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1. Introduction

Measuring the top quark pair (tt) production cross section
(σtt) in different decay channels is of interest because it can
open a window to physics beyond the Standard Model (SM).
In the SM, the top quark decays with a branching ratio close to
100% into aW boson and ab quark, andtt pairs are identified
by either the hadronic or leptonic decays of theW bosons and
the presence of additional jets. ATLAS has previously used the
single-lepton channel [1], and the dilepton channels including
only electrons and muons [2] to perform cross-section measure-
ments.

The large cross section fortt production at the LHC provides
an opportunity to measureσtt using final states with an elec-
tron or a muon and aτ lepton with high precision. Theσtt in
this channel has been measured at the Tevatron with 25% pre-
cision [6] and recently by the CMS Collaboration at the LHC
with 18% precision [7]. A deviation fromσtt measured in other
channels would be an indication of non-Standard Model decays
of the top quark, such as a decay to a charged Higgs (H+) and
a b quark with H+ decaying to aτ lepton and aτ neutrino,
or contributions from non-Standard Model processes [3, 4, 5].
ATLAS has set upper limits on the branching ratio of top quark
decays to anH+ bosons decaying to aτ lepton and a neutrino
[8].

This analysis uses 2.05 fb−1 of data collected by ATLAS at
the LHC fromppcollisions at a centre-of-mass energy of 7 TeV
between March and August 2011. After application of kine-
matic selection criteria that require one top quark to decayvia
W→ ℓν (whereℓ is either a muon or an electron) and identifica-
tion of a jet as originating from ab quark (b-tag), the dominant
background to thett → ℓ + τ + X channels with theτ lepton
decaying hadronically is thett → ℓ + jets channel in which a
jet is misidentified as a hadronicτ lepton decay. Therefore,τ

lepton identification (τ ID) is critical for separating signal and
background. Theτ ID methodology employed in this analysis
exploits a multivariate technique to build a discriminant [9].
A boosted decision tree (BDT) algorithm is used [10]. The
number ofτ leptons in a sample is extracted by fitting the dis-
tributions of BDT outputs to background and signal templates.
The results are checked using an alternative method, referred to
as the “matrix method”, based on a cut on the BDT output.

2. ATLAS Detector

The ATLAS detector [11] at the LHC covers nearly the en-
tire solid angle around the collision point.1 It consists of an
inner tracking detector surrounded by a thin superconducting
solenoid, electromagnetic (EM) and hadronic calorimeters, and
an external muon spectrometer incorporating three large super-
conducting toroid magnet assemblies. The inner tracking de-
tector provides tracking information in a pseudorapidity range
|η| < 2.5. The liquid-argon (LAr) EM sampling calorimeters
cover a range of|η| < 3.2 with fine granularity. An iron–
scintillator tile calorimeter provides hadronic energy measure-
ments in the central rapidity range (|η| < 1.7). The endcap
and forward regions are instrumented with LAr calorimetersfor
both EM and hadronic energy measurements covering|η| < 4.9.
The muon spectrometer provides precise tracking information
in a range of|η| < 2.7.

1Atlas uses a right-handed coordinate system with its originat the nominal
interaction point in the centre of the detector and the z-axis along the beam
pipe. The x-axis points to the centre of the LHC ring, and the y-axis points
upwards. The azimuthal angleφ is measured around the beam axis and the
polar angleθ is the angle from the beam axis. The pseudorapidity is defined
as η = − ln[tan(θ/2)]. The distance∆R in η − φ space is defined as∆R =
√

(∆φ)2 + (∆η)2.
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ATLAS uses a three-level trigger system to select events. The
level-1 trigger is implemented in hardware using a subset ofde-
tector information to reduce the event rate below 75 kHz. This
is followed by two software based-trigger levels, level-2 and
the event filter, which together reduce the event rate to about
300 Hz recorded for analysis.

3. Simulated Event Samples

Monte Carlo (MC) simulation samples are used to optimise
selection procedures, to calculate the signal acceptance and to
evaluate contributions from some background processes.

For the tt and single top-quark final states, the next-to-
leading-order (NLO) generator MC@NLO [12] is used with a
top-quark mass of 172.5 GeV and with the NLO parton distribu-
tion function (PDF) set CTEQ6.6 [13]. The “diagram removal
scheme” is used to remove overlaps between the single top-
quark and thett final states. Thett cross section is normalised
to the prediction of HATHOR (164+11

−16 pb) [14], which employs
an approximate next-to-next-to-leading-order (NNLO) pertur-
bative QCD calculation.

For the background channels, MC samples ofW/Z, single
top-quark events and dibosonWW, WZ, andZZ events (all in
association with jets) are used.W+jets events andZ/γ∗+jets
events (with dilepton invariant massmℓ+ℓ− > 40 GeV) are gen-
erated by the ALPGEN generator [15] with up to five outgoing
partons from the hard scattering process, in addition to thevec-
tor bosons.2 The MLM matching scheme of the ALPGEN
generator is used to remove overlaps between matrix-element
and parton-shower products. Parton evolution and hadronisa-
tion is handled by HERWIG [16], as is the generation of dibo-
son events. The leading-order PDF set CTEQ6L is used for all
backgrounds described above.

All samples that use HERWIG for parton shower evolution
and hadronisation rely on JIMMY [17] for the underlying event
model. Theτ-lepton decays are handled by TAUOLA [18].
The effect of multiplepp interactions per bunch crossing (“pile-
up”) is modelled by overlaying simulated minimum bias events
over the original hard-scattering event [19]. MC events arethen
reweighted so that the distribution of interactions per crossing
in the MC simulation matches that observed in data. The aver-
age number of pile-up events in the sample is 6.3. After event
generation, all samples are processed with the GEANT4 [20]
simulation of the ATLAS detector, the trigger simulation and
are then subject to the same reconstruction algorithms as the
data [21].

4. Data and Event Selection

The event selection uses the same object definition as in thett
cross-section measurement in the dilepton channel [2] withthe
exception of aτ candidate instead of a second electron or muon
candidate and some minor adjustments. The electrons must be

2The fraction of events withmℓ+ℓ− < 40 GeV is estimated to be less than
0.2% of the total after all selections.

isolated and haveET > 25 GeV and|ηcluster| < 2.47, exclud-
ing the barrel-endcap transition region (1.37< |ηcluster| < 1.52),
whereET is the transverse energy andηclusteris the pseudorapid-
ity of the calorimeter energy cluster associated with the candi-
date.The electron is defined as isolated if theET deposited in the
calorimeter and not associated with the electron in a cone inη-φ
space of radius∆R = 0.2 is less than 4 GeV. The muons must
also be isolated and havepT > 20 GeV and|η| < 2.5. For iso-
lated muons, both the correspondingET and the analogous track
isolation transverse momentum (pT) must be less than 4 GeV
in a cone of∆R = 0.3. The track isolationpT is calculated
from the sum of the track transverse momenta for tracks with
pT > 1 GeV around the muon. Jets are reconstructed with the
anti-kt algorithm [22] with a radius parameterR= 0.4, starting
from energy deposits (clusters) in the calorimeter reconstructed
using the scale established for electromagnetic objects. These
jets are then calibrated to the hadronic energy scale usingpT-
and η-dependent correction factors obtained from simulation
[25]. The jet candidates are required to havepT > 25 GeV
and |η| < 2.5. Jets identified as originating from ab quark (b-
tag) by a vertex tagging algorithm are those that pass a decay
length significance cut corresponding to an efficiency of 70%
for b-quark jets fromtt events and a 1% efficiency for light-
quark and gluon jets [2, 26].

The missing transverse momentum is constructed from the
vector sum of all calorimeter cells with|η| < 4.5, projected
onto the transverse plane. Its magnitude is denotedEmiss

T . The
hadronic energy scale is used for the energies of cells associated
with jets; τ candidates are treated as jets. Contributions from
cells associated with electrons employ the electromagnetic en-
ergy calibration. Contributions from thepT of muon tracks are
included, removing the contributions of any calorimeter cells
associated with the muon.

4.1. τ Reconstruction and Identification

The reconstruction and identification of hadronically decay-
ing τ leptons proceeds as follows:

1. theτ candidate reconstruction starts by considering each
jet as aτ candidate;

2. energy clusters in the calorimeter associated with theτ
candidate are used to calculate kinematic quantities (such
asET) and the associated tracks are found;

3. identification variables are calculated from the tracking
and calorimeter information;

4. these variables are combined into multivariate discrimi-
nants and the outputs of the discriminants are used to sep-
arate jets and electrons misidentified asτ leptons decaying
hadronically fromτ leptons.

Details are given in Ref. 9. In this analysis the outputs of BDT
discriminants are used.

Reconstructedτ candidates are required to have 20 GeV<
ET < 100 GeV. They must also have|η| < 2.3, and one, two
or three associated tracks. A track is associated with theτ can-
didate if it haspT > 1 GeV and is inside a cone of∆R < 0.4
around the jet axis. The associated track with highestpT must
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havepT > 4 GeV. The charge is given by the sum of the charges
of the associated tracks, and is required to be non-zero. The
probability of misidentifying theτ lepton charge sign is about
1%. The charge misidentification rate for muons and electrons
is negligible.

If the τ candidate overlaps with a muon (pT > 4 GeV, no iso-
lation required) or an electron candidate within∆R(ℓ, τ) < 0.4,
theτ candidate is removed. To remove electrons misidentified
asτ leptons, an additional criterion is used that relies on a BDT
trained to separateτ leptons and electrons (BDTe) using seven
variables shown to be well modelled by comparingZ → e+e−

andZ → τ+τ− events in data and in MC simulation. The vari-
ables were chosen after ranking a large set by their effective-
ness.3 The most effective variables for BDTe are E/p, the
EM fraction (the ratio of theτ candidate energy measured in
the EM calorimeter to the totalτ candidate energy measured in
the calorimeter), and the cluster-based shower width. The BDT
output tends to be near 1 (0) if theτ candidate is aτ lepton
(electron). Theτ candidate is required to satisfy BDTe > 0.51;
85% of reconstructedτ leptons decaying hadronically satisfy
that requirement as measured inZ → τ+τ− events. The addi-
tional rejection for electrons is a factor of 60.

The majority of objects reconstructed asτ candidates in a
multi-jet environment are jets misidentified asτ leptons (fake
τ). Another BDT (BDTj) based on eight variables is used
to separateτ leptons inτ candidates with one track (denoted
τ1) from such jets. For candidates with more than one track
(denotedτ3) BDT j includes ten variables. The most effective
variables for BDTj are calorimeter and track isolation, cluster-
based jet mass, and the fraction of energy within∆R = 0.1 of
the jet axis. The BDTj distributions are fit with templates for
background and signal to extract the number ofτ leptons in
the sample. Details are given in Section 6. The fakeτ back-
ground in theτ3 sample is significantly higher than in theτ1
sample, leading to very different BDTj distributions. Hence in-
dependent measurements are carried out forτ1 andτ3 candidate
events and the results are combined at the end. If there is aτ1
and aτ3 candidate in the event, theτ1 candidate is kept as the
probability that theτ1 is aτ lepton is much higher. If there are
two τ1 or τ3 candidates, both are kept.

4.2. Event Selection

For this analysis, events are selected using a single-muon
trigger with apT threshold of 18 GeV or a single-electron trig-
ger with a pT threshold of 20 GeV, rising to 22 GeV during
periods of high instantaneous luminosity. The offline require-
ments are based on data quality criteria and optimised using
Monte Carlo simulation:

• a primary vertex with at least five tracks, each withpT >

400 MeV, associated with it;

3The effectiveness is quantified by quadratically summing over the change
in the purity between the mother and daughter leaves for every node in which
the given variable is used in a decision tree.

• one and only one isolated high-pT muon and no identified
electrons for theµ+τ channel, or one and only one isolated
electron and no isolated muons for thee+ τ channel;

• at least oneτ candidate (as defined in Section 4.1);

• at least two jets not overlapping with aτ candidate, i.e.
∆R(τ, jet) > 0.4;

• Emiss
T > 30 GeV to reduce the multi-jet background, and

the scalar sum of thepT of the leptons (includingτ), jets,
and Emiss

T must be greater then 200 GeV, to reduce the
W+jets background.

Theℓ + τ samples are divided into events with no jets iden-
tified as ab-quark jet (0b-tag control sample) and those with
at least one such jet (≥ 1 b-tag tt sample). The 0b-tag sample
is used to estimate the background in the≥ 1 b-tag tt sample.
Each sample is split into two, one with theτ candidate andℓ
having the opposite sign charge (OS), and the other one withτ

andℓ having the same sign charge (SS). While theτ candidates
in the SS samples are almost all fakeτ leptons, the OS samples
have a mixture ofτ leptons and fakeτ leptons. The numbers of
observed and expected events in the above samples are shown
in Table 1. All processes contribute more events to OS than SS
because of the correlation between a leading-quark charge and
the lepton charge, except for the multi-jet channel contribution
which has equal number of OS and SS events within the uncer-
tainties. Theℓ+jets entry includes the contribution from events
with τ leptons when theτ candidate is actually a fakeτ. The
τ entries require the reconstructedτ candidate be matched to a
generatedτ lepton. The matching criterion is∆R< 0.1 between
theτ candidate and the observable component of the generated
τ lepton.

To estimate the multi-jet background from data, an event se-
lection identical to theµ+τ (e+τ) event selection except for an
inverted muon (electron) isolation cut is used to obtain a multi-
jet template for the shape of the transverse mass,mT.4 The
normalization of each selected data sample is obtained by fitting
themT distribution of the selected data samples with the multi-
jet template and the sum of non-multi-jet processes predicted
by MC, allowing the amount of both to float. The uncertainty
on the multi-jet background is estimated to be 30%. However,
because of the subtraction method discussed in Section 5, the
multi-jet background plays no role in the cross-section mea-
surement. There are small differences between the total number
of events predicted and observed which motivate using data as
much as possible to estimate the background.

As one can see from Table 1, theτ leptons are almost all
in the OS sample and come mainly from two sources:Z →
τ+τ−, which is the dominant source in the sample with 0b-
tag, andtt → ℓ + τ + X which is the dominant source in the
sample≥ 1 b-tag. The sources of fakeτ leptons are also quite
distinct between the 0b-tag and the≥ 1 b-tag samples: the
first is mainly W/Z+jets with small contributions from other
channels, the second is mainlytt.

4mT =

√

(EℓT + Emiss
T )2 − (pℓx + Emiss

x )2 − (pℓy + Emiss
y )2.
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Table 1: Number ofℓ+τ candidates for Monte Carlo samples and data.tt(ℓ+e) arett events with one identified lepton and an electron reconstructed as aτ candidate.
tt(ℓ + jets) arett events with one identified lepton and a jet reconstructed as aτ candidate.ℓ+jets are events with one identified lepton and a jet reconstructed as aτ
candidates from sources other thantt and multi-jets. Sources contributing to jet fakes areW+jets,Z+jets, single top-quark and diboson events.Wt(ℓ + τ) is W + t
production with oneW decaying toℓ and another toτ. Excepting multi-jets the uncertainties are statistical only. MC samples are normalized to the data integrated
luminosity

µ + τ τ1 τ3

0 b-tag ≥ 1 b-tag 0 b-tag ≥ 1 b-tag
OS SS OS SS OS SS OS SS

tt(µ + τ) 60± 2 < 1 390± 4 2± 1 17± 1 1± 1 118± 3 2± 1
tt(µ + e) 3 ± 1 < 1 12± 1 1± 1 1 ± 1 < 1 3 ± 1 < 1

tt(µ+jets) 308± 4 163± 3 1528± 9 660± 6 685± 6 443± 5 3484± 13 2000± 10
µ+jets 5010± 70 3020± 60 496± 17 297± 13 12230± 120 8670± 90 1293± 28 928± 24

Multi−jets 470± 140 540± 160 117± 35 150± 40 990± 300 1120± 340 460± 140 400± 120
Wt(µ + τ) 7 ± 1 < 1 18± 1 1± 1 2 ± 1 < 1 5 ± 1 < 1

Z→ ττ 301± 13 2± 1 16± 3 < 1 75± 7 1± 1 3 ± 2 < 1
Total 6160± 160 3730± 170 2580± 40 1110± 40 14000± 320 10230± 350 5370± 140 3330± 120
Data 5450 3700 2472 1332 13322 10193 5703 3683

e+ τ τ1 τ3

0 b-tag ≥ 1 b-tag 0 b-tag ≥ 1 b-tag
OS SS OS SS OS SS OS SS

tt(e+ τ) 54± 7 1± 1 342± 19 3± 2 15± 4 < 1 103± 10 2± 1
tt(e+ e) 2 ± 1 < 1 11± 3 1± 1 < 1 < 1 2 ± 1 < 1

tt(e+jets) 273± 17 146± 12 1340± 40 599± 25 633± 25 399± 20 3090± 60 1780± 40
e+jets 3950± 60 2590± 50 380± 20 256± 16 10140± 100 7530± 90 1120± 33 841± 29

Multi−jets 600± 180 620± 190 170± 50 140± 40 2000± 600 2000±600 690± 210 610± 180
Z→ ee 92± 10 3± 2 9 ± 3 < 1 11± 3 2± 1 < 1 < 1

Wt(e+ τ) 7 ± 3 < 1 17± 4 < 1 1 ± 1 < 1 5 ± 2 < 1
Z→ ττ 217± 15 2± 1 15± 4 < 1 60± 7 1± 1 3 ± 2 < 1

Total 5190± 190 3360± 200 2280± 70 990± 50 12900± 600 9900± 600 5020± 220 3230± 180
Data 5111 3462 2277 1107 12102 9635 5033 3192

5. Background Models

The jet origin can strongly influence theτ-lepton fake prob-
ability. Due to their narrow shower width and lower track mul-
tiplicity, light-quark jets have a higher probability of faking aτ
lepton than other jet types. Thus the BDTj distributions have
a strong dependence on the jet type. It is therefore crucial to
build a background model which properly reflects the jet com-
position in order to correctly estimate the fakeτ contamination
in the signal region. Deriving this background model from con-
trol regions in data rather than MC simulation is preferablein
order to avoid systematic effects related to jet composition in
the MC models.

The gluon component of the fakeτ leptons is charge symmet-
ric; therefore it is expected to have the same shape in SS events
as in OS events and should contribute the same number of fake
τ leptons in each sample. The contribution of fakeτ leptons
from gluons can be removed by subtracting the distribution of
any quantity for SS events from the corresponding distribution
for OS events. The multi-jet background also cancels, as can
be seen in Table 1. The resulting distributions are labeled OS-
SS. Similarly, since each sample is expected to have an almost
equal contribution fromb-jets andb-jets, the smallb-jet com-
ponent should also be removed by OS-SS (asymmetric singleb
production is negligible compared tobb production). The only
jet types remaining in the OS-SS distributions are light-quark

jets. MC studies indicate that the BDTj distributions ofc-quark
jets misidentified asτ leptons are not noticeably different from
those of light-quark jets.

One can construct a background BDTj distribution from the
0 b-tag data sample by subtracting the expected amount of true
τ signal. The signal is mainly fromZ → τ+τ− and can be
reliably predicted from MC. A control sample dominated by
W+jets events is considered as a check. The latter sample is
selected by requiring events with a muon and aτ candidate, no
additional jets,Emiss

T > 30 GeV and 40 GeV< mT < 100 GeV.
According to MC simulation, inW+jets events where exactly
one jet is required, 90% of the fakeτ leptons are from light-
quark jets and 10% from gluons. This sample is labeledW + 1
jet.

The BDTj background shapes for the OS-SS 0b-tag and≥ 1
b-tag data samples are not identical to theW+1 jet distributions
for two reasons: (1) the shape depends on the jet multiplicity,
(2) different OS/SS ratios are observed in the samples. The
dependence on the OS/SS ratio comes from the differences in
jet fragmentation for a leading particle with the opposite charge
and the same charge as the initial quark. MC studies of the ratio
of OS-SS BDTj background distributions derived fromW + 1
jet and≥ 1 b-tag show that significant corrections are needed
(30% for BDTj > 0.8, a region dominated by the trueτ signal).
For the 0b-tag sample the corresponding corrections are much
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smaller (5% in the same region). Both the 0b-tag and theW +
1 jet data samples are used to obtain statistically independent
estimates of the background in the≥ 1 b-tag sample.

Two different approaches are used for constructing back-
grounds in the≥ 1 b-tag data sample. One, used by the fit
method (Section 6), is to reweight the BDTj distribution of the
background bin-by-bin using the MC-based ratio of the≥ 1 b-
tag background to the background model. In this case the 0
b-tag sample is preferred as it requires smaller correctionsde-
rived from MC simulation; theW + 1 jet is used as a cross
check. The other approach is to split the background into bins
of some variable within which the shapes of BDTj distributions
of the background model are close to those from the≥ 1 b-tag
background. This approach, used in the Matrix Method cross
check (Section 6.1), avoids using MC corrections, but assumes
the data and MC simulation behave similarly as function of the
binning variable.

6. Fits to BDT j Distributions

The contribution fromtt → ℓ+τ+X signal is derived from the
≥ 1 b-tag data sample by aχ2 fit to the OS−SS BDTj distribu-
tion with a background template and a signal template. The pa-
rameters of the fit are the amount of background and the amount
of signal. The shapes of the templates are fixed.

Two background templates corrected by MC, as discussed in
Section 5, are used: one derived from 0b-tag data, the other
from theW+ 1 jet data sample. The signal BDTj templates for
0 b-tag and≥ 1 b-tag are derived fromτ leptons intt andZ →
τ+τ− MC simulation. Contributions to the BDTj distributions
from electrons passing the BDTe cut cannot be distinguished
from τ leptons so they are treated as part of the signal.

The uncertainty on the background templates is determined
by the numbers of data and MC simulated events. The signal
template for the 0b-tag control sample also has non-negligible
statistical uncertainty (2% forτ1, 5% forτ3) because of the low
acceptance.

The fitting procedure was tested extensively with MC simu-
lation before applying it to data. In the fits to the≥ 1 b-tag data,
applying MC corrections to the 0b-tag background template in-
creases the statistical uncertainty but raises the measured cross
section by only 1%.

Figure 1 shows the BDTj (OS-SS) distributions ofℓ+τ events
with 0 b-tag and the 0b-tag background template after subtract-
ing the expected number ofτ leptons and applying the MC cor-
rections. Theτ signal is mostlyZ → τ+τ− events with a small
contamination of electrons fakingτ leptons (fromtt → ℓ+e+X
andZ → e+e−) and a small contribution fromtt → ℓ + τ + X.
The uncertainty on the background template includes the sta-
tistical uncertainty of the correction, the statistical uncertainty
from MC and the 0b-tag data uncertainty.

Figure 2 shows the result of the fit to the≥ 1 b-tag samples.
Theτ lepton signal is mostlytt → ℓ+τ+X with a small contam-
ination of misidentified electrons (estimated by applying fake
probabilities derived from data), and small contributionsfrom
Z → τ+τ− events and single top-quark events (estimated from
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Figure 1: BDTj (OS-SS) distributions ofℓ+ τ (eandµ combined) events in the
0 b-tag data (black points). The expected contributions fromτ andeare shown
as a solid red line. The derived background templates are shown as dashed
histogram with shaded/blue statistical uncertainty bands. The shapes of these
background templates are used for the fits to the≥ 1 b-tag distributions after
applying MC corrections. Top is forτ1, bottom forτ3.

MC simulation). These contributions are subtracted from the
number of signal events before calculating the cross section.
The fit results using the background templates derived from 0
b-tag data andW+ 1 jet data are shown in Table 2. The results
are consistent with each other within the statistical uncertainties
of the background templates. The BDTj distributions forτ1 and
τ3 are fitted separately. The combinedℓ+τi results are obtained
by fitting the sum of the distributions. After addingℓ + τ1 and
ℓ + τ3 signals obtained from aχ2 fit to the combinede+ τ and
µ+τ distributions and subtracting the small contributions to the
signal fromZ → τ+τ−, Z → e+e− and tt̄ → e+ ℓ (given in
Table 1) the results are 840± 70 (243± 60) tt̄ → ℓ + τ1(τ3) + X
events. The uncertainty is from the fit only and does not in-
clude systematic uncertainties. The results are in good agree-
ment with the 780± 50 (243± 60) events obtained with the
W+ 1 jet background template and consistent with the number
expected from MC simulation, 726± 19 (217± 10). Note that
the fit uncertainty is dominated by the uncertainty on the back-
ground template, thus the statistical uncertainties of theresults
with the two different background templates are not strongly
correlated.

Figure 3 shows the OS-SS distribution of the number of jets
for ≥ 1 b-tag events adding all channels for two BDTj regions:
BDT j < 0.7, which is dominated bytt → ℓ + jets, and BDTj >
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Figure 2: BDTj (OS-SS) distributions ofℓ + τ in the≥ 1 b-tag sample. The
normalisation of each template is derived from a fit to the data. The fitted
contributions are shown as the light/red (signal), dashed/blue (background de-
rived from 0b-tag after applying MC corrections) and dark/black (total) lines.
Shaded/blue bands are the statistical uncertainty of the background template.

Table 2: Results of template fits toµ + τ, e+ τ and the combined BDTj distri-
butions. The combined results are obtained by fitting the sumof theµ + τ and
e+ τ BDT j distributions. The first column gives the channel and the second
theτ type. The third column shows the extracted signal (sum ofτ leptons and
electrons misidentified asτ leptons) with the background template derived from
0 b-tag data distributions. The fourth column shows the extracted signal with
the background template derived fromW + 1 jet. The uncertainties are from
the uncertainties in the fit parameters and do not include thesystematic uncer-
tainties. The MC columns give the expectedτ signal and the expected number
of tt → l + τ events after subtracting the contribution from non-tt events to the
signal, assuming the theoreticaltt cross section (164 pb).

Background template MC
0 b-tag W+ 1 jet Signal tt

µ + τ τ1 490± 40 456± 32 432 388
τ3 135± 33 130± 50 126 116

e+ τ τ1 440± 50 430± 50 388 338
τ3 116± 32 120± 28 114 101

Combined τ1 930± 70 860± 50 820 726
τ3 260± 60 260± 40 239 217

0.7, in which the largest contribution is fromtt → ℓ+ τ+X. As
expected, the multiplicity of jets peaks at four when BDTj <

0.7 and three when BDTj > 0.7 (the τ is counted as a jet).

Figure 4 shows the invariant mass of a selected jet with theτ

candidate for BDTj < 0.7 and BDTj > 0.7 for events with
a τ candidate and three or more jets. The selected jet is the
highestpT untagged jet in events with more than oneb-tag and
the second highestpT untagged jet in events with oneb-tag.
The distribution shows clearly the presence of aW decaying
to two jets in the BDTj < 0.7 region dominated bytt → ℓ +
jets. The mass distribution in the BDTj > 0.7 signal region
is significantly broader as expected fortt → ℓ + τ + X. The
signal and background shown in these figures are based on the
fit using the 0b-tag background template.
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Figure 3: OS-SS number of jets distributions for events withat least oneb-tag.
The µ + τ ande+ τ channels have been summed together. The solid circles
indicate data and the histograms indicate the expected signal and backgrounds.
The normalisation of the expected signal and the backgrounds are based on the
fit result. The uncertainty includes statistical and systematic contributions. The
fraction of each background is estimated from MC. Top is for BDT j < 0.7,
bottom for BDTj > 0.7.

6.1. Check with Matrix Method

From Figures 3 and 4 one can see that a BDTj > 0.7 require-
ment separates well a region dominated bytt → ℓ+jets from a
region dominated bytt → ℓ + τ + X. One can extract the signal
from the same OS-SS≥ 1 b-tag sample used by the fit method
via a matrix method. Allτ candidates are labeled “loose”, and
τ candidates with BDTj > 0.7 are labeled “tight”. The proba-
bility that the looseτ candidates are also tightτ candidates, for
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Figure 4: OS-SS invariant mass of jet andτ candidate for events with at least
oneb-tag. The jet is the highestpT untagged jet in events with more than one
b-tag and the second highestpT untagged jet in events with oneb-tag. The
µ + τ ande+ τ channels have been summed together. The solid circles indicate
data and the histograms indicate the expected signal and backgrounds. The
normalisation of the expected signal and the backgrounds are based on the fit
result. The uncertainty includes statistical and systematic contributions. The
fraction of each background is estimated from MC. Top is for BDT j < 0.7,
bottom for BDTj > 0.7.

bothτ leptons and fakeτ leptons, is defined as

ǫreal =
Ntight

real

Nloose
real

ǫfake =
Ntight

fake

Nloose
fake

where the “real” subscript denotesτ lepton, the “fake” subscript
denotes fakeτ andN is the number ofτ candidates. The number
of “tight” τ leptons is then given by

Ntight
real = Ntight

data −
ǫfake

ǫreal− ǫfake
(Nloose

data · ǫreal− Ntight
data).

The value ofǫfake is measured utilizing the OS-SS BDTj dis-
tributions from the background control samples;ǫreal is derived
from MC and was tested usingZ → τ+τ− events. This method
uses the binning approach described in Section 5 to estimatethe
background. Values ofǫfake and ǫreal are measured separately
for three EM-fraction bins. The EM-fraction, the ratio of the
energy measured in the EM calorimeter to the totalτ candidate
energy measured in the calorimeter, is an effective variable for
splitting the data into regions where the shapes of MC OS-SS
BDT j distributions for theW+1 jet background template and

Table 3: Number of signal events obtained with the matrix method forµ+τ, e+τ
and the combined channels. The first column gives the channeland the second
the τ type. The third column shows the extracted signal with the background
template derived from 0b-tag data distributions. The fourth column shows the
extracted signal with the background template derived fromW+ 1 jet. In order
to compare the matrix method results to the fit results the number of signal
events shown is

∑

Nreal
tight/ǭreal where ¯ǫreal is the ǫreal averaged over the three

EM-fraction bins. The uncertainties are statistical only.

Background template
0 b-tag W+ 1 jet

µ + τ τ1 460± 50 440± 50
τ3 130± 40 105± 35

e+ τ τ1 420± 60 350± 50
τ3 140± 40 160± 40

Combined τ1 880± 70 800± 70
τ3 270± 60 260± 60

the≥ 1 b-tag background are similar. Table 3 shows the num-
ber of signal events obtained with the matrix method using the
background derived from the 0b-tag data sample and from the
W + 1 jet data sample. The numbers in each pair are in good
agreement and consistent with the numbers obtained by fitting
the OS-SS BDTj distributions.

6.2. Systematic Uncertainty

Several experimental and theoretical sources of systematic
uncertainty are considered. Lepton trigger, reconstruction and
selection efficiencies are assessed by comparing theZ → ℓ+ℓ−
events selected with the same object criteria as used for thett
analyses in data and MC.

Scale factors are applied to MC samples when calculating
acceptances to account for any differences between predicted
and observed efficiencies. The scale factors are evaluated by
comparing the observed efficiencies with those determined with
simulatedZ boson events. Systematic uncertainties on these
scale factors are evaluated by varying the selection of events
used in the efficiency measurements and by checking the stabil-
ity of the measurements over the course of data taking.

The modeling of the lepton momentum scale and resolution
is studied using reconstructed invariant mass distributions of
Z → ℓ+ℓ− candidate events and used to adjust the simulation
accordingly [23, 24].

The jet energy scale (JES) and its uncertainty are derived
by combining information from test-beam data, LHC collision
data and simulation [25]. For jets within the acceptance, the
JES uncertainty varies in the range 4–8% as a function of jet
pT andη. Comparing MC and data the estimated systematic
uncertainties are 10% and 1–2% for the jet energy resolution
(JER) and the efficiency, respectively. The uncertainty on the
efficiency of theb-tagging algorithm has been estimated to be
6% forb-quark jets, based onb-tagging calibration studies [26].

The uncertainty in the kinematic distributions of thett sig-
nal events gives rise to systematic uncertainties in the sig-
nal acceptance, with contributions from the choice of genera-
tor, the modeling of initial- and final-state radiation (ISR/FSR)
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and the choice of the PDF set. The generator uncertainty is
evaluated by comparing the MC@NLO predictions with those
of POWHEG [27, 28, 29] interfaced to either HERWIG or
PYTHIA. The uncertainty due to ISR/FSR is evaluated using
the AcerMC generator [30] interfaced to the PYTHIA shower
model, and by varying the parameters controlling ISR and FSR
in a range consistent with experimental data [21]. Finally,the
PDF uncertainty is evaluated using a range of current PDF
sets [31, 32, 33]. The dominant uncertainty in this category
of systematic uncertainties is the modelling of ISR/FSR.

The τ ID uncertainty is derived from a template fit to a
Z → τ+τ− data sample selected with the sameµ andτ candi-
date requirements as the sample for this analysis, but with fewer
than two jets andmT < 20 GeV to removeW+jets events. The
fit relies on theW+1 jet data sample for a background template
andZ → τ+τ− MC events for a signal template. The uncer-
tainty includes the statistical uncertainty of the data samples,
the uncertainty in theZ/γ∗ cross section measured by ATLAS
[34] (excluding luminosity uncertainty) and jet energy scale un-
certainty. It also includes the uncertainty on the number of
misidentified electrons (< 0.5%, determined fromZ → e+e−

data).

Table 4: Relative systematic uncertainties, in %, for the cross-section measure-
ment. The first column gives the source of systematic uncertainty, ID/Trigger
stands for the combined uncertainty of lepton identification and lepton trigger.
Theτ ID uncertainty includes electrons misidentified asτ leptons. The second
and third columms give the channel.

Source µ + τ e+ τ
µ (ID/Trigger) −1.1/+1.5 –
e (ID/Trigger) – ±2.9
JES −2.0/+2.2 −1.9/+2.8
JER ±1.0 ±1.2
ISR/FSR ±4.8 ±3.5
Generator ±0.7 ±0.7
PDF ±2.0 ±2.1
b-tag −7.7/+9.0 −7.5/+8.9
τ1 ID −3.0/+3.2 −2.7/+3.0
τ3 ID −3.1/+3.4 −2.9/+3.2

The effect of these variations on the final result is evaluated
by varying each source of systematic uncertainty by±1σ, ap-
plying the selection cuts and recalculating the cross section.

The uncertainties obtained for the fit method using the 0b-
tag background template are shown in Table 4. The systematic
uncertainties for the matrix method are very similar. The uncer-
tainty on the measured integrated luminosity is 3.7% [35].

7. Measuring the t t Cross Section

The cross section is derived from the number of observed
OS-SS signal events in the≥ 1 b-tag data sample assuming the
only top quark decay mode ist → Wb, and subtracting from
that number the small contribution fromtt → e+ ℓ (from elec-
trons fakingτ leptons) andτ leptons fromZ→ τ+τ− (Table 1).

Table 5: Measured cross section from theτ1 andτ3 samples, as well as the com-
bination (τ1+τ3) for each channel separately. The uncertainty in the integrated
luminosity (3.7%) is not included.

µ + τ

τ1 189± 16 (stat.)± 20 (syst.) pb

τ3 180± 40 (stat.)± 21 (syst.) pb

τ1+τ3 186± 15 (stat.)± 20 (syst.) pb

e+ τ

τ1 190± 20 (stat.)± 20 (syst.) pb

τ3 170± 50 (stat.)± 21 (syst.) pb

τ1+τ3 187± 18 (stat.)± 20 (syst.) pb

The systematic uncertainties are estimated as the quadratic sum
of all uncertainties given in Table 4, which includes the uncer-
tainty from the subtraction.

The results are given separately forτ1 andτ3 and then com-
bined (weighted by their statistical uncertainty and assuming
all systematic uncertainties other than fromτ ID are fully cor-
related). The results using the 0b-tag background template are
shown in Table 5.

The results for theµ+τ ande+τ channels are combined tak-
ing into account the correlated uncertainties using the BLUE
(Best Linear Unbiased Estimator) technique [36]. Combining
them does not improve the systematic uncertainty as the sys-
tematic uncertainties are almost 100% correlated.

The results for each lepton type are:

µ + τ : σtt = 186± 15 (stat.)± 20 (syst.)± 7 (lumi.) pb,

e+ τ : σtt = 187± 18 (stat.)± 20 (syst.)± 7 (lumi.) pb,

Combining both channels one obtains:

σtt = 186± 13 (stat.)± 20 (syst.)± 7 (lumi.) pb

To check the fit measurements, the cross sections can be cal-
culated using the matrix method and the results obtained with
theW + 1 jet background to minimize the correlation with the
fit results. The combination of the matrix method and the fit
results with the BLUE method show they are compatible at the
45% and 10% confidence level forµ+ τ ande+ τ, respectively.

8. Conclusions

The cross section fortt production inpp collisions at 7 TeV
has been measured in theµ + τ and thee+ τ channels in which
the τ decays hadronically. The number ofτ leptons in these
channels has been extracted using multivariate discriminators
to separateτ leptons from electrons and jets misidentified as
hadronically decayingτ leptons. These numbers were obtained
by fitting the discriminator outputs and checked with a matrix
method. Combining the measurements fromµ + τ ande+ τ
events, the cross section is measured to be

σtt = 186± 13 (stat.)± 20 (syst.)± 7 (lumi.) pb,
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in good agreement with the cross section measured by ATLAS
in other channels [1, 2], with the cross-section measurement
by the CMS Collaboration [7, 37] and with the SM prediction,
164+11

−16 pb [14].
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C.-M. Cuciuc25a, C. Cuenca Almenar176, T. Cuhadar Donszelmann139, M. Curatolo47, C.J. Curtis17, C. Cuthbert150,
P. Cwetanski60, H. Czirr141, P. Czodrowski43, Z. Czyczula176, S. D’Auria53, M. D’Onofrio73, A. D’Orazio132a,132b, C. Da Via82,
W. Dabrowski37, A. Dafinca118, T. Dai87, C. Dallapiccola84, M. Dam35, M. Dameri50a,50b, D.S. Damiani137, H.O. Danielsson29,
V. Dao49, G. Darbo50a, G.L. Darlea25b, W. Davey20, T. Davidek126, N. Davidson86, R. Davidson71, E. Davies118,c, M. Davies93,
A.R. Davison77, Y. Davygora58a, E. Dawe142, I. Dawson139, R.K. Daya-Ishmukhametova22, K. De7, R. de Asmundis102a,
S. De Castro19a,19b, S. De Cecco78, J. de Graat98, N. De Groot104, P. de Jong105, C. De La Taille115, H. De la Torre80,
F. De Lorenzi63, B. De Lotto164a,164c, L. de Mora71, L. De Nooij105, D. De Pedis132a, A. De Salvo132a, U. De Sanctis164a,164c,
A. De Santo149, J.B. De Vivie De Regie115, G. De Zorzi132a,132b, W.J. Dearnaley71, R. Debbe24, C. Debenedetti45, B. Dechenaux55,
D.V. Dedovich64, J. Degenhardt120, C. Del Papa164a,164c, J. Del Peso80, T. Del Prete122a,122b, T. Delemontex55, M. Deliyergiyev74,
A. Dell’Acqua29, L. Dell’Asta21, M. Della Pietra102a,i , D. della Volpe102a,102b, M. Delmastro4, P.A. Delsart55, C. Deluca105,
S. Demers176, M. Demichev64, B. Demirkoz11,k, J. Deng163, S.P. Denisov128, D. Derendarz38, J.E. Derkaoui135d, F. Derue78,
P. Dervan73, K. Desch20, E. Devetak148, P.O. Deviveiros105, A. Dewhurst129, B. DeWilde148, S. Dhaliwal158, R. Dhullipudi24,l ,
A. Di Ciaccio133a,133b, L. Di Ciaccio4, A. Di Girolamo29, B. Di Girolamo29, S. Di Luise134a,134b, A. Di Mattia173, B. Di Micco29,
R. Di Nardo47, A. Di Simone133a,133b, R. Di Sipio19a,19b, M.A. Diaz31a, E.B. Diehl87, J. Dietrich41, T.A. Dietzsch58a, S. Diglio86,
K. Dindar Yagci39, J. Dingfelder20, C. Dionisi132a,132b, P. Dita25a, S. Dita25a, F. Dittus29, F. Djama83, T. Djobava51b,
M.A.B. do Vale23c, A. Do Valle Wemans124a, T.K.O. Doan4, M. Dobbs85, R. Dobinson29,∗, D. Dobos29, E. Dobson29,m, J. Dodd34,
C. Doglioni49, T. Doherty53, Y. Doi65,∗, J. Dolejsi126, I. Dolenc74, Z. Dolezal126, B.A. Dolgoshein96,∗, T. Dohmae155,
M. Donadelli23d, M. Donega120, J. Donini33, J. Dopke29, A. Doria102a, A. Dos Anjos173, A. Dotti122a,122b, M.T. Dova70,
A.D. Doxiadis105, A.T. Doyle53, M. Dris9, J. Dubbert99, S. Dube14, E. Duchovni172, G. Duckeck98, A. Dudarev29, F. Dudziak63,
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F. Koetsveld104, P. Koevesarki20, T. Koffas28, E. Koffeman105, L.A. Kogan118, S. Kohlmann175, F. Kohn54, Z. Kohout127,
T. Kohriki65, T. Koi143, G.M. Kolachev107, H. Kolanoski15, V. Kolesnikov64, I. Koletsou89a, J. Koll88, M. Kollefrath48,
A.A. Komar94, Y. Komori155, T. Kondo65, T. Kono41,q, A.I. Kononov48, R. Konoplich108,r , N. Konstantinidis77, A. Kootz175,
S. Koperny37, K. Korcyl38, K. Kordas154, A. Korn118, A. Korol107, I. Korolkov11, E.V. Korolkova139, V.A. Korotkov128,

13



O. Kortner99, S. Kortner99, V.V. Kostyukhin20, S. Kotov99, V.M. Kotov64, A. Kotwal44, C. Kourkoumelis8, V. Kouskoura154,
A. Koutsman159a, R. Kowalewski169, T.Z. Kowalski37, W. Kozanecki136, A.S. Kozhin128, V. Kral127, V.A. Kramarenko97,
G. Kramberger74, M.W. Krasny78, A. Krasznahorkay108, J. Kraus88, J.K. Kraus20, F. Krejci127, J. Kretzschmar73, N. Krieger54,
P. Krieger158, K. Kroeninger54, H. Kroha99, J. Kroll120, J. Kroseberg20, J. Krstic12a, U. Kruchonak64, H. Krüger20, T. Kruker16,
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Llácer167, P. Morettini50a, M. Morgenstern43, M. Morii57, J. Morin75, A.K. Morley29, G. Mornacchi29, J.D. Morris75, L. Morvaj101,
H.G. Moser99, M. Mosidze51b, J. Moss109, R. Mount143, E. Mountricha9,x, S.V. Mouraviev94, E.J.W. Moyse84, F. Mueller58a,
J. Mueller123, K. Mueller20, T.A. Müller98, T. Mueller81, D. Muenstermann29, Y. Munwes153, W.J. Murray129, I. Mussche105,
E. Musto102a,102b, A.G. Myagkov128, M. Myska125, J. Nadal11, K. Nagai160, K. Nagano65, A. Nagarkar109, Y. Nagasaka59,
M. Nagel99, A.M. Nairz29, Y. Nakahama29, K. Nakamura155, T. Nakamura155, I. Nakano110, G. Nanava20, A. Napier161,
R. Narayan58b, M. Nash77,c, T. Nattermann20, T. Naumann41, G. Navarro162, H.A. Neal87, P.Yu. Nechaeva94, T.J. Neep82,

14



A. Negri119a,119b, G. Negri29, S. Nektarijevic49, A. Nelson163, T.K. Nelson143, S. Nemecek125, P. Nemethy108,
A.A. Nepomuceno23a, M. Nessi29,y, M.S. Neubauer165, A. Neusiedl81, R.M. Neves108, P. Nevski24, P.R. Newman17,
V. Nguyen Thi Hong136, R.B. Nickerson118, R. Nicolaidou136, B. Nicquevert29, F. Niedercorn115, J. Nielsen137, N. Nikiforou34,
A. Nikiforov15, V. Nikolaenko128, I. Nikolic-Audit78, K. Nikolics49, K. Nikolopoulos24, H. Nilsen48, P. Nilsson7, Y. Ninomiya155,
A. Nisati132a, T. Nishiyama66, R. Nisius99, L. Nodulman5, M. Nomachi116, I. Nomidis154, M. Nordberg29, P.R. Norton129,
J. Novakova126, M. Nozaki65, L. Nozka113, I.M. Nugent159a, A.-E. Nuncio-Quiroz20, G. Nunes Hanninger86, T. Nunnemann98,
E. Nurse77, B.J. O’Brien45, S.W. O’Neale17,∗, D.C. O’Neil142, V. O’Shea53, L.B. Oakes98, F.G. Oakham28,d, H. Oberlack99,
J. Ocariz78, A. Ochi66, S. Oda69, S. Odaka65, J. Odier83, H. Ogren60, A. Oh82, S.H. Oh44, C.C. Ohm146a,146b, T. Ohshima101,
S. Okada66, H. Okawa163, Y. Okumura101, T. Okuyama155, A. Olariu25a, A.G. Olchevski64, S.A. Olivares Pino31a, M. Oliveira124a,h,
D. Oliveira Damazio24, E. Oliver Garcia167, D. Olivito120, A. Olszewski38, J. Olszowska38, A. Onofre124a,z, P.U.E. Onyisi30,
C.J. Oram159a, M.J. Oreglia30, Y. Oren153, D. Orestano134a,134b, N. Orlando72a,72b, I. Orlov107, C. Oropeza Barrera53, R.S. Orr158,
B. Osculati50a,50b, R. Ospanov120, C. Osuna11, G. Otero y Garzon26, J.P. Ottersbach105, M. Ouchrif135d, E.A. Ouellette169,
F. Ould-Saada117, A. Ouraou136, Q. Ouyang32a, A. Ovcharova14, M. Owen82, S. Owen139, V.E. Ozcan18a, N. Ozturk7,
A. Pacheco Pages11, C. Padilla Aranda11, S. Pagan Griso14, E. Paganis139, F. Paige24, P. Pais84, K. Pajchel117, G. Palacino159b,
C.P. Paleari6, S. Palestini29, D. Pallin33, A. Palma124a, J.D. Palmer17, Y.B. Pan173, E. Panagiotopoulou9, P. Pani105,
N. Panikashvili87, S. Panitkin24, D. Pantea25a, A. Papadelis146a, Th.D. Papadopoulou9, A. Paramonov5, D. Paredes Hernandez33,
W. Park24,aa, M.A. Parker27, F. Parodi50a,50b, J.A. Parsons34, U. Parzefall48, S. Pashapour54, E. Pasqualucci132a, S. Passaggio50a,
A. Passeri134a, F. Pastore134a,134b, Fr. Pastore76, G. Pásztor49,ab, S. Pataraia175, N. Patel150, J.R. Pater82, S. Patricelli102a,102b,
T. Pauly29, M. Pecsy144a, M.I. Pedraza Morales173, S.V. Peleganchuk107, D. Pelikan166, H. Peng32b, B. Penning30, A. Penson34,
J. Penwell60, M. Perantoni23a, K. Perez34,ac, T. Perez Cavalcanti41, E. Perez Codina159a, M.T. Pérez Garcı́a-Estañ167,
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103 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
107 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
108 Department of Physics, New York University, New York NY, United States of America
109 Ohio State University, Columbus OH, United States of America
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
112 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
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