
LH
C

b-
PR

O
C

-2
00

6-
03

5
04

/1
1/

20
06

Control and Operation of the LHCb Readout Boards
Using Embedded Microcontrollers and the PVSS II

SCADA System
S.Köstner� on behalf of the LHCb Online Project

Abstract— LHCb is one of the four experiments at the Large
Hadron Collider. Before final reconstruction of the data in PC
farms, high speed preprocessing is performed on a set of a
few hundred custom electronics boards employing large modern
field programmable gate array (FPGA) driven electronics. The
local control of these boards is achieved via an embedded
microcontroller which is connected to a large Local Area Network.
After a brief introduction to the hardware we summarize the
implementation of the entire layered software architecture for the
readout boards and its integration into the Experiment Control
System, which is built upon a common control framework based
on an industrial SCADA system. Abstraction of different access
modes and separation from the modeling of the components in the
control system allow the reuse of various components on different
hardware types. Each board has several hundreds of registers and
memory blocks, so the optimization of write and read accesses
is crucial for the start up configuration of the experiment. To
facilitate the control of a large number of readout boards, finite
state machines are introduced, where the states and transitions
are well defined over the whole set of used boards.

Index Terms— micro controller, PVSSII, SCADA, experiment
control system, LHCb, TELL1

I. INTRODUCTION

IN the LHCb experiment [1] there will be 15 different types
of electronics DAQ and trigger boards, in total some 400.

A common readout board, the TELL1 [2] board, based on
FPGA technology to adopt to the various specific requirements
of each subdetector is used. Each of these boards will have a
few hundred registers to be monitored continuously. In addition
there are several memory blocks with some hundred megabytes
for look up tables or similar functions to be uploaded in
short time. LHCb has chosen to equip these boards with a
micro controller which is accessed via a dedicated Local Area
Network. The advantage of this approach is that each board
has its own control path and the intelligence is decentralized.
Thus the bottleneck of a crate controller is avoided as well
as the possibility that a badly behaving device can block the
entire chain, which improves scalability and robustness of the
entire system. The hardware is briefly introduced. The focus
of this paper is the integration of the readout boards into the

�CERN, Geneva, Switzerland

Corresponding author: Stefan.Koestner@cern.ch

Fig. 1. Top side of the SM520PCX embedded PC.

Experiment Control System and the description of the various
software layers.

mds
August 13, 2002

II. ON-BOARD MICROCONTOLLER

For local board control the SM520PCX from Digitallogic [3]
is used, wich is a complete embedded PC [4], based on the
i486 compatible AMD ELAN 520 micro controller as shown
in Fig. 1. It is running under Linux with a frequency up to 133
MHz. To provide an interface to the on-board chips, a small
glue card has been created which is built around a PLX PCI930
PCI bridge, JTAG and I2C controllers. It also includes a bus
switch which electrically isolates the glue-card from the carrier
boards, when the PC is rebooted. When reading from memories
attached to the local bus from PCI, transfer performances better
than 20 MB/s were achieved.

III. EXPERIMENT CONTROL SYSTEM

The Experiment Control System of LHCb is built upon a
common control framework (JCOP) [5] based on the industrial
SCADA system PVSS II [6]. It will handle the configuration,
monitoring and operation of all experimental equipment under
the various running conditions of the experiment. From the
software point of view, the framework adopted a hierarchical,
tree-like, structure to represent the structure of subdetectors,
subsystems and hardware components. This tree is composed
of two types of nodes: Device Units which are capable of
accessing the hardware to which they correspond and Control



Fig. 2. The hierarchical architecture of the Experiment Control System (ECS)
of the LHCb experiment.

Units which can monitor and control the subtree below them.
These Control Units model the behaviour and the interactions
between components. At the bottom of the tree there are
the devices to be controlled (e.g. readout boards), these are
grouped into subsystems, then onto subdetectors. Subdetectors
are grouped by area of activity, DAQ or DCS and their states
are combined with information received from external systems
in order to arrive to a combined, decision making, top-level
entity as shown in Fig 2. In LHCb the top of the hierarchy
corresponds to the full experiment, allowing the user to have
an integrated view of the experiment status and to interact with
the different subsystems, the DCS, DAQ, etc.

In this hierarchy commands flow down and status and alarm
information flow up. Control and device units are typically
implemented using Finite State Machines (FSM), which is a
technique for modeling the behaviour of a component using
the states that it can occupy and the transitions that can take
place between those states. SMI++ [7] has been integrated into
PVSS for this purpose. Both PVSSII and SMI++ can run on
mixed environments and allow for the implementation of large
distributed decentralized systems, which is important due to the
large scale of the system in terms of I/O channels in the order
of millions.

The recovery from known error conditions can be automated
using the hierarchical control tools based on subsystems states.
Since SMI++ is also a rule-based system, errors can be han-
dled and recovered by implementing rules like ’when system
configured start run’ and ’when system in error reset it’. In
conjunction with the error recovery provided by SMI++ full
use will be made of the powerful alarm handling tools provided
by PVSSII.

IV. IMPLEMENTATION OF THE READOUT BOARDS

Communication between the electronics boards and the vari-
ous clients of the control system is achieved using the DIM
(Distributed Information Management system) protocol [8],
which is a portable lightweight publish/subscribe system. A
DIM server has been written running on the embedded micro-
controller of the electronics boards. This server is generic and
performs all the required actions on the various different boards

Fig. 3. The internal mechanism of the Distributed Information Management
system.

e.g. write and read operations on registers and memory blocks,
FPGA programing, monitoring of registers, etc. The server is
started automatically and publishes several DIM services, which
can be single items, arrays or structured items on the DIM
Name Server (DNS) who keeps their coordinates and from
where they can be requested by the clients. Services can be
subscribed to either on change or on a time basis. In addition
commands can be send from the client to the server. Both,
services and commands, can invoke a callback function. A
usual procedure is that a command, requesting a read or write
operation, is sent to the server where in the callback function
the interaction with the hardware is executed and the data is
sent back to the client by updating a service calling again a
callback function on the client side. The basic mechanism is
demonstrated graphically in Fig 3. The advantage of this design
is its portability as clients can be installed on any machine by
just specifiying the DNS node. It is robust as a crashed server
can easily republish its services on the DNS node.

The registers of each building block on the readout boards
are bundled and abstracted as a Datapoint Type, which is
the internal representation of the SCADA system. Datapoint
Types are complex structures from which datapoints can be
derived which are connected to the PVSS internal memory data
base. Separation of the access mechanism on the hardware and
the modeling of the components in the control system allow
the reuse of various components on different hardware types
even using different protocols. Each board is represented as an
instantiation of a datapoint type, which reflects the entire state
of all controllable resources on the board. A special PVSS API
manager allows associating DIM commands and DIM services
to data points. PVSS allows also associating event triggered
functions with data points. Whenever the content of a data
point element changes, a function may be called in a PVSS
script or API manager to perform a set of actions associated
with the change. Each board has several hundreds of registers
and memory blocks to write, so that optimization of write and
read accesses is crucial for the start up configuration of the
experiment, when all the register settings are retrieved directly



Fig. 4. Look and feel of the FwHw tool acting as an abstraction layer.

from the configuration database. In addition a masked write
access which allows to modify specific bit fields is provided.

In order to facilitate the modelling of hardware as PVSS
datapoints a tool was introduced, FwHw [9]. This tool offers a
graphical user interface allowing to assign crucial information
like bus address or register length to the various register
types. The tool atomatically creates a well defined datapoint
structure connected to the DIM API manager and sends as well
instruction to the server to store the register’s information in
a list. Upon subscription of the registers the server publishes
the appropriate services and is ready to receive commands
establishing the communication between server and client. The
server treats each register in the appropriate manner thus allow-
ing to hide diversity and complexity of the various hardware
and bus types. Once the registers are created and subscribed a
set of framework functions allows for interaction in an abstract
way by just passing the register name as parameter. If a register
content changes on the hardware a DIM service can be launched
updating the appropriate datapoint. Thus polling at fixed rates
can be avoided and traffic on the local area network is kept at
a minimum. In addition the tool allows for defining recipies.
Recipies are a bundle of predefined register settings which can
be retrieved from the configuration database and uploaded to the
readout boards. Different settings can be applied for different
run conditions.

To allow for further abstraction in an intuitive way the
readout board is modelled as a finite state machine being a
device unit in the sense of the control system’s hierarchical
structure as described above. Each board can find itself in
predefined states, as shown in Fig. 5, from which they can
transit into another. A state transition of a device unit can be

Fig. 5. Transition scheme as defined for finite state machines of type DAQ.

directly triggered by the hardware if some datapoints connected
to real registers are changing. If a device unit goes into an error
state it can automatically try to recover. The main operations
are to download the firmware to the FPGAs, which is allowed
in state NOT READY. The main configuration of the board,
basically downloading recipes from the configuration database
happens from state NOT READY to READY. The content of
the recipes can differ according to the run type which can
be specified as parameter when launching the command for
configuration. Little action is required from state READY to
RUNNING. The state UNKNOWN is accessible from all states
and basically defines the state when control is lost e.g. DIM
server has crashed. Also the state ERROR is accessible from
all states. However an automatic recovery can be launched
allowing to transit to any other state upon success. Device units
can also offer a graphical user interface to allow users to interact
directly with the hardware or to obtain more precise information
about the status of the board or retrieving the current values of
crucial registers being monitored. In Fig. 6 a screenshot of such
an interface as being used for the TELL1 board is shown.

V. CONCLUSION

LHCb has chosen to use embedded processors with an
isolated access path for board control. This choice has proven
to be a robust solution and has been extensively under test
on various occasions. A well structured ensemble of software
layers has been developed to integrate the control of the readout
boards. The implementation up to the expert system level is
well advanced and only minor improvements are to be expected.
The system will be ready for full scale running at the beginning
of 2007 when the detector integration and commissioning will
start.

ACKNOWLEDGMENT

I would like to thank the whole LHCb Online Group for
their always immediate response and support as well as their



Fig. 6. Screenshot of a user interface as provided by a TELL1 device unit.

dedication and enthusiasm which made this work possible.
Thanks must go also to G. Haefeli and C. Potterat for their
advice and help in integrating and modelling the Tell1 readout
board.

REFERENCES

[1] LHCb Collaboration: LHCb Reoptimized Detector, Design and Perfor-
mance, CERN/LHCC 2003-030.

[2] G. Haefeli, A. Bay, A. Gong, M. Muecke, N. Neufeld, O. Schneider: The
LHCb DAQ interface board, NIM, A560, (2006), 494-502.

[3] Digitallogic, Switzerland: http://www.digitallogic.ch
[4] F. Fontanelli, G. Mini, M. Sannino, Z. Guzik, R. Jacobsson, B. Jost and

N. Neufeld: Embedded Controllers for Local Board Control, IEEE Trans.
Nucl. Sci., vol. 53, Num3, June 2006.

[5] A. Daneels and W. Salter: The LHC experiments Joint COntrols Project,
JCOP, ICALEPCS, Triste 1999.

[6] PVSS: http://www.pvss.com
[7] B. Franek and C. Gaspar: SMI++ - an object oriented Framework for

designing distributed control systems, IEEE Trans. Nucl. Sci., vol. 47,
Num2, April 2000, pp.86-90.

[8] C. Gaspar, M. Don̈szelmann, Ph. Charpentier: DIM, a Portable, Light
Weight Package for Information Publishing, Data Transfer and Inter-
process Communication, Presented at: International Conference on Com-
puting in High Energy and Nuclear Physics (Padova, Italy, 1-11 February
2000)

[9] FwHw: http://lhcb-online.web.cern.ch/lhcb-online/ecs/FWHW/default.html


