 37, B.T. Rascanu 52, D. Rathee 77, K.F. Read 112, J.S. Real 64, K. Redlich 100,57,
P. Reichelt 52, M. Reicher 45, R. Renfordt 52, A.R. Reolon 65, A. Reshetin 44, F. Rettig 35, J.-P. Revol 29,
K. Reygers 82, L. Riccati 94, R.A. Ricci 66, T. Richert 28, M. Richter 17, P. Riedler 29, W. Riegler 29,
F. Riggi 23,99, B. Rodrigues Fernandes Rabacal 29, M. Rodríguez Cahuantzi 1, A. Rodriguez Manso 72,
K. Røed 14, D. Rohr 35, D. Röhrich 14, R. Romita 85, F. Ronchetti 65, P. Rosnet 63, S. Rossegger 29,
A. Rossi 29,19, C. Roy 58, P. Roy 89, A.J. Rubio Montero 7, R. Rui 20, E. Ryabinkin 88, A. Rybicki 104,
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