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The elliptic, v2, triangular, v3, and quadrangular, v4, azimuthal anisotropic flow coefficients are measured
for unidentified charged particles, pions, and (anti-)protons in Pb–Pb collisions at

√
sNN = 2.76 TeV with

the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle
cumulant methods are reported for the pseudo-rapidity range |η| < 0.8 at different collision centralities
and as a function of transverse momentum, pT, out to pT = 20 GeV/c. The observed non-zero elliptic
and triangular flow depends only weakly on transverse momentum for pT > 8 GeV/c. The small pT
dependence of the difference between elliptic flow results obtained from the event plane and four-
particle cumulant methods suggests a common origin of flow fluctuations up to pT = 8 GeV/c. The
magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least
pT = 8 GeV/c indicating that the particle type dependence persists out to high pT.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.
The goal of ultra-relativistic nucleus–nucleus collisions is to
study nuclear matter under extreme conditions. For non-central
collisions, in the plane perpendicular to the beam direction, the
geometrical overlap region, where the highly Lorentz contracted
nuclei intersect and where the initial interactions occur, is az-
imuthally anisotropic. This initial spatial asymmetry is converted
via interactions into an anisotropy in momentum space, a phe-
nomenon referred to as transverse anisotropic flow (for a review
see [1]). Anisotropic flow has become a key observable for the
characterization of the properties and the evolution of the system
created in a nucleus–nucleus collision.

Identified particle anisotropic flow provides valuable informa-
tion on the particle production mechanism in different trans-
verse momentum, pT, regions [1]. For pT < 2–3 GeV/c, the flow
pattern of different particle species is qualitatively described
by hydrodynamic model calculations [2]. At intermediate pT,
3 < pT < 6 GeV/c, the observed flow of the baryons is larger than
that of the mesons [3,4]. For pT � 8 GeV/c, the fragmentation of
high-energy partons, resulting from initial hard scatterings, is ex-
pected to play the dominant role. While traversing the hot and
dense matter these partons experience collisional and radiative en-
ergy loss [5,6], which are strongly dependent on the thickness of
the created medium [7]. In the azimuthally asymmetric system,
the energy loss depends on the azimuthal emission angle of the
parton, which leads to an azimuthal anisotropy in particle produc-
tion at high pT [8,9].

✩ © CERN for the benefit of the ALICE Collaboration.

The magnitude of the anisotropic flow is characterized by the
coefficients in the Fourier expansion of the azimuthal distribution
of particles with respect to the collision symmetry plane [10,11]:

vn(pT, η) = 〈
cos

[
n(φ − Ψn)

]〉
, (1)

where pT, η, and φ are the particle’s transverse momentum,
pseudo-rapidity, and the azimuthal angle, respectively, and Ψn is
the n-th harmonic symmetry plane angle. For a smooth matter
distribution in the colliding nuclei, the symmetry planes of all
harmonics coincide with the reaction plane defined by the beam
direction and the impact parameter, the vector connecting the cen-
ters of the two colliding nuclei at closest approach. In this case, for
particles produced at midrapidity, all odd Fourier coefficients are
zero by symmetry. Due to event-by-event fluctuations of the posi-
tions of the participating nucleons inside the nuclei, the shape of
the initial energy density of the heavy-ion collision in general is
not symmetric with respect to the reaction plane, and the Ψn may
deviate from the reaction plane. This gives rise to non-zero odd
harmonic coefficients [12–18], and contributes to the difference in
flow coefficients calculated from two- or multi-particle azimuthal
correlations, and also to the difference in vn measured with re-
spect to different harmonic symmetry planes.

Large elliptic flow, v2, and significant triangular flow, v3, were
observed at the Relativistic Heavy Ion Collider (RHIC) [19–21]
and at the Large Hadron Collider (LHC) [22–28]. In this Let-
ter we present the measurement of unidentified charged parti-
cle anisotropic flow out to pT = 20 GeV/c, and for protons and
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charged pions1 out to pT = 16 GeV/c. We also present unidenti-
fied charged particle quadrangular flow, v4, measured with respect
to the second (Ψ2) and fourth (Ψ4) harmonic symmetry planes.

The data sample recorded by ALICE during the 2010 heavy-
ion run at the LHC is used for this analysis. Detailed descriptions
of the ALICE detector can be found in [29–31]. The Time Pro-
jection Chamber (TPC) was used to reconstruct charged particle
tracks and measure their momenta with full azimuthal coverage
in the pseudo-rapidity range |η| < 0.8, and for particle identifica-
tion via the specific ionization energy loss, dE/dx, in the trans-
verse momentum region pT > 3 GeV/c. Two scintillator arrays
(VZERO) which cover the pseudo-rapidity ranges −3.7 < η < −1.7
and 2.8 < η < 5.1 were used for triggering, and the determina-
tion of centrality [32] and symmetry planes. The trigger conditions
and the event selection criteria are identical to those described
in [22,23,32]. Approximately 107 minimum-bias Pb–Pb events with
a reconstructed primary vertex within ±10 cm from the nominal
interaction point in the beam direction are used for this analy-
sis. Charged particles reconstructed in the TPC in |η| < 0.8 and
0.2 < pT < 20 GeV/c were selected. The charged track quality cuts
described in [22] were applied to minimize contamination from
secondary charged particles and fake tracks. The charged parti-
cle track reconstruction efficiency and contamination were esti-
mated from HIJING Monte Carlo simulations [33] combined with
a GEANT3 [34] detector model, and found to be independent of
the collision centrality. The reconstruction efficiency, which may
bias the determination of the pT averaged flow, increases from 70%
to 80% for particles with 0.2 < pT < 1 GeV/c and remains con-
stant at 80 ± 5% for pT > 1 GeV/c. The estimated contamination
by secondary charged particles from weak decays and photon con-
versions is less than 6% at pT = 0.2 GeV/c and falls below 1% for
pT > 1 GeV/c.

The selection of pions and protons at pT > 3 GeV/c is based on
the measurement of the dE/dx in the TPC, following the procedure
described in [35]. Enriched pion (proton) samples are obtained
by selecting tracks from the upper (lower) part of the expected
pion (proton) dE/dx distribution. For example, protons were typi-
cally selected, depending on their momentum, in the range from 0
to −3σ or from −1.5σ to −4.5σ around their nominal value in
dE/dx, where σ is the energy loss resolution. Note that dE/dx of
pions is larger than that of protons in the pT range used for this
study. The track selection criteria have been adjusted to keep the
contamination by other particle species below 1% for pions and
below 15% for protons. The pion and proton v2 and v3 are not cor-
rected for this contamination. The systematic uncertainties in v2
and v3 related to the purity of the pion and proton samples are 2%
for pT < 8 GeV/c and 10% for pT � 8 GeV/c.

The flow coefficients vn are measured using the event plane
method (vn{EP} [1]) and the four-particle cumulant technique
(vn{4} [36]), which have different sensitivity to flow fluctuations
and correlations unrelated to the azimuthal asymmetry in the ini-
tial geometry (“non-flow”). The non-flow contribution to vn{4} is
estimated to be negligible from analytic calculations and Monte
Carlo simulations [37–39]. The contribution from flow fluctuations
was shown to be negative for vn{4} and positive for vn{EP} [1].

The orientation of the symmetry planes Ψn is estimated with
the event plane angle determined from the azimuthal distribu-
tion of hits measured by the VZERO scintillators. The correspond-
ing event plane resolution is estimated from correlations between
event planes determined in the TPC and the two VZERO detectors.
The large gap in pseudo-rapidity between the charged particles in
the TPC and those in the VZERO detectors greatly suppresses non-

1 In this analysis we do not differentiate between particle and antiparticle.

flow contributions, which largely come from the inter-jet correla-
tions and resonance decays and are narrow in rapidity. An estimate
of the remaining non-flow contributions is obtained by rescaling
the correlation measured in pp collisions under the assumption
that it scales inversely proportional to the total multiplicity. It was
observed that the two-particle azimuthal correlations in pp and
the most peripheral Au–Au collisions at

√
sNN = 0.2 TeV are very

similar [40], which suggests that non-flow dominates correlations
in the centrality range 80–90%. The systematic uncertainty from
the remaining non-flow, δcent

n , in the measured vn{EP} coefficients
was estimated based on the equation:

δcent
n = v80–90%

n

√
M80–90%

Mcent , (2)

where v80–90%
n and M80–90% are the magnitude of vn and average

multiplicity for the centrality range 80–90%, respectively, and Mcent

is the average multiplicity in a given centrality class. The non-
flow increases with pT and from central to peripheral collisions.
For example, the non-flow contributions to v2 in 5–10% (40–50%)
most central collisions are about 1% (2%) at pT = 1 GeV/c and
reach up to 10% (12%) for pT > 10 GeV/c. Other sources of sys-
tematic uncertainties were evaluated from the variation of the
results with different cuts on the reconstructed collision vertex
and the centrality estimated from the charged particle multiplic-
ity measured in the TPC and VZERO detectors. Changes due to
variations of the track selection criteria and the difference of the
results obtained using only positively or negatively charged par-
ticles were considered as a part of the systematic error. The dif-
ference in the extracted coefficients using one or the other of the
two VZERO detectors was found to be below 1% for v2 and v3,
and below 5% for v4 over the measured region of transverse mo-
mentum. The combined results from correlations with both VZERO
detectors are denoted as vn{EP, |�η| > 2.0} in the following. The
contributions from all sources were added in quadrature as an
estimate of the total systematic uncertainty. The resulting sys-
tematic uncertainties in v2 are 3% for 0.9 < pT < 1 GeV/c and
+3
−11% (+3

−12%) for 9 < pT < 10 GeV/c in the 5–10% (40–50%) central-
ity class. The resulting systematic uncertainties in v3 are 3% for
0.9 < pT < 1 GeV/c and increase to 6% (10%) for 7 < pT < 9 GeV/c
for centrality 5–10% (40–50%). We assign an 8% (16%) systematic
uncertainty to v4 for 0.9 < pT < 1 GeV/c in the 5–10% (40–50%)
centrality class, while for pT > 6 GeV/c the systematic uncertainty
is dominated by non-flow contributions.

Fig. 1 shows unidentified charged particle v2, v3, and v4
as a function of transverse momentum for different centrality
classes. The difference between v2{EP} and v2{4} for pT < 7 GeV/c
is predominantly due to flow fluctuations. The measured v2 at
pT > 8 GeV/c is non-zero, positive and approximately constant,
while its value increases from central to mid-peripheral colli-
sions. In the 20–50% centrality range, the observed v2{EP} at
pT > 10 GeV/c is fairly well described by extrapolation to the
LHC energy [41] of the WHDG model calculations [42] for v2
of neutral pions including collisional and radiative energy loss of
partons in a Bjorken-expanding medium [43]. The coefficient v3
exhibits a weak centrality dependence with a magnitude signifi-
cantly smaller than that of v2, except for the most central colli-
sions. Unlike v3, which originates entirely from fluctuations of the
initial geometry of the system, v4 has two contributions, which
are probed by correlations with the Ψ2 and Ψ4 symmetry planes.
The measured v4/Ψ4 {EP} does not depend strongly on the collision
centrality which points to a strong contribution from flow fluctua-
tions. In contrast, v4/Ψ2 {EP} shows a strong centrality dependence
which is typical for correlations with respect to the true reaction



20 ALICE Collaboration / Physics Letters B 719 (2013) 18–28
Fig. 1. (Color online.) v2, v3, and v4 measured for unidentified charged particles as a function of transverse momentum for various centrality classes. The dashed line
represents the WHDG model calculations for neutral pions v2 [43] extrapolated to the LHC collision energy. For clarity, the markers for v3 and v4/Ψ2 results are slightly
shifted along the horizontal axis. Note that the highest pT data point for v4/Ψ4 in 5–10% centrality is out of the plotting range. Error bars (shaded boxes) represent the
statistical (systematic) uncertainties.

Fig. 2. (Color online.) Comparison of the ALICE results on vn(pT) obtained with the event plane method to the analogous measurements from ATLAS [26] and CMS [27]
collaborations, as well as v measurements by STAR [44]. Only statistical errors are shown.
2

plane. The difference between the two, indicative of flow fluctua-
tions, persists at least up to pT = 8 GeV/c.

Fig. 2 compares our results obtained with the event plane
method for 30–40% centrality to the analogous measurements by
ATLAS [26] and CMS [27] collaborations, and results obtained at
RHIC by the STAR Collaboration [44]. An excellent agreement is
observed between results from all three LHC experiments. v2(pT)

at top RHIC energy has a peak value about 10% lower than at LHC
although it is very similar in shape.

To investigate further the role of flow fluctuations at differ-
ent transverse momenta we study the relative difference between
v2{EP} and v2{4}, [(v2{EP}2 − v2{4}2)/(v2{EP}2 + v2{4}2)]1/2,
which for small non-flow is proportional to the relative flow fluc-

tuations σv2/〈v2〉 [1]. Fig. 3 presents this quantity as a function of
transverse momentum for various centrality classes. The relative
flow fluctuations are minimal for mid-central collisions and be-
come larger for peripheral and central collisions, similar to those
observed at RHIC energies [1]. It is remarkable that in the 5–30%
centrality range, relative flow fluctuations are within errors in-
dependent of momentum up to pT ∼ 8 GeV/c, far beyond the
region where the flow magnitude is well described by hydrody-
namic models (pT < 2–3 GeV/c). This indicates a common origin
for flow fluctuations, which are usually associated with fluctua-
tions of the initial collision geometry, at least up to the regime
where hard scattering and jet energy loss are expected to dom-
inate. The ratio develops a momentum dependence, starting to
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Fig. 3. (Color online.) Relative event-by-event elliptic flow fluctuations for unidentified charged particles versus transverse momentum for different centrality classes. For
clarity, the markers for centrality classes � 10% are slightly shifted along the horizontal axis. Error bars (shaded boxes) represent the statistical (systematic) uncertainties.

Fig. 4. (Color online.) Unidentified charged particle v2, v3, and v4 integrated over the transverse momentum range 10 < pT < 20 GeV/c as a function of collision centrality,
with the more central (peripheral) collisions shown on the left-(right-)hand side, respectively. The dashed line represents the WHDG model calculations for neutral pions [43]
extrapolated to the LHC collision energy. Error bars (shaded boxes) represent the statistical (systematic) uncertainties.
increase at pT ∼ 1.5 GeV/c, for more peripheral collisions (30–
50%), and in most central collisions (0–5%), where it is most
pronounced. In both cases, the relative contribution of non-flow
effects is expected to be the largest.

Fig. 4 shows unidentified charged particle v2, v3, and v4 aver-
aged over 10 < pT < 20 GeV/c as a function of centrality. v2 in-
creases from central to peripheral collisions. No significant differ-
ence between v2{EP} and v2{4} results is observed, which might
indicate that the fluctuations of the initial collision geometry be-
come unimportant for pT > 10 GeV/c. The centrality dependence
of v3 differs significantly from that of v2. v4 measured with re-
spect to the second and fourth harmonic symmetry planes is con-
sistent with zero within relatively large uncertainties. All these
observations indicate that for pT > 10 GeV/c the effect of fluc-
tuations of the initial collision geometry on the final momentum
anisotropy might be very different compared to that at low and
intermediate pT.

Fig. 5 presents charged pion and proton v2 and v3 as a func-
tion of pT in the 10–50% centrality range from the event plane
method. The proton v2 and v3 are higher than that of pions
out to pT = 8 GeV/c where the uncertainties become large. This
behavior is qualitatively consistent with a picture where parti-
cle production in this intermediate pT region includes interac-
tion of jet fragments with bulk matter, e.g. as in model [45].
The magnitude of the measured charged pion elliptic flow for
pT > 8 GeV/c is compatible with that for unidentified charged
particles, and π0 measured by PHENIX [46] in Au–Au collisions
at

√
sNN = 0.2 TeV, and reproduced by the WHDG model calcula-

tions for v2 of neutral pions [43]. The unidentified charged par-
ticle, pion, and proton v3 are the same within uncertainties for
pT > 8 GeV/c.

In summary, we have presented elliptic, triangular, and quad-
rangular flow coefficients measured by the ALICE Collaboration
in Pb–Pb collisions at

√
sNN = 2.76 TeV over a broad range of
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Fig. 5. (Color online.) v2 (top) and v3 (bottom) of charged pion and proton
as a function of transverse momentum for 10–50% centrality class compared to
unidentified charged particles results from the event plane method. For clarity, the
markers for v2 and v3 at pT > 8 GeV/c are slightly shifted along the horizontal
axis. PHENIX π0 v2 measurements [46] are also shown. The dashed line represents
the WHDG model calculations for neutral pions [43] extrapolated to the LHC col-
lision energy for the 20–50% centrality range. Error bars (shaded boxes) represent
the statistical (systematic) uncertainties.

transverse momentum. For pT > 8 GeV/c, we find that the uniden-
tified charged particle v2 in 0–70% and v3 in 0–20% centrality
ranges are finite, positive and only weakly dependent on trans-
verse momentum, while v3 for 20–50% and v4 for 5–50% cen-
trality are consistent with zero within rather large statistical and
systematic uncertainties. The observed difference in the centrality
dependence of v4/Ψ4 and v4/Ψ2 , and the results on v2 obtained
with the event plane and four-particle cumulant methods indi-
cate that the effect of flow fluctuations extends at least up to
pT = 8 GeV/c and does not change significantly in magnitude,
except for very central collisions. It shows that the effect of fluc-
tuations of the initial collision geometry on particle production is
similar at low and intermediate pT regions, which are considered
to be dominated by hydrodynamical flow and quark coalescence,
respectively. For pT > 10 GeV/c, where particle production is dom-
inated by fragmentation of hard partons, the response to fluctua-
tions of the initial collision geometry might be different, but more
data is needed to study this regime in more detail. The pion v2
at LHC energies is very close to that measured at RHIC out to
pT = 16 GeV/c and is reproduced by WHDG model calculations
for pT > 8 GeV/c. The proton v2 and v3 are finite, positive, and
have a larger magnitude than that of the pion for pT < 8 GeV/c,
indicating that the particle type dependence, which is typical at
low pT, persists out to intermediate transverse momenta. The pion

and proton v3 are consistent with zero within uncertainties for
pT > 8 GeV/c.
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S. Bjelogrlic 2, F. Blanco 55, F. Blanco 69, D. Blau 115, C. Blume 20, N. Bock 59, S. Böttger 57, A. Bogdanov 16,
H. Bøggild 116, M. Bogolyubsky 45, L. Boldizsár 126, M. Bombara 13, J. Book 20, H. Borel 123, A. Borissov 94,
S. Bose 12, F. Bossú 24, M. Botje 32, B. Boyer 35, E. Braidot 10, P. Braun-Munzinger 73, M. Bregant 78,
T. Breitner 57, T.A. Browning 96, M. Broz 63, R. Brun 25, E. Bruna 92, G.E. Bruno 97, D. Budnikov 93,
H. Buesching 20, S. Bufalino 92, K. Bugaiev 105, O. Busch 11, Z. Buthelezi 89, D. Caffarri 3, X. Cai 66,
H. Caines 119, E. Calvo Villar 33, P. Camerini 30, V. Canoa Roman 48, G. Cara Romeo 117, F. Carena 25,
W. Carena 25, F. Carminati 25, A. Casanova Díaz 9, J. Castillo Castellanos 123, E.A.R. Casula 61,
V. Catanescu 49, C. Cavicchioli 25, C. Ceballos Sanchez 71, J. Cepila 75, P. Cerello 92, B. Chang 29,
S. Chapeland 25, J.L. Charvet 123, S. Chattopadhyay 12, S. Chattopadhyay 52, I. Chawla 87, M. Cherney 112,
C. Cheshkov 39, B. Cheynis 39, E. Chiavassa 92, V. Chibante Barroso 25, D.D. Chinellato 113, P. Chochula 25,
M. Chojnacki 2, S. Choudhury 52, P. Christakoglou 32, C.H. Christensen 116, P. Christiansen 107, T. Chujo 62,
S.U. Chung 76, C. Cicalo 27, L. Cifarelli 47, F. Cindolo 117, J. Cleymans 89, F. Coccetti 60, F. Colamaria 97,

http://www.sciencedirect.com
http://aliweb.cern.ch/node/21417
http://aliweb.cern.ch/node/21417


24 ALICE Collaboration / Physics Letters B 719 (2013) 18–28

D. Colella 97, G. Conesa Balbastre 56, Z. Conesa del Valle 25, P. Constantin 11, G. Contin 30, J.G. Contreras 48,
T.M. Cormier 94, Y. Corrales Morales 24, I. Cortés Maldonado 77, P. Cortese 118, M.R. Cosentino 10,
F. Costa 25, M.E. Cotallo 55, P. Crochet 5, E. Cruz Alaniz 103, E. Cuautle 72, L. Cunqueiro 9, G. D’Erasmo 97,
A. Dainese 104, H.H. Dalsgaard 116, A. Danu 36, D. Das 12, I. Das 35, K. Das 12, A. Dash 113, S. Dash 124,
S. De 52, G.O.V. de Barros 46, A. De Caro 60,iii, G. de Cataldo 90, J. de Cuveland 51, A. De Falco 61,
D. De Gruttola 42, N. De Marco 92, S. De Pasquale 42, R. de Rooij 2, H. Delagrange 78, A. Deloff 82,
V. Demanov 93, E. Dénes 126, A. Deppman 46, D. Di Bari 97, C. Di Giglio 97, S. Di Liberto 100, A. Di Mauro 25,
P. Di Nezza 9, M.A. Diaz Corchero 55, T. Dietel 99, R. Divià 25, Ø. Djuvsland 83, A. Dobrin 94,∗,
T. Dobrowolski 82, I. Domínguez 72, B. Dönigus 73, O. Dordic 21, O. Driga 78, A.K. Dubey 52, L. Ducroux 39,
P. Dupieux 5, A.K. Dutta Majumdar 12, M.R. Dutta Majumdar 52, D. Elia 90, D. Emschermann 99, H. Engel 57,
H.A. Erdal 18, B. Espagnon 35, M. Estienne 78, S. Esumi 62, D. Evans 31, G. Eyyubova 21, D. Fabris 104,
J. Faivre 56, D. Falchieri 47, A. Fantoni 9, M. Fasel 73, R. Fearick 89, A. Fedunov 38, D. Fehlker 83,
L. Feldkamp 99, D. Felea 36, B. Fenton-Olsen 10, G. Feofilov 58, A. Fernández Téllez 77, A. Ferretti 24,
R. Ferretti 118, J. Figiel 14, M.A.S. Figueredo 46, S. Filchagin 93, D. Finogeev 80, F.M. Fionda 97, E.M. Fiore 97,
M. Floris 25, S. Foertsch 89, P. Foka 73, S. Fokin 115, E. Fragiacomo 108, U. Frankenfeld 73, U. Fuchs 25,
C. Furget 56, M. Fusco Girard 42, J.J. Gaardhøje 116, M. Gagliardi 24, A. Gago 33, M. Gallio 24,
D.R. Gangadharan 59, P. Ganoti 111, C. Garabatos 73, E. Garcia-Solis 120, I. Garishvili 125, J. Gerhard 51,
M. Germain 78, C. Geuna 123, A. Gheata 25, M. Gheata 25,iv, B. Ghidini 97, P. Ghosh 52, P. Gianotti 9,
M.R. Girard 95, P. Giubellino 25, E. Gladysz-Dziadus 14, P. Glässel 11, R. Gomez 67, A. Gonschior 73,
E.G. Ferreiro 106, L.H. González-Trueba 103, P. González-Zamora 55, S. Gorbunov 51, A. Goswami 53,
S. Gotovac 114, V. Grabski 103, L.K. Graczykowski 95, R. Grajcarek 11, A. Grelli 2, A. Grigoras 25,
C. Grigoras 25, V. Grigoriev 16, A. Grigoryan 7, S. Grigoryan 38, B. Grinyov 105, N. Grion 108,
J.F. Grosse-Oetringhaus 25, J.-Y. Grossiord 39, R. Grosso 25, F. Guber 80, R. Guernane 56,
C. Guerra Gutierrez 33, B. Guerzoni 47, M. Guilbaud 39, K. Gulbrandsen 116, T. Gunji 22, A. Gupta 37,
R. Gupta 37, H. Gutbrod 73, Ø. Haaland 83, C. Hadjidakis 35, M. Haiduc 36, H. Hamagaki 22, G. Hamar 126,
L.D. Hanratty 31, A. Hansen 116, Z. Harmanova 13, J.W. Harris 119, M. Hartig 20, D. Hasegan 36,
D. Hatzifotiadou 117, A. Hayrapetyan 7,v, S.T. Heckel 20, M. Heide 99, H. Helstrup 18, A. Herghelegiu 49,
G. Herrera Corral 48, N. Herrmann 11, B.A. Hess 1, K.F. Hetland 18, B. Hicks 119, P.T. Hille 119, B. Hippolyte 98,
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H. Sakaguchi 109, S. Sakai 10, D. Sakata 62, C.A. Salgado 106, J. Salzwedel 59, S. Sambyal 37, V. Samsonov 88,
X. Sanchez Castro 98, L. Šándor 84, A. Sandoval 103, M. Sano 62, S. Sano 22, R. Santo 99, R. Santoro 25,xi,
J. Sarkamo 29, E. Scapparone 117, F. Scarlassara 3, R.P. Scharenberg 96, C. Schiaua 49, R. Schicker 11,
C. Schmidt 73, H.R. Schmidt 1, S. Schreiner 25, S. Schuchmann 20, J. Schukraft 25, Y. Schutz 78,v,
K. Schwarz 73, K. Schweda 73, G. Scioli 47, E. Scomparin 92, P.A. Scott 31, R. Scott 44, G. Segato 3,
I. Selyuzhenkov 73, S. Senyukov 118, J. Seo 76, S. Serci 61, E. Serradilla 103,xii, A. Sevcenco 36, A. Shabetai 78,
G. Shabratova 38, R. Shahoyan 25, N. Sharma 87, S. Sharma 37, K. Shigaki 109, M. Shimomura 62,
K. Shtejer 71, Y. Sibiriak 115, M. Siciliano 24, E. Sicking 25, S. Siddhanta 27, T. Siemiarczuk 82,
D. Silvermyr 111, C. Silvestre 56, G. Simatovic 15, G. Simonetti 25, R. Singaraju 52, R. Singh 37, S. Singha 52,
V. Singhal 52, B.C. Sinha 52, T. Sinha 12, B. Sitar 63, M. Sitta 118, T.B. Skaali 21, K. Skjerdal 83, R. Smakal 75,
N. Smirnov 119, R.J.M. Snellings 2, C. Søgaard 116, R. Soltz 125, H. Son 65, J. Song 76, M. Song 6, C. Soos 25,
F. Soramel 3, I. Sputowska 14, M. Spyropoulou-Stassinaki 101, B.K. Srivastava 96, J. Stachel 11, I. Stan 36,
G. Stefanek 82, G. Stefanini 25, T. Steinbeck 51, M. Steinpreis 59, E. Stenlund 107, G. Steyn 89, J.H. Stiller 11,
D. Stocco 78, M. Stolpovskiy 45, K. Strabykin 93, P. Strmen 63, A.A.P. Suaide 46, M.A. Subieta Vásquez 24,
T. Sugitate 109, C. Suire 35, M. Sukhorukov 93, R. Sultanov 28, M. Šumbera 102, T. Susa 15,
A. Szanto de Toledo 46, I. Szarka 63, A. Szczepankiewicz 14, A. Szostak 83, M. Szymanski 95, J. Takahashi 113,
J.D. Tapia Takaki 35, A. Tauro 25, G. Tejeda Muñoz 77, A. Telesca 25, C. Terrevoli 97, J. Thäder 73, D. Thomas 2,
R. Tieulent 39, A.R. Timmins 69, A. Toia 51, H. Torii 22, F. Tosello 92, W.H. Trzaska 29, T. Tsuji 22,



26 ALICE Collaboration / Physics Letters B 719 (2013) 18–28

A. Tumkin 93, R. Turrisi 104, T.S. Tveter 21, J. Ulery 20, K. Ullaland 83, J. Ulrich 57, A. Uras 39, J. Urbán 13,
G.M. Urciuoli 100, G.L. Usai 61, M. Vajzer 102, M. Vala 38,vii, L. Valencia Palomo 35, S. Vallero 11,
N. van der Kolk 32, M. van Leeuwen 2, P. Vande Vyvre 25, L. Vannucci 17, A. Vargas 77, R. Varma 124,
M. Vasileiou 101, A. Vasiliev 115, V. Vechernin 58, M. Veldhoen 2, M. Venaruzzo 30, E. Vercellin 24,
S. Vergara 77, R. Vernet 50, M. Verweij 2, L. Vickovic 114, G. Viesti 3, O. Vikhlyantsev 93, Z. Vilakazi 89,
O. Villalobos Baillie 31, A. Vinogradov 115, L. Vinogradov 58, Y. Vinogradov 93, T. Virgili 42, Y.P. Viyogi 52,
A. Vodopyanov 38, K. Voloshin 28, S. Voloshin 94, G. Volpe 25, B. von Haller 25, D. Vranic 73, G. Øvrebekk 83,
J. Vrláková 13, B. Vulpescu 5, A. Vyushin 93, B. Wagner 83, V. Wagner 75, R. Wan 66, D. Wang 66,
M. Wang 66, Y. Wang 11, Y. Wang 66, K. Watanabe 62, M. Weber 69, J.P. Wessels 25,xiii, U. Westerhoff 99,
J. Wiechula 1, J. Wikne 21, M. Wilde 99, A. Wilk 99, G. Wilk 82, M.C.S. Williams 117, B. Windelband 11,
L. Xaplanteris Karampatsos 79, C.G. Yaldo 94, Y. Yamaguchi 22, H. Yang 123, S. Yang 83, S. Yasnopolskiy 115,
J. Yi 76, Z. Yin 66, I.-K. Yoo 76, J. Yoon 6, W. Yu 20, X. Yuan 66, I. Yushmanov 115, C. Zach 75, C. Zampolli 117,
S. Zaporozhets 38, A. Zarochentsev 58, P. Závada 23, N. Zaviyalov 93, H. Zbroszczyk 95, P. Zelnicek 57,
I.S. Zgura 36, M. Zhalov 88, H. Zhang 66, X. Zhang 66,viii, D. Zhou 66, F. Zhou 66, Y. Zhou 2, J. Zhu 66, X. Zhu 66,
A. Zichichi 47,xi, A. Zimmermann 11, G. Zinovjev 105, Y. Zoccarato 39, M. Zynovyev 105, M. Zyzak 20

1 Eberhard Karls Universität Tübingen, Tübingen, Germany
2 Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
3 Dipartimento di Fisica dell’Università and Sezione INFN, Padova, Italy
4 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
5 Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France
6 Yonsei University, Seoul, South Korea
7 Yerevan Physics Institute, Yerevan, Armenia
8 Scientific Research Technological Institute of Instrument Engineering, Kharkov, Ukraine
9 Laboratori Nazionali di Frascati, INFN, Frascati, Italy
10 Lawrence Berkeley National Laboratory, Berkeley, CA, United States
11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 Saha Institute of Nuclear Physics, Kolkata, India
13 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
14 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
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