
LH
C

b-
PR

O
C

-2
00

5-
00

6
04

/0
6/

20
05

Optimization of Event-Building Implementation on
Top of Gigabit Ethernet

Benjamin Gaidioz, Artur Barczyk, Niko Neufeld, Beat Jost
European Organization for Nuclear ResearchCERN, CH-1211 Geǹeve 23 Switzerland

Detector Front End

~500 data sourcesNIC NICNIC

All local
connections
GbE

Switched
Network

Core DAQ
Network10GbE uplink

to local storage
and CERN

Storage
Network

~100 GatewaysCPUCPU CPU

Distribution Layer

~2000 Farm Nodes
Storage

Up to 23
CPUs per

subnet

Fig. 1. LHCb data acquisition network

Abstract— LHCb is implementing event-building over a Gi-
gabit Ethernet switched network. One component of the data
acquisition network is a gateway PC which role is to gather
data packets from data sources, rebuild events and forward
them to computing nodes for trigger algorithms. In this article,
we concentrate on the implementation of this component as a
software running on a Linux system. We describe in details
implementation choices and details of the operating system kernel
which permitted us to achieve a higher performance and ensure
a higher predictability of the system.

I. I NTRODUCTION

The LHCb experiment data acquisition network is imple-
mented on top of a Gigabit Ethernet layer (see fig. 1). Raw
data fragments are sent by many front-end electronic devices
sitting on a side of the network. In order to make good use
of the network and more importantly to minimize the frame
rate, sources packN > 1 fragments of successive events in
the same frame.

Fragments belonging to the same events are sent to one of
the gateways sitting on the other side. A gateway reassembles
fragments into full events and forwards them to computing
nodes [1].

There are two independent flows carried over the same links
and handled by the same gateways: “L1” (level 1) and “HLT”
(high level trigger). The value ofN differs according to the
type of flow. It is set as a function of the average fragment size

in order to obtain frames of about 1 KB. L1 packets contain
25 fragments (average size of 32 B, full event size is 4.5 KB)
andHLT packets contain 10 fragments (average size of 100 B,
full event size of 30 KB).

A gateway is obliged to process data in real-time when
frames are reaching it (it does not requests for data) because
of latency constraints we have. Thus, its performance needs to
be well evaluated and understood so that we know its limits
in data rate it can handle.

The aim of this article is to describe many technical details
about the implementation of event-building in the gateways.
We will describe one by one how we have been able to increase
the gateway performance and predictability. This includes
mainly description of the operating system implementation
(network stacks, scheduling, memory management, etc.), mea-
surements of the impact of various system parameters and code
optimization.

Operating system studies were greatly helped by theLXR

source code cross reference system [2] and theoprofile pro-
filing tool [3].

II. OPTIMIZATION STEPS

In this section we describe optimization strategies one by
one, explain why we expect improvement and give results of
I/O throughput we have obtained. The host is a dual Opteron
2.2 GHz running a 2.6.11SMP kernel. In these specific experi-
ments, we have disabled data coming back from the computing
node so that the flow goes only in one direction with the
expected processing in between. This helps in understanding
the overall processing. Results with the full implementation
are given in the last section.

Input traffic is emulated by a network processor. Fragments
are of fixed size (average values given above).

A. Architecture of the implementation onSMP

Our candidates for gateway are allSMP hosts. It is important
for our application to benefit from such systems. We have
compared two different architectures for the software.

1) Producer/consumer:Event-building is well described as
collaboration of two tasks. One consists in receiving data
packets from front-end electronics, checking their content,
ordering them, etc. ; the other consists in managing computing
nodes, sending them built events, gathering L1 decisions. This
leads to a very well specified design for dualCPU hosts where
eachCPU runs one of these specific tasks.

If handling data assets of events, the single critical section
are two shared queues in which sets are enqueued by the
receiverCPU once all packets of a set have been received, and
from which they are dequeued for distribution by the sender
CPU. By making this queue a queue ofsets of events, we lower
the rate at which bothCPU have to aquire and release locks
around it. Only at the frequency a full set of data packets is
received, the lock is taken and released by both sides.

This implementation permits to handle a rate of about
1.35 Gb/s in input (bar1 on fig. 2).

2) Single threaded ran several times:An other solution
is to implement a single threaded version of the software,
where the same thread of execution takes care of receiving
data packets and sending events to computing nodes once data
is ready. This thread can be replicated on eachCPU, assuming
the data sources distribute sets of packets in a round-robin way
to CPU.

In this implementation, both threads handle their own sets
of packets but still interact by sharing a common list of
computing nodes rather than handling each a half of them.
In term of interaction in the code, the locks are taken more
often (twice for each event produced instead of twice per each
set of events produced).

This implementation permits to handle a rate of about
1.63 Gb/s in input (bar2 on fig. 2).

3) Conclusion: Impact of the implementation architecture
is summarized on tab. I.

TABLE I

IMPACT OF THE IMPLEMENTATION ARCHITECTURE

prod/cons single threaded
1.3 Gb/s 1.63 Gb/s

Improvement obtained with the single threaded implementa-
tion is mainly due to an efficient use of theCPU cache, which
is not the case in the producer/consumer implementation (no
cache hit at all).

From the pure algorithm point of view, the pro-
ducer/consumer implementation is efficient because the critical
section is not often accessed. However, when the senderCPU

gets a set of events to send, each single fragment of each
event is later copied into its cache. In the single threaded
implementation, there is a high probability that the data is
in cache rather than only inRAM.

Although this paper does not include measurements carried
on Xeon based systems, we have noticed this improvement is
more significant on Opteron based hosts. This is probably due
to the NUMA architecture ofSMP Opteron systems. In such
system, eachCPU has a specific bus to half of theRAM with
no contention with the otherCPU. Avoiding data sharing has
a good impact with such architecture.

An other good feature of this implementation is load bal-
ancing. Assuming the overall data size received by eachCPU

is the same, theCPU load is the same on both.

B. Memory management

Our application makes heavy use of memory for buffer
management. In this section, we explained how and why
performance of buffer management can be improved.

The application receives and buffers data packets in memory
until the full set has been received and then only, prepares built
events for sending. Later, after this full set of events has been
computed, memory is freed. In normal operation, this leads
the memory usage of the process to vary a lot.

The standard way to implement memory management is
to rely on the Cstdlib functions: malloc, free, etc. We
have also tried to implement a simple straightforward buffer
management in the application itself.

The profile of the calling sequence to memory management
functions in our application is the following. The application
allocates (malloc) a large sized memory chunk in order to
receive a possibly largeIP packet. Then it reallocates the chunk
to its real (smaller) size (realloc). Later, after all events have
been sent, it frees (free) the memory chunk. Calls torealloc
actually do not move data to a smaller location but rather
update the descriptor of the area to reflect its new length. So,
they are of low cost.

1) stdlib implementation: Memory management in
stdlib is a general purpose implementation. It is meant
to provide memory management routines for variable sizes,
implements optimization of memory usage and error checking.
Proper general purpose memory management is definitely a
complicated question.

According to the needs of the process it is linked with,
the library dynamically requests memory to the operating
system with calls tobrk andsbrk. For optimization purposes,
it requests large memory chunks in which it implements
a local memory management on following calls tomalloc
and free. The application can handle 1.63 Gb/s with this
implementation.

2) application level implementation:The purpose of doing
a specific memory management system is to make it more
specific to our application. We do memory management inside
a large area of memory allocated at load time with a single
call to malloc.

In terms of memory consumption, our implementation is
definitely less optimal than what thestdlib does: we
allocate data by going forward in the large memory area.
When the end is reached, we come back to the beginning
which we expect to have been freed already since a long time.
Although this is checked for safety, we can ensure this because
in the specific case of our application, we know we do not
want to buffer data so long that the full memory would be
used (the size of the memory area is sufficiently large). The
application should have failed before because of timeouts for
example, or raised an alarm. In normal mode, the memory is
not overflowed.

In terms of management, the implementation is very simple.
It uses anextpacket pointer which points to the “not yet
allocated bytes” of the large array. Ourmalloc is a macro
which expand tonextpacket. Data is copied here. Once the

length is known, therealloc call movesnextpacket forward
after the newly received packet. It is ready for the next call to
malloc. The free call does nothing.

The application can handle 1.71 Gb/s with this implemen-
tation.

3) Conclusion: Impact of memory management is summa-
rized on tab. II.

TABLE II

IMPACT OF MEMORY MANAGEMENT

stdlib custom
1.63 Gb/s 1.71 Gb/s

We can reach a higher rate using a specific buffer manage-
ment.

In fact, careful look to profiling data tells us that the main
reason for getting a slightly lower performance is that the
operating system is quite often asked for new pages and given
empty pages back by the application. Because we allocate
bytes for many packets and free them all at high frequency
and because thestdlib is a system friendly library, it gives
back memory pages when the process seems to not need them
anymore. In the specific case of our application, this means
pages are given back and requested right after. A change to
stdlib would help in not giving back memory so often.

Interestingly, most of theCPU cycles lost in this rather
useless operations consists in the operating system to zero
memory pages before they are returned to our process. This
operation of providing zeroed pages is mandatory in a multi-
user operating system where you do not want other appli-
cations to reuse your memory pages without having the data
erased. In a data acquisition system, this feature is not wanted.
Disabling it would obviously improve performance.

Actually, we have chosen to do our own memory manage-
ment because it is simpler to maintain. Also, since we do not
interact with the system dynamically, this implementation has
a better predictability (usual cost ofmalloc or free will never
suddenly be increased because of an internal call to system
calls to request more memory).

C. Socket interface

Our application uses raw sockets for communication. Data
packets are received straight in a buffer. Built events are
prepared by the application in a specific way so that they can
be sent to a computing node, using the socket interface again.
Preparation is needed because events are received as a set
of many little data fragments belonging to different packets.
They need to be gathered in a message at some point, this is
discussed in this section.

1) Software scatter-gather by the operating system:An
implementation which is usually adviced consists in avoiding
the application to prepare internally the message by asking
the operating system to do it itself. Indeed, for optimization
purposes, many I/O calls can take as a parameter a list of
chunks of data (in aniovec array) to pack them together.
The operating system copies them one by one directly into

its contiguous buffer. Later on, the network card downloads
this packetVIA a DMA and sends it (this copy is of no cost
from the CPU point of view).

This implementation saves a copy because the application
does not need to fully prepare the message. It permits to handle
1.71 Gb/s of data (bar3 on fig. 2).

When profiling the system at high rate, one notice a rather
long time spent by the operating system in doing memory
copies. This led us to have a closer look to the implementation
of the software scatter-gather in Linux. A good starting point
is thesendmsgimplementation of raw sockets.

• The loop over the long arrays we are providing to the
system call trigger a call to a specificmemcpyfunction.
This function is not inlined in the loop.

• Thememcpyfunction is a specific implementation meant
to copy data from user-space (or to user-space). It checks
for each pointer, that the location which is read from
(or written to) is part of the user-level process memory.
This is done by checking a field of the process descriptor
against the actual address.

All that occurs for each data fragment we are copying. It
implies a lot of processing compared to the actual cost of
copying our short fragments.

(One would have expected that pointer validity checks are
automatically performed by theMMU . In fact, the operating
system has to check that the address because theMMU would
not prevent the process to copy bytes from kernel space to the
packet, because the process has system priviledges in a system
call. This is otherwise an obvious security hole.)

2) Message building in user-space:A possible solution
to the previous problem noticed of the implementation of
software scatter-gather in the operating system is to modify
the raw socket implementation to simply don’t do these checks
and inline thememcpyfunction. We have tried a slightly more
complicated implementation where we benefit from the checks
by the MMU .

We have tried an implementation of user-space message
building with the standardmemcpyand an optimized inline
function. In this implementation, we still need the data to be
copied to kernel space, which we do with calls tosend. But in
this case, the cost we have pointed out in the previous section
is much less visible (we copy entire frames).

The memcpyfunction is both general purpose and opti-
mized. This means, at the beginning of each call, it checks the
length, alignments, etc., and chooses an efficient algorithm.
In our application, memory copies are needed for rather
small chunks (fragment size) and the overhead ofmemcpy
is significant. Since we are aware of some properties of
the alignment of our data, we implement a straight inlined
assembly memory copy function specific to it [4, page 118].
Impact of message building is summarized on tab. III. The
memcpybased implementation reduces the performance of the
system to 1.63 Gb/s (bar4 on fig. 2). This is due to the extra
copy we need to do to have the frames being put in a kernel
buffer. The optimized memory copy based implementation
helps and brings it to 1.71 Gb/s. This is not better than what

TABLE III

IMPACT OF MESSAGE BUILDING

iovec memcpy + 1copy fast memcpy + 1copy
1.71 Gb/s 1.63 Gb/s 1.71 Gb/s

we obtain with operating system scatter-gather. However, we
have introduced this extra memory copy (bar5 on fig. 2). In
the next section, we explain how to avoid it.

D. Zero-copy sending

Because we have added a memory copy in the last step, we
implement a kernel extension to avoid it.

We have implemented a “zero-copy sending” packet socket
as a kernel module. We started with the Linux packet socket
implementation. It is relatively simple because it already
provides anmmap implementation. Themmapcall is meant
for different use but is very practical to start from.

The mmap implementation of this socket type allocates
memory pages in kernel space and map them to the user pro-
cess memory space. After this call, the process has read/write
access to an memory area which is in the kernel. We use
this mmapcall to replace the call tomalloc which we use
to allocate memory for frame preparation. When preparing a
frame, the data is copied with the fast inline memory copy
function in these buffers.

Normally, when sending data, the kernel allocates a buffer
and copy data into it. This buffer is added to the packet
descriptor as aDMA fragment and the packet descriptor is
given by the device driver to theNIC. Later, the NIC will
download the data from the address specifiedvia DMA .

In the implementation ofsendmsgfor this socket type, we
check if the packet is a preallocated one or not. If yes, we
simply skip the buffer allocation and memory copy and queue
the packet for sending.

This saves quite a lot ofCPU and the application can handle
an input rate of 1.95 Gb/s (bar6 on fig. 2). (We did not try
more because we are too close to the maximum rate one can
get with packets of 1 KB and two links.)

Impact of saving a copy to kernel space is summarized on
tab. IV.

TABLE IV

IMPACT OF SAVING A COPY TO KERNEL SPACE

user-level user-level + zero-copy
1.71 Gb/s 1.95 Gb/s

E. Interrupts coalescing andCPU affinity

When reaching 2 Gb/s, our host handle a frame rate of
about 250 Kfps. Fortunately, this does not lead to the same
interrupt rate, which it could not handle. Modern card have
a functionality of coalescing interrupts [5, page 4] such that
the interrupt rate is low. This is a feature of theNICs we are
using. Overall interrupt rate is about 20 KHz.

Our Linux distribution comes with a deamon called
irqbalance which periodically recompute a good interrupt

affinity setting. We have experienced that it leads to a more
predictable and better performance to disable it and set affinity
ourselves.

F. Strict priority scheduling

Strict priority scheduling is a feature of 2.6 kernels. The
schedsetschedulercall permits to select a scheduling priority
such that the process will always be considered first by the
scheduler. This is not of significant improvement in perfor-
mance of our application because it has effect only when
the CPU is a lot loaded. Actually, this is more in terms of
predictability of the performance that this setting helps. This
ensures that the process will not be scheduled behind some
daemon running on the host.

G. Socket options

It is now a known advice to set up the operating system to
allow large socket buffers so that many packets can be buffered
in the system queue in case the application is busy.

We would like to insist on a socket option which is not
of any use to our application. The optionSOTIMESTAMP
permits a process to specify to the system it would like to
have its packets timestamped when they are received. Then,
an other system call permits to get the timestamp of the last
packet read by the application.

For accuracy purposes, the timestamp is taken at the very
beginning of the processing of a frame by the system, close to
the interrupt handler. At this level, the system does not know
whether the destination is interested or not by the timestamp
since it has not yet routed the packet. So, as long as a process
requested this timestamp for its packets, a timestamp is taken
for any packet received by the system.

Since this is of some cost, it is a good idea to identify the
processes using this option and see how to get around them.

H. Performance of the full implementation

In the previous tests we have disabled some of the mecha-
nisms of the event-builder in order to permit a simpler study
of the performance. This consists in L1 decisions handling
sent back by computing nodes. If including this traffic back
with the latest implementation, the rate drops back to 1.77 Gb/s
(bar7 on fig. 2). By increasing theMTU of the network on the
sending side to 4 KB, the system is able to handle 1.87 Gb/s
(bar8 on fig. 2). We manage to improve the data rate handled
by the system by increasing the packing factor of L1 packets
where we pack 32 fragments instead of 25. This lowers the
frame rate and makes a better use of the network. The rate
can reach again 1.95 Gb/s (bar9 on fig. 2).

III. C ONCLUSION

We have shown how the implementation of event-building
for LHCb greatly benefits from deep studies of the operating
system source code (Linux) and profiling of the system. Al-
though it is a rather long and complicated activity, such studies
are very important for running high performance systems were
both performance and predictability of the performance are
important goals.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10

in
pu

t r
at

e
ha

nd
le

d
(G

b/
s)

implementation (see references in the text)

Fig. 2. Performance summary

LHCb event-building can be implemented with a lower
number of gateways thanks to performance improvements,
which permits to increase the number of computing nodes
associated to a gateway. This gives good properties to the
computation delay distribution and makes our system more
robust.

REFERENCES

[1] B. Jost and N. Neufeld, “Raw-data transport format,”CERN EPdivision,
LHCb Technical Note 2003-063DAQ, Sept. 2003.

[2] Cross-referencing linux. Linux source code cross referenced inHTML .
[Online]. Available: http://lxr.linux.no

[3] Oprofile. Profiling tool for Linux, kernel profiling, etc. [Online].
Available: http://oprofile.sourceforge.net

[4] Software Optimization Guide forAMD Athlon 64 and AMD Opteron
Processors, AMD , Nov. 2004. [Online]. Available: http://www.amd.com/
us-en/assets/contenttype/whitepapersand techdocs%/25112.PDF

[5] Interrupt Moderation Using Intel Gigabit Ethernet Controllers, intel,
Sept. 2003. [Online]. Available: http://www.intel.com/design/network/
applnots/ap450.htm

