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Abstract— The LHCb experiment at CERN has a large num-
ber of custom electronics boards performing high-speed data-
processing. Like in any large experiment the control and mon-
itoring of these crate-mounted boards must be integrated into
the overall control-system. Traditionally this has been done by
using buses like VME on the back-plane of the crates. LHCb
has chosen to equip every board with an embedded micro-
controller and connecting them in a large Local Area Network.
The intelligence of these devices allows complex (soft) real-time
control and monitoring, required for modern powerful FPGA
driven electronics. Moreover each board has its own, isolated
control access path, which increases the robustness of the entire
system. The system is now in pre-production at several sites and
will go into full production during next year. The hardware and
software will be discussed and experiences from the R&D and
pre-production will be reviewed, with an emphasis on advantages
and difficulties of this approach to board-control.

I. INTRODUCTION

Traditional board-control has used buses like VME or
Compact PCI to control custom or commercial electronics-
boards. This approach has been proved to work well, however
it has also shown to suffer from at least two draw-backs:

• Intelligence is centralized on the crate-controller, which
depending on the task of the controlling entity can be a
bottle-neck.

• The control-paths of a comparatively large number of
boards are shared and linked together. A misconfigured
or badly behaving device can block the whole chain.

LHCb has therefore chosen a different approach and equips
every electronics board with a micro-controller, which is
accessed via a dedicated Local Area Network (LAN).

In this paper we are first introducing the concept of a
micro-controller, then we give a brief overview of the micro-
controller, which has been chosen for LHCb. In the next
section we present the hardware of the micro-controller and
how board-control is achieved. In the third section we present
the software framework which has been developed to operate
a large number of micro-controllers in a distributed system.
Finally, in the conclusions, we will review the advantages and
drawbacks of this approach in the light of our present, five
years of experience with the system now widely used in pre-
production environments.

II. MICRO-CONTROLLERS

Micro-controllers are basically microprocessor systems on
a chip (SOC), that is a micro-processor, with all, or most, as-
sociated electronics in a single chip. To create a full computer
usually one only needs to add a few discrete components (such
as connectors), and, if needed in larger amounts, memory,
which becomes considerably cheaper when standard DRAM
chips are used as opposed to built-in memory on chip.

Micro-controllers are ubiquitous in modern electronics,
particular in consumer electronics such as cell-phones, MP3
players and many more.

They exist based on a wide variety of CPU architectures
such as PowerPC, probably the most popular in the embedded
world, ARM and also i386 (Intel) compatible.

The widest range of readily available software is definitely
given for the i386 architecture, which is the reason LHCb has
chosen it.

Rather than building our own micro-controller, we chose to
buy a complete micro-controller with a standardised interface.
The chosen product is the SM520PCX from Digitallogic [1].
It is based on the AMD ELAN 520 micro-controller [2]
and comprises all necessary hardware on a plugin board of
85 x 66 mm2. It is shown in Fig. 1. The ELAN520 is a
i486 compatible processor running at up to 133 MHz, with all
standard functionalities of a PC and in addition extra precise
hardware timers, a hardware watch-dog for automatic reboot
and GPIO lines. The SM520PCX is only one of a family of
pin-compatible embedded PCs from Digitallogic.

III. INTERFACING TO CUSTOM ELECTRONICS BOARDS

A PC is not “naturally” suited to directly control resources
on an electronics board. Most custom chips in LHCb are
accessed via I2C or JTAG (IEEE 1394). JTAG is also widely
used for in-situ programming (ISP) of configuration devices
such as EEPROMs and FlashRAMs. For high-speed data-
transfer and register access to FPGAs or memories these two
methods are unsuitable. A parallel bus is needed. PCs offer two
choices, the aged ISA bus and the more modern PCI. ISA is
disfavored nowadays in the PC world, and is also not very



Fig. 1. Top-side of the SM520PCX embedded PC. The micro-controller together with some external components like the FLASH-RAM for the BIOS can
be seen. A standard SO-DIMM memory-module, normally used in portable computers, is on the back.

popular with electronics engineers, for quite a few reasons,
not the least being that it is a non-multiplexed bus.

PCI on the other hand, due to its signaling, which relies
on reflective coupling, has impractical trace length restrictions
(our electronics boards are typically 9U x 400 mm). We have
therefore chosen to provide a simple local1, parallel bus such
as it is generated by a PLX PCI bridge [3].

Neither of these can be found on PC based micro-
controllers, and also on other micro-controllers, their are
usually only one or two I2C chains and only few and/or slow
JTAG chains, while ISP in an environment where frequent
reprogramming is necessary, definitely requires a high-speed
JTAG chain.

We have therefore decided to build a small glue-board to
create the required interfaces and connect them via PCI. Two
approaches for the glue-card have been followed - an ASIC
based and a purely FPGA based one.

In Fig. 2 the ASIC-based glue-card is shown. It is built-
around a PLX PCI9030 PCI bridge, JTAG controllers from
Texas Instruments and I2C controllers from Philips. It also
includes a bus-switch to electrically isolate automatically the
glue-card from the carrier-board, when the PC is rebooted.
This board provides 4 I2C chains of 40 or 400 kHz, 3 JTAG
chains of up to 2 MHz2.

1Local here means not going out of the board.
2We have bench-marked the programming time of a 16-MBit ALTERA

EPC16 programming device to be better than 10 s.

The functionality can also be implemented in an FPGA,
which in this case acts directly as the PCI target and internally
generates the I2C and JTAG required. This board is shown in
Fig. 3.

When reading from registers or memories attached to the
local bus from PCI, transfer performances better than 20 MB/s
were achieved3. This is more than can be sent via a 100 Mbit/s
Ethernet connection, and also more than be reasonably treated
by a 133 MHz processor.

IV. SOFTWARE FOR BUILDING A CONTROL-SYSTEM

The micro-controller and glue-card solution presented above
will be used to control, configure and monitor over 400
boards of approximately 15 different types. The R&D for
these boards is done in many laboratories across Europe.
We have therefore tried to provide a simple generic software
distribution mechanism, which allows small, easy installations
for a few boards, as well as larger multi-server setups and at
the same time guarantees that updates of software are centrally
transmitted to all installations, so that problems are not only
fixed where they occur, but also pre-preempted at other sites.

A. Embedded software

We have chosen Linux as the OS of the micro-controller.
The main reason is the easy customizability of the kernel for

3For FPGA registers this obviously depends of course strongly on the
implementation on the carrier board.



Fig. 2. The ASIC based glue-card.

Fig. 3. The FPGA based glue-card.



embedded, disk-less operation. In some R&D projects however
Windows has also been used, which allowed using commercial
software packages. All required functionality has since been
ported to Linux.

On top of a slightly customized kernel we run the standard
CERN Linux distribution, which is derived from the joint
Fermilab and CERN Scientific Linux project [4].

The custom software, drivers and user-libraries to access the
resources on the system are packaged and distributed in the
same manner as the base-system, using the standard Redhat
package management system (RPM) [5]. This is described in
the next section.

Except for the device driver no special software, cross-
compiler or anything is required. Editing, compiling and to the
extent of not accessing the actual board hardwared debugging
can be done on any Linux PC. Most developers run all
development tools on a server, which is sharing the files with
the embedded PC via NFS.

B. Management software

In a large collaboration it is necessary to disseminate the
software quickly and transparently to all teams. Only in this
manner can effective peer-help be achieved, because one can
rely on a common software base. In our case this task is
made more difficult because the teams are geographically very
widely spread. There is also no common intranet, like in some
large companies. A shared NFS server for the software for
example, while from a performance point of view certainly
possible, is not an option in the age of firewalls, net-filters
and the like. We have based our software distribution therefore
on HTTP and a simple automatic update mechanism. This
requires a minimal administration effort by the users and can
be even fully automatized.

In this manner all security updates and software patches,
which concern packages not directly managed by us - and this
is the vast majority - benefit from the effort of the respective
support teams. It is thus not riskier to put any of the embedded
controllers on the LAN or Internet, than it is to put a standard
desktop PC running Scientific Linux. This allows direct remote
accessibility of machines, a fact that greatly eases remote,
rapid debugging and support.

The system relies only on a web-server and a few simple
scripts, which are documented at our webserver [6].

C. Highlevel software

At a higher level all control functionality in LHCb is
integrated in the Experiment Control System (ECS), which is
based on a commercial SCADA system. This system provides
alarm-handling, finite-state machine modeling, graphical user
interfaces and the like. More details on this layer and its
capabilities can be found in [7] and [8].

V. CONCLUSIONS

A. Commercial solution

Choosing a commercial solution for the micro-controller
board, had the great advantage to leverage on wide-spread

experience in PC main-board design in industry, not so much
available in-house. Moreover, the design against a standardized
connector pin-out proofed to be very valuable because it
effectively shielded us from problems with component obso-
lescence.When the producer of the original micro-controller
went out of business, Digitallogic redesigned a board with
the identical connector and mechanical dimensions around
a different micro-controller from AMD, the ELAN520 we
are using today. This extra design effort, was completely
(also price-wise) transparent for us4. Had we integrated the
micro-controller directly we would have been forced to do a
complete redesign. Unfortunately also commercially available
components can have unexpected problems. Very late in the
course of our tests it turned out that due to the specific
connector used on the SM520PCX module, it was not possible
to drive Ethernet from the card over more than 20 m at 100
MBit/s. Apparently verification had only been done at 10
MBit/s or short cables, where the problem does not occur.

Another disadvantage is the need of a separate glue-board,
which necessitates additional connectors and routing of many
signals, which makes integration on carrier-boards somewhat
cumbersome. A micro-controller, which already has several of
the interfaces (I2C, JTAG) available on chip and is combined
with an FPGA part, would allow to design everything really
on a single chip. Such chips exist already, unfortunately not
yet based around an i386 compatible core, which we believe
is a key advantage for long-term, low-effort maintenance of a
large distributed system.

There is currently a lot of interest in these systems, as can
be seen in these proceedings, for example see [9] and [10].

B. Linux as general purpose OS

Using Linux proved to be an excellent choice. Users are
immediately at ease, practically any software available on
normal desk-top machines runs easily, with the unfortunate
exception of some proprietary FPGA programming tools,
where extensive reverse-engineering was required to provide
the functionality from Linux. The fact of not using a hard
real-time version of Linux nowhere proved to be a problem.
High-speed time-critical control is anyhow better done on the
carrier-board itself in state-machines on the FPGAs. Since
each PC controls only one board, time-critical tasks can always
resort to polling, which allows for an excellent response time,
if a low rate of small but unpredictable extra delays can be
accepted. Critical tasks, which should not be interrupted could
be added to the kernel. Linux can be made very-light weight
and still be kept up-to-date with whatever is in fashion in the
“real world”. This is very important in the conception of a
system which will have to run for some 15 years.

C. Comparison with crate-controllers

The combined cost of the micro-controller glue-card com-
bination described in this paper is about 220 Euros. For a

4The only real difference is a slightly higher power-consumption of the
ELAN520, which uses on average 1.4 Ws, a value perfectly acceptable for
our purposes.



full crate with 20 user-slots this gives a cost of 4400 Euros to
which the cost for an Ethernet switch (starting from 300 Euros)
have to be added. A modern, performing crate-controller costs
at least as much. Thus cost is certainly no obstacle for the
micro-controller solution, which we are convinced is better
scalable and more robust than the bus-based one.

ACKNOWLEDGMENTS

The authors would like to thank the whole LHCb Online
team and the many users of this system for their help and
feed-back.

REFERENCES

[1] Digitallogic, Switzerland http://www.digitallogic.ch
[2] Advanced Micro Devices, http://www.amd.com
[3] PLX, http://www.plxtech.com
[4] Scientific Linux, http://www.scientificlinux.org
[5] RPM, http://www.rpm.org
[6] LHCb Online webpages, http://cern.ch/lhcb-daq
[7] S. Schmeling, Common Tools for Large Experiment Controls - A

Common Approach for Deployment. Maintenance and Support, these
proceedings

[8] C. Gaspar and B. Franek, Tools for the Automation of Large Physics
Experiments, these proceedings

[9] J. Alme et al., The Control System for the ALICE TPC Detector, these
proceedings

[10] S. Silverstein et al., A Simple Linux-based Platform for Rapid Proto-
typing of Experimental Control Systems, these proceedings


