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Introduction

During the 20th century mankind achieved more than ever before in understanding the
laws and mastering the forces of nature. One of the still open questions that continue
to push forward the frontiers of the science, is the nature of an elusive particle called
neutrino.

In the last decade neutrino physics made an impressive progress, important exper-
imental results were published and theories seem to be confirmed. Today, we think
that neutrinos are massive particles and they can oscillate from one flavor to another.
The theory of neutrino oscillations seems to be proven, with only a few parameters
missing. One of the important experiments that hopefully will provide the still missing
parameters is the OPERA experiment.

Following the results published by the Super Kamiokande collaboration, became
clear thatv, neutrinos oscillate into some other flavor. The aim of the OPERA experi-
ment is to provide direct evidence of thg — v, oscillation.

OPERA is a hybrid detector, comprising electronic detectors and nuclear emulsions
with an impressive target mass of 1.8 kt. Located at the Gran Sasso Underground
Laboratory, will start taking data during the year 2006. It will detecheutrinos in
ther,, beam produced at CERN, 732 km away from the detector.

The detection of. is based on the observation of the decay ofthHepton. The
fine grained structure of nuclear emulsions offers the possibility to directly observe
such a decay and by the means of kinematical analysis can be clearly separated from
background events. Nuclear emulsions will be produced and processed in industrial
guantities and the readout will be done with automatized optical microscopes.

In this work are presented some of the analysis tools needed for the data analysis
starting with the raw data produced by the scanning stations. An estimation of the
background for the — 1 + v, + v, andT — h + v, decay channels and an estimate
of detection efficiency for the hadronic decay channels are given. In the last chapter
experimental results from test-beam data are presented.






Chapter 1

The Physics of Neutrinos

1.1 History

The history of neutrino physics starts with the first investigations on the structure of
the atomic nucleus dating back in the early 20th century. A detailed history is given
in many monographs and introductory particle physics books ([1, 2]). Here | will give
only a short summary of the most important developments.

The discovery of the continuous spectrum beta rays by Chadwick (1914) posed
serious interpretation problems. After considering all explanations, even theories in-
volving the violation of the energy conservation principle, finally, it was Wolfgang
Pauli who suggested the existence of a new neutral particle which he called “neutron”.
Pauli assumed that the new particle should be a spin 1/2, light (about 1 electron mass)
and neutral. After the discovery of the neutron in 1932 by Chadwick the name “neu-
trino” was suggested by Fermi for Pauli’s particle.

However, the direct detection of neutrinos was still not possible for a long time.
The first direct detection of free neutrinos was performed in 1956 by Reines and Cowan
at the Savannah River nuclear reactor.

In the 1960’s the question of different neutrino flavors was raised and the first
neutrino-beam experiment at Brookhaven (1962) showed that electron neutrinos and
muon neutrinos are different. Thelepton was discovered at SLAC in 1978 and it
was straightforward to assume the existence of a third neutrino, nameiynegrino.

While reactor, solar neutrino and neutrino beam experiments successfully detected a
high number ofv., v, interactions, the observation of theneutrino is less obvious.
Until now the DONUT experiment found only4 candidates ([13]).

For a while, neutrinos were supposed to be massless and they were successfully
added to the Standard Model of Particle Physics as massless particles. Direct mea-
surements of the neutrino mass have not find positive evidence (except one) of a finite
mass, they only set upper limits, limit that today is acceptedly a few electron-\olt.
However the first solar neutrino experiment in the Homestake mine (U.S.) showed a
deficit in the number of neutrinos detected, which was confirmed by many other ex-

9
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periments. This gave birth to the theory of neutrino oscillations (Pontecorvo) which
implies a nonzero neutrino mass. At the beginning of the 21st century important mile-
stones were achieved: the results of Super-Kamiokande and SNO experiments were
published, two important experiments that can help to solve the puzzle.

Super-Kamiokande showed that there is a difference in the number of atmospheric
neutrinos coming from above and from the opposite side of the globe, the most plau-
sible explanation being that they appear as some other flavor neutrinos which are not
detected in the experiment. In 2002 the results of the SNO experiment showed that the
missing electron neutrinos coming from the sun appear as a different flavor since the
total number of neutrino interactions is close to the expected one.

The fact that neutrinos oscillate implies nonzero mass. Therefore neutrino physics
points beyond the Standard Model which makes neutrinos a hot topic even today, with
a great discovery potential.

1.2 Helicity, Standard Model

Neutrinos were postulated as spin 1/2 particles to satisfy angular momentum conser-
vation in beta decay. If they are fermions, they can be described with a 4-component
Dirac-spinor which satisfies the Dirac equation:

(Wuau —m)y =0

The solution of the equation is of the form{z*) = u(p)e~**. In Weyl represen-
tation (see for example [5]) we write thep) as two 2-component spinor.

o-($)

The Dirac equation becomes:

(Y°po + Y*pr — m)u(p) = 0
po+op  —m X

{ —m¢ + (po — FP)x =0

(po +p)p —mx =0

If neutrinos are massless: (= 0) these two equations decouple: (or in the ultra-
relativistic casen < F)

or:

{ (po—3p)x =0
(po + dp)p =0
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_ (o
X =(+32)x

—(_9F
o= (-2 ¢

We recognize in these equations the helicity operator:

S
hE&;(lzﬂ Sﬁ)
|7 0 7

We distinguish two cases:

1. Whenpy > 0:
op op
(e ()
Do |71
¢ describes a left handed neutrino

(9PN (P
¢_< 100>€ZS +<|ﬁ1)¢

since the energy is negatiwg describes the antiparticle of the neutrino and it is
right-handed.

2. Whenp, < 0:

Similarly for y we get a right-handed neutrino and a left-handed antineutrino. We can
conclude that if neutrinos are massless we find two types of states decoupled from each

other which describe:
1. left handed neutrino;, and right handed antineutring,
2. right handed neutrinoi and left handed antineutring,

Here we introduced the notation r which are the eigenstates of the chirality operator
Prr= %(1 F 75). Chirality and helicity eigenstates are the same if the mass is zero.
If the neutrino has a nonzero mass (but small with respeéf)tthe situation is

slightly different: both states will contain left- and right-handed components:

. Z/L—i-O(%)UR <E>0)
¢_{ vR+0(Z)v,  (E<0)

One can see that the right-handed component is largely suppressed by the smallness
of them/E ratio. So, even if neutrinos have very small, but nonzero mass, detecting a
right-handed neutrino in an experiment is very unlikely. Indeed, experiments showed
that parity is not conserved ift decay. Wu in 1957 showed that ihdecay of*°Co
either left-handed electrons or right-handed positrons are emitted. In an other experi-
ment Goldhaber (1958) showed that neutrinos emitted &REu electron capture are

left-handed.
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1.3 Neutrino masses

In the Standard Model neutrinos are massless. Also in the previous section, we as-
sumed that neutrinos have no mass. However, since the first solar neutrino experi-
ments we suspect that something is wrong with this model. Since then more evidence
of nonzero mass was collected. Neutrino masses are consistent with flavor oscillations
which we will discus in the next section.

1.3.1 Dirac mass term

In the Standard Model the Higgs mechanism generates the Dirac mass term:

ED = —mplv = —mD(I?RI/L + IjLVR) (11)

with mp = Av/+/2, where) is the dimensionless Yukawa coupling coefficient and
v/+/2 is the vacuum expectation value of the Higgs fieldandvy are the chiral left-
and right-handed components of the neutrino field.

One can notice that the addition of the Dirac mass term is not compatible with the
assumption that right-handed neutrinos do not exist. A nonzero mass automatically
involves the existence of both right- and left-handed neutrinos.

The generation of Dirac neutrino masses through the Higgs mechanism is not able
to explain why the neutrinos are five order of magnitude lighter than the electron.

1.3.2 Majorana mass term

According to Majorana (1937) a massive neutral fermion like the neutrino can be de-
scribed by a spinor with only two independent components imposing the so-called
Majorana condition:

Y =y° (1.2)
In other words there is no difference between the particle and its own anti-particle.
Decomposing the field in right- and left-handed projections we can write:

YL+ YR = Y7 + YR
Acting with the projection operatdfr on both sides of the equation we have:
VYR =] (1.3)

which shows that the right handed component of the Majorana field is not independent
from the left-handed one, but one can obtain one from the other with charge conjuga-
tion. The Majorana field can be written as:

Y= + Y]
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This field depends only on the two independent componentg oSimilar to the
Dirac mass term we can construct the Majorana mass term simply substituting 1.3 into
1.1:

oM~ —éme‘m gy (1.4)

1.3.3 Dirac-Majorana mass term

If both left-handed and right-handed fields exist and are independent, also the Majo-
rana mass terms for, andvy are allowed, in addition to the Dirac mass term:

1 — 1 _
Ly = —§mL(VEI/L +ovg), LY = —EmR(y}C%VR + URVE)
The total Dirac + Majorana mass term
LOM =P+ oY + £y

can be written as:

1, — mp m v
DM L= L D L
L = 2(I/L VR)(mD mR)(Vﬁ)—I—H.c.

with the matrices

we(gn) e (5)
mp Mg Vp

The column matrixV;, is left-handed because it contains only left-handed fields.
We introduce the notation:

NL:UTLL, TLL:(VIL)

Var,

whereU is the unitary mixing matrix andh;, is the column matrix of left handed
components of the massive neutrino fields. Then the Dirac-Majorana mass term is

diagonal
UTMU = ( m 0 )

0 mo

U=0p

B costv sin? [, O 2
O_(—sinﬁ cosﬁ)’ p_(O ,02>’ el =1
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The orthogonal matrix is chosen in order to have

OTMO:(mll 0 >

!/
0 my

leading to:

2 / 1
tan 20 = —'D_ My =5 (mL+mRi\/(mL—mR)2+4m%) (1.5)

7’TLR—TI’LL7

my, andmp are positive jn, is always positive bute; is negative ifm?, > mpmg.
Since

2, 0
UTMU = p"OTMOp = ( ol , >
P P 0 pimy
ps = 1always, ang? = 1, if m; > 0orp? = —1,if m| <O0.
The diagonalized Dirac-Majorana term:
D+M 1 -c
L =3 Z miVi Vit + H.c.

k=1,2

is a sum of Majorana mass terms for the massive Majorana neutrino fields
vi =vip + Vi, (k=1,2)

Therefore, the two massive neutrinos are Majorana particles.

1.3.4 The see-saw mechanism

Trying to explain why we don't see right handed neutrinos and why the neutrinos we
detect are so light, the most plausible is to assumerthat= 0 and|mp| < mg. In
this case

m
< |mp|, me~mp, tand~—2<1, pP=-1
mp

- (mp)?
1 — mp
my IS much smaller tham:p, mo is in the order of magnitude of.z, a very heavy
vo corresponds to a very light. mp is the Dirac mass generated with the standard
Higgs mechanism, its value is expected to be of the same order of magnitude as the
masses of quarks and leptons. The see-saw mechanism gives ansmathpared to
mp and provides an explanation of the smallness of neutrino masses.

A small mixing angle implies thatv,;, ~ v, andvy, ~ vf,. Which means that the
neutrino participating to weak interactions practically coincides with the light neutrino
v1, whereas the heawy is practically decoupled from interactions with matter.
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The basic assumption of the see-saw mechanism isinthat 0. Its plausibility
follows from the fact that/;, belongs to a weak isodoublet of the Standard Model:

= ()

Sincev,, has a third component of the weak isospjr= 1/2, the combination¢ v, =
—vI'Clyy in the Majorana mass term hdg = 1 and belongs to a triplet. Since in
the Standard Model there is no Higgs triplet that could couplettg, in order to
form a Lagrangian term invariant under a SY(®&ansformation of the gauge group, a
Majorana mass term far;, is forbidden. In other words, the gauge symmetries of the
Standard Model implyn;, = 0, as needed for the see-saw mechanism. On the other
handm, is allowed (generated through the Higgs mechanism)apds also allowed
sincevy andvéuy are singlets of the Standard Model gauge symmetries. The only
assumption which remains unexplained is the heaviness;olith respect tan .

1.4 Oscillation

Why should neutrinos change flavor? The theory of neutrino oscillation at the first
glance looks like trying to explain some problematic experiments. Until recently only
disappearance experiments were done and before the publication of the SNO results
[26], there was no hard evidence of neutrinos appearing in some other flavor. The
answer is in the SM himself.

Flavor changes occur in the quark sector: weak eigenstates are linear combinations
of flavor eigenstates. The Cabibbo-Kobayashi-Maskawa (CKM) mixing métris
a 3x3 unitary matrix and describes the relation between the weak and flavor basis:

/

d d
s = U, S
b b

The expression of quark weak charged current has the form:

d
(a ¢ t) U, | s
b

In the Standard Model we have 3 lepton familiesv.), (¢, v,), (7,v;), quite

similar to the quark sector, except that for a long time, neutrinos were thought to be
massless. We assume that both quark and lepton sectors should posses similar struc-
tures. As an analogy of the weak charged current we write the lepton weak charged
current in the form:

n

(e o 7) YU | »
V3
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The weak eigenstates are related to the mass eigenstates by:

Ve 11
v, | =U | 1
UV, V3

wereU; is the lepton mixing matrix. If neutrinos are massless or the masses are equal,

it is always possible to rotate the mass eigenstates such that the mixing matrix is the
identity matrix, so flavor and mass eigenstates are the same. In this case (contrary to
the quark sector) no mixing is possible, as all neutrinos will propagate precisely at the
same speed, and the mass eigenstates can never get out of phase. An electron neutrino
born will never change its composition, as all parts will move at the same speed, and
so the neutrino can never be detected as any other flavor. The interesting case occurs
when mass eigenstates are not degenerate.

On the other hand, flavor change of charged leptons have never beem3een:

e* 4 violates the lepton number conservation. Muons always decay via the slow weak
decay:u~ — e~ + v, + .. This decay conserves lepton number. As a consequence,
flavor mixing, if there is any, is possible only between neutrinos.

The above mentioned facts and the Solar Neutrino Problem lead B. Pontecorvo
(around 1969) to introduce the idea of neutrino oscillations. He supposed if a neutrino
born in the Sun as, might reach the Earth ag,, for example, and be undetectable
for the early neutrino experiments which were only able to detgst This would be
explain why only a fraction of the calculated solar neutrino flux was detected.

1.4.1 Two neutrino approximation

If neutrinos have nonzero and different masses we can assume that neutrinos travel
as mass eigenstates which have distinct velocities. Assuming two neutrino flgvors
andvg and two mass eigenstates , m., the flavor eigenstates are related to the mass
eigenstates by a unitary matrix:

(z/a> <V1> (cos@ —sinQ)(Vl)

pr— U pr— .

V3 Vo sinf  cosf Vo

WhereU is written as a rotation matrix with parametgrthe “mixing angle”. The

probability that a neutrino of one flavor is detected as another after attisngiven
by:

Pog = |<vgle ™| vy >’2

assuming that the neutrino is ultra relativistie & p), the Hamiltonian can be sim-
plified:
2 2

m
pr+

H=p:+m?~p, +-—~
Py bty 2,
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Figure 1.1: Transition probability fein? 20 = 1 as a function of\m? /47 E = L/,

The grey line represents the transition probability and the black line the transition prob-
ability averaged over a Gaussian spectrum with mean value E and standard deviation
o= FE/10

Substituting this expression in the formula above and using the flavor states expressed
in terms of mass eigenstates we get the oscillation probability:
Am?2,L

2F,

P,_.5 = sin” 20 sin ( (1.6)
whereAm?, = m3 — m? andL is the distance travelled by the neutrino.

The first term of eq. 1.6 describes the transition probability from weak eigenstate
« into ( via all possible mass eigenstates whereas the second term contains the phase
information leading to L and E dependence of the transition probability. Thus the
transition probability is a periodic function af/ £.

The oscillation wave-length in space is given by:

Am? )\, se 4 E

R S Yt
2F, i Am?

In useful units the oscillation parameter can be expressed as:

AmPL 197 Am?(eV?) L(km)
28 E(GeV)

While a more realistic formalism of course has to deal with 3 neutrino mixing,
the 2 neutrino formalism still can be used for calculating the oscillation probabilities
in certain experiments. For experiments measuifig — «) the relationP(a —
B) =1—P(a — «) is still valid in two neutrino approximation. Results of neutrino
experiments are represented in a two-parameter spage’@) and Am? like in the
example given on fig 1.2 where one can see how the experiment-related parameters are
correlated:
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sin’29
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Figure 1.2: Sensitivity of a typical neutrino oscillation experiment: minimal transition
probability 1%, mean value of 4E/L =72, width of the L/E distribution 10% of the
mean value, from reference [5]

e For smallAm?, corresponding to\,. > L the phase termin®(7L/)\,.) can
be approximated byrL/\,..)?. This results in a straight line of an experiment
-independent slope in a double-logarithmic plot

e The value ofAm?, for which the sensitivity isin® 26 is maximal, is reached for
L = \s./2, independent of,,;,..

e For largeAm?, corresponding to small oscillation length, the phase information
is lost due to the necessary convolution with thyd” distribution. The averaged
transition probability remains:

1
Poop = 5 sin?20 (o # p)

In case of a negative result (no signal observed) the parameter region on the right side
of the curve in Fig. 1.2 would be excluded. Observation of an oscillation signal would
instead result in a preferred parameter region within a band along this curve.

1.4.2 Three neutrino mixing

In the general case, mixing should be described by a 3x3 matrix involving all neutrino
flavors, the oscillation pattern may be complicated and introduce a combination of
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transitions ta.., v, andv,. U the 3x3 unitary matrix can be parameterized in analogy
to the quark sector:
Uel Ue2 Ue3
U= | Uun Usp Us
Ui Ur Uz

The mixing matrix, also called Pontecorvo-Maki-Nakagawa-Sakahata matrix, can be
expressed in terms of 3 independent angles and 1 complex plaaskecan be written

as the product of three independent rotations with an additional phase. In the case of
Majorana neutrinos there are two additional phases that are not observable in neutrino
oscillations we therefore ignore them here.

1 0 0 C13 0 Slge_w C12 S12 0
U= 0 Co3 593 0 1 0 —S12 C12 0
0 —s93 €93 —813671'6 0 C13 0 0 1

WheI’ESl-j = sin Hij, Cij = COS eij; which gives:

i

C12C13 512C13 S13€
_ —id —id
U= —512C23 — C12513523€ " C12C23 — S12513523€ " C13523
—id —id
512823 — C12513C23€" " —C12523 — 512513C23€ " C13C23

By symmetry with the quark sector, it is natural to expect CP violation at some level, so
the phas@ must be non-vanishing. For discussion, we assume that the mixing matrix
U is real for simplicity. Then the oscillation probability:

Am?2, L
P(Va — V/g, E, L) = 5(1,5 — 42 Ja,@jk Sil’l2 < 4ék )
i>k

were: Jugir = UgiUgUs;Uak. Hence there are three independent oscillations with
oscillating terms given by:

sin? Ams, L , sin® —Am%lL , sin® Ami,L
4FE 4E 4F

In the light of current experimental results on solar and atmospheric neutrinos, we
can consider the approximation that only one mass scale is relevant. In the one mass
scale approximation we assume that the neutrino mass pattern is such that:

|Am3, | < [Am3, | = |Am3,| = |AM?|
For example if we interpret the solar and atmospheric neutrino experiments, we find:
‘Am%l‘ ~107° eV?, }Am§2| ~ 1073 eV?

The three family oscillation driven by the largesfi/? parameter is described by only
three parameters: the mass differedca/? and the two mixing angleg,; and 6ss.
The dependence on tidg, angle is not observable in this approximation.
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We can write the oscillation probabilities in the following form:
AM 2L)

P(ve — 1) ~ 1—sin®(20;3)sin ( 1B

Pe —1v,) = Py, — ve) = sin®(20;3) sin’(fa3) sin’ (

AM?L
AE )
AM?L

AE >

AM?L
4FE

P(ve — v;) ~ sin®(20;3) cos®(fas) sin (

P(v, — v,) =~ sin®(20q3) cos’(6;3) sin? (

1.4.3 Matter effects

When neutrinos propagate in matter instead of vacuum, the oscillation probabilities
can be different because of the interactions with the electrons, protons and neutrons.
Neutrinos interact with matter via neutral-current interactions, regardless to their fla-
vor. This interaction creates a phase factor which has no physical effect on oscillations.
On the contrary charged-current interactions which have effect only’smlo play a
role. For the scattering processt e — v + e the refractive index will be different
for electron neutrinos and other flavors due to the additional contributibi-bbson
exchange in the scattering process. This difference in neutrino refraction indices will
introduce an additional phase shift which can change the oscillation probability.
Neutrino oscillations in the matter were first investigated by Wolfenstein [10] and
later by Mikheyev and Smirnov who pointed out the appearance of a resonance region:
at a given neutrino energy, the probability for oscillation will be enhanced to large
values, even when the mixing angles in vacuum are small. This mechanism is called
the MSW (Mikheyev-Smirnov-Wolfenstein) effect.
The evolution equation describing neutrino oscillations in matter in the case of
three flavors, in flavor basis:

i1 m? 0 0 2v/2GpN,E 0 0
i =55 0 mi 0 |U' + 0 00 ||7
0 0 m? 0 0 0

where the potential due to the coherent scattering with electrons has been added. Here
N, is the electron density and with. ~ 0.5 the number of electron per nuclei we
have:

2V2GEN, (V) =76 x 1077, p (1) =38 x 1071 p (L)
cm cm
To simplify the discussion we restrict ourselves to only two flavor oscillations, for
example between. andv,. The evolution equation can be brought to the form:

dv 1 <A+(m%—m%)00826’ (m3 — m?) sin 260 )5,

“at T 2E (m3 —m?)sin20  —(m? —m2) cos 20
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whereA = 2v/2GrN,. After diagonalization the mass eigenstates in mattgrand
vam have the following eigenvalues:

1
Migm = 5 (mi+mid)+AF \/(A — Am2cos20)2 + (Am?)2sin? 20| ,

(Am® = mj —m})

Since matter effects appear through the interaction with electrons in matter (and not
positrons), the effect for anti-neutrinos will be opposite to that of neutrinos and one
should replacel — — A for anti neutrinos. For the sake off simplicity, it is useful to
keep the expressions of the oscillation probability in vacuum and replace the mixing
angle with an effective mixing angle as welln? with an effectiveA M2

Ve \ cosf,, sinb,, Vim
v, )\ —sinf, cosb,, Vom,
where the effective angl, is given by:

in” 20
sin? 207 = — 5 S
sin® 20 + (z F cos 26)?

where the minus sign applies to neutrinos and the plus to anti-neutrinos.

A 104 P (ﬁ) E(GeV)

T Az 7098 AmZ (V)

Because of matter effects the transition probabilities for neutrinos and anti-neutrinos
will be different:

. . AM?L

Plve —v,) = 51n2(2(9m)s1n2( 1B )
AM?L

Pv. —1,) = sin2(29;)sin2< 45 )

where the effective mass difference squared in matter is

AME = AmQ\/sin2 20 + (x £ cos 20)?

The sign of Am? is (unlike in vacuum) relevant for oscillations in matter. For
Am? > 0 and neutrinos, a resonance condition will be met whel, Am?, p) ~
cos 26 and the oscillation amplitude will reach the maximum:

A~ Am?cos20 = sin®20,, =1
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Figure 1.3: Neutrino mass scales

i.e. the mixing angle in matter is essentially maximal, independently on how small it
is in vacuum. This is the resonance effect in the transition probability. We also note
that suppression occurs when

A>2Am2cos20 = sin®20,, < sin®20

and the mixing angle is smaller than in vacuum.

While the oscillation probability is enhanced at the resonance energy, it is sup-
pressed for anti-neutrinos sinck has to be replaced with A. For Am? < 0 the
situation is reversed. As a consequence we can use matter effects to determine the
sign of Am? and that would help us to disentangle the two possible mass hierarchies
that can not be separated by oscillations in vacuum. On Fig. 1.3 we can see the two
possible mass hierarchies and allowed regions by different experiments.

Neutrinos emitted from the sun are created in the core of the sun where the electron
density is the highest, matter effects could modify the oscillation parameters and have
to be taken into account. Similarly, when atmospheric neutrinos travel through the
Earth, a resonance will occur, but at much higher energies as for solar neutrinos. For
Am? =~ 1073 the resonance energy is about 4 GeV which is within the energy range
accessible for accelerator experiments so it has to taken into account at long baseline
experiments as well. As a consequence, the two different mass hierarchies from the
point of view of the experiments can be interpreted in the following way:

e Normal hierarchyyn; < my < ms: solar neutrinos oscillate between the two
light neutrinos and atmospheric neutrinos oscillate between the light neutrinos
and the heaviest one.
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e Inverted hierarchyms < my < m4: solar neutrinos oscillate between the two
heaviest neutrinos, with absolute masses close to each other, and atmospheric
neutrinos oscillate between the light neutrino and the heaviest one.

1.5 Beyond the Standard Model

Massive neutrinos imply the existence of right-handed neutrinos which in the SM are
not needed. Right handed neutrinos are completely decoupled if m=0 but if they have
a nonzero mass one can always apply a Lorentz-boost such that in the new reference
frame they are left handed.

While the Dirac mass term (m=0) is lepton number conserving the Majorana mass
term violates the lepton number by two units, since it transforms neutrino into antineu-
trino and vice-versa. The inclusion of right-handed neutrino states forces the existence
of lepton number violating terms.

Neutrino masses are a strong evidence of physics beyond the Standard Model and
so far the only one.

Dirac mass term is generated with the standard Higgs mechanism. For example for
electron neutrinos:

£ = -\ (LoR+ Ro*L)
i O st o0 ()
If:
=5
one gets:

1

L = —Ay<(ve e )LE(S)%R*”&%(O ”)<6VE>L>

= —7%11(7/&%3 + VeplerL)

which yields the Dirac mass term

Hence the Dirac mass term can be generated by the standard Higgs mechanism. On the
other hand Majorana mass terms cannot be accommodated within the standard Higgs
mechanism.

Today we think that the SMis valid only below the energy range of the new physics.
Below this energy the SM Lagrangian is an effective low energy theory like the Fermi
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theory for weak interactions. Adding a dimension-5 operator gives a natural exten-
sion (but non re-normalizable) of the standard model and generates the Majorana mass
term. The SM admits only dimension-4 operators: One can write formally an expan-
sion in order of dimensionality of operatafs, suppressed by order of the new physics
scale.

1
L— 'CS]V[,free fields + *CSZM, interactions T *CSM, Higgs + Z Fon (17)
n>4 NP

All Lagrangian terms have dimension @nergy*. The dimension-5 character of
the operator (for n=5) in 1.7 refers to the power of energy of the dimension of the
operator which is divided by v » in order to obtain the Lagrangian term with correct
dimension.Ayp is the high energy scale at which the new theory breaks down to the
Standard Model.

One can consider dimension-5 operators that generate Majorana neutrino masses
as the result of the interaction with the same standard Higgs field used to generate the
masses of other fermions. The non-renormalizable operator is of the type:

e (L0) (571 e = 2 ), (5 ) () @) (1) e

Anp Anp

which after spontaneous symmetry breaking induces the following neutrino mass term:

A, 1 (o) 1 Ve D
— (V. € — — (v O ¢ +hec = ———rv,+ hc
ANP( )L\/ﬁ(())\/?( ><6+>L 2Anp

This is precisely the Majorana mass term. It is naturally suppressed by the scale of the
new physics\ yp. The resulting mass term is of the form:

B A\, 02
ANP

this relation shows that the Majorana masg is suppressed with respect toby

the small ratiov/Ayp. In other words, since the Dirac mass term, is equal to

v/+/2 times the Yukawa coupling coefficient, the relation 1.8 has a see-saw form.

Therefore the effect of the dimension-5 operator does not spoil the natural suppression

of the light neutrino mass provided by the see-saw mechanism. Indeed, considering
my, ~ m%/mp and taking into account; = |m; |, from 1.5 we obtain:

(1.8)

mrp,

(mp)?

mg

mp =~ ‘mL—

This shows that the see-saw mechanism is operating even i not zero, but is
generated by the dimension-5 operator. On the other hand, if the chiral right-handed
neutrino fieldvy does not exist, the standard see-saw mechanism cannot be imple-
mented, but a Majorana neutrino masg can be generated by a dimension-5 operator
and eq. 1.8 shows that the suppression of the light neutrino mass is natural and of
see-saw type.
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Experimental facts

To understand the current status of neutrino physics one should be familiar with the
actual values of neutrino masses and oscillation parameters. Below | will try to give
a review of the most important experiments that lead to the current understanding of
neutrino physics with a special regard to the still missing parameters that give the main
motivation for the OPERA experiment.

2.1 Neutrino mass measurements

The study of decays with neutrinos involved gives a model independent way of measur-
ing neutrino masses. In case of non-zero neutrino mass, the mass could be calculated
reconstructing the kinematics of the decay. The current values of neutrino masses and
oscillation parameters are taken from the Particle Data Group’s Review of Particle
Physics ([9]), unless otherwise mentioned.

® /. Mass
The mass of the electron-antineutrino has been investigated usingdaeay
of tritium:
*H— SHe+e™ + 7,
The advantage of using tritium is the small transition energy (18 keV) and the
absence of screening effects by additional electrons. The current limit:

my, < 3eV

e 1, Mass
The best limits for the mass of thg come from the study of the decay
7t — ,u+ + v,
with the pion at rest. The best limit is:

m,, < 170keV

25
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® . Mass
Limits for the. mass have been derived from the study of the decays

T — 5r(n%) + v,

r — 3r(r%) + v,

The current best limit is:
m,. < 18.2MeV

2.1.1 Other mass measurement methods

If the neutrino is a Majorana particle, the mass can be determined measuring the
half-life of the neutrino-less double-beta decay. The best limit was obtained by the
Heidelberg-Moscow experiment [30]. Assuming that neutrinos are Majorana particles
they obtain a positive result:

m, < 0.4eV

We have to mention here the WMAP (cosmic background) experiment [31] that
measured subtle temperature fluctuations within the oldest light in the universe. Com-
bined with large scale structure studies a new bound on the sums of the neutrino masses
is obtainedd ~m, < 1.8eV.

2.2 Oscillation experiments

2.2.1 Solar neutrino experiments

Solar neutrinos are produced by the nuclear fusion processes in the core of the Sun.
The most important processes supplying neutrinos are generated in the so-called pp-
cycle:

p+Dp — 2D+et+rv, 0.42MeV
p+p+e — 2D+, 1.44MeV
"Bete — iLity+v. 0.86MeV
:B — 2a+et+v. 14.6MeV

The given energies are the neutrino energies for the electron capture reactions and the
maximal neutrino energies for thiedecay reactions. All reactions in the Sun produce
electron neutrinos which can be summarized looking at the net reaction of the pp-cycle:

2e” +4p — ‘He + 2v,

The neutrino spectra of the Sun is shown on Fig. 2.1 including neutrinos from the less
significant CNO cycle as well. The fundamental pp reaction is closely related to the
overall luminosity of the Sun and can be precisely predicted.
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Figure 2.1: Solar neutrino spectra

The first observation of solar neutrinos was performed by Davis and his collabora-
tors ([12]) in the pioneering Homestake experiment. It was a radiochemical experiment
using 615 tons of tetrachlorethylen&,(Cl,) measuring the production rate 6f4r in
the reaction

Ve +37C1L — 3T Ar + e~

With a threshold of 814 keV, the reaction is not sensitive to the dominant pp component
of the neutrino flux, but probes the rarBe and® B neutrinos.

The result from the Homestake experiment indicated that only about 1/3 of the
expected solar neutrino flux was observed. This observation is known as the solar
neutrino deficit.

The solar neutrino problem was confirmed by the next generation experiments.
Both Kamiokande (water Cerenkov [21]) and GALLEX (Gallium [17]) experiments
found only about half of the predicted flux. The importance of this discovery is un-
derlined by the fact that Ray Davis (Homestake) and Mastoshi Koshiba (Kamiokande)
shared the Nobel Prize in physics in 2002.

The most recent and maybe the most important contribution to solve the solar neu-
trino puzzle comes from the Sudbury Neutrino Observatory (SNO) experiment ([26])
showing that approximately two-thirds of the solar neutrinos oscillate into other flavors
before reaching the Earth.

The idea behind the SNO detector is to have multiple detection channels which
could help to distinguish between different flavors of neutrinos. The SNO detector is
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basically a water Cerenkov detector with heavy wateix(dpinstead of normal water.
The charged-current channel (CC) is sensitive only to electron neutrinos

Vet+d—p+p+e

The electron carries off most of the neutrino energy, its detection allows the experi-
mentalist to determine the spectrum of salgs, not just the flux. A second reaction,
the neutral-current (NC) breakup of deuterium, gives the total flux, independent of
flavor (thev,, v, andv.cross-sections are identical)

Ve+d—n+p+u,

The only signal for this reaction in a water Cerenkov detector is the neutron, which
can be observed as it captures via the(neaction.

The detector also provided a third channel, neutrino elastic scattering (ES) off elec-
trons which is sensitive to.’s and with a reduced sensitivity i9,’s andv.’s. The ES
reaction provides a direct cross-check against SuperKamiokande. Assuming no oscil-
lation the SNO detection rate is equivalent ta. dlux of

PEYo =2.39+0.2440.12 x 10°cm?’s™!
(see [26]) a result in excellent agreement with that of SuperKamiokande [19],
®EY =2.35+0.02 +£0.08 x 105cm?s™*

The new information provided by SNO comes from the two reactions on deuterium.
The CC channel only sensitive t9's and assuming an undistorté# flux gives:

d¢Go(ve) = 1.76 4 0.06 + 0.09 x 10°cmPs™

The CC flux is less than that deduced from the ES rate, indicating/tfsaaindv.’s
must contribute to the latter. The NC channel gives the total flux

dYCo(vy) = 6.42 4+ 1.57 £ 0.58 x 10%cnm?s™
Combining with the CC signal yields

Psno(ve) = 1.76 £0.05+0.09 x 10°%cm?’s™
Dsno(v,/v,) = 3.4140.45+0.46 x 10°cm?s™

The presence of heavy-flavor solar neutrinos and thus neutrino oscillations is con-
firmed at the 5.3 level. Furthermore the total flux is in excellent agreement with the
predictions of the Standard Solar Model (SSM).

After the first results published, SNO is continued operating with salt (NaCl) added
to the water. The Cl in the salt is an excellent{rtarget, producing about 8 MeV in
~’s. The increased neutron capture efficiency improved significantly the precision of
the NC interaction measurements. The published results from the salt phase [27], are
in agreement with the first results.
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2.2.2 Reactor experiments

Nuclear reactors are an intense source.ofJnsurprisingly, the first detection of a free
neutrino was performed at a nuclear reactor by Reines and Cowan [11]. The source of
neutrinos args-decays of the neutron rich fragments in the fissiof*t’ and?*° Pu.
Reactors produce exclusively, related to the net reaction — p + ¢~ + 7., which

IS necessary to create stable, light nuclei with a lower neutron excess. In average we
expect 6.1, emitted per fission. We also know that the thermal energy released in
the fission process is about 200 MeV. Monitoring the thermal output of a reactor, we
can estimate the neutrino flux with a precisiondf-2%. It is a consequence, that the
neutrino oscillation experiments at reactors are “disappearance” experiments, where
the measured, flux is compared to the expected one.

From the point of view of oscillation parameters the most important contribution
comes from the CHOOZ experiment [16]. The CHOOZ detector was located in an
underground laboratory at a distance of about 1 km from the power plant in the village
of the same name in the north of France. The 1 km baseline and the energy of&bout
MeV gives an average value 6f £ ~300 which classifies CHOOZ as a long baseline
experiment.

The sensitive part of the detector consists of 5 tons of liquid scintillator loaded with
0.09% of gadolinium. The detection of neutrinos is based on the inyedszay

176+p—>e+—|—n

Like in the first neutrino detection experiment, photomultipliers detect the two gammas
emitted after the annihilation of the positron in coincidence with the gamma emitted
by the gadolinium after neutron capture.

The neutrino signal was clearly visible and it's correlation with the reactor power
was spectacular. However, the experiment gave negative results in the sense that
v. — v, oscillations were practically excluded. The measured versus expected ra-
tio, averaged over the energy spectrum is close to one:

R=1.01+28%+2.7%

This translates intd\m? < 8-10~*eV? at full mixing andsin® 20 < 0.17 at largeAm?
values.

Another important reactor experiment is KamLAND [29]. KamLAND uses as de-
tector the old Kamioka Liquid Scintillator and the sourcergé are all the nuclear
reactors in a ~200 km radius around the detector. The results of KamLAND are com-
plementary to the results of CHOOZ (see Fig. 2.2). Since the distance between the
source and the detector is much longer, KamLAND probes the same region as solar
neutrino experiments:;. — v, oscillations (assuming CPT invariance), while CHOOZ
was probing rather. — v.. The number of detected’s is consistent with the Large
Mixing Angle (LMA) hypothesis of neutrino oscillations. The ratio of the measured
over the expected flux is:

R =0.61+£0.085=£0.041
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Figure 2.2: The ratio of the expected and measured neutrino flux in function of the
distance between the source and the detector. The shaded region corresponds to the
flux predictions from solar neutrino data and KamLAND is situated in this region.
Source: [28].

The two neutrino oscillation analysis of the KamLAND data gives? = 7.970% x
1075 eV2. The parameter region excluded by the KamLAND and CHOOZ experi-
ments is shown on Fig. 2.3.

2.2.3 Atmospheric neutrino experiments

Atmospheric neutrinos are produced when high energy cosmic-ray particles, mainly
protons, hit the upper part of the atmosphere inducing hadronic showers that contain a
large fraction of pions

p+N -1+ X

Due to the low density of the atmosphere, most of the pions decay before interacting
Tt Dﬂ(’/u)
and a large fraction of muons decays as well before reaching the ground
p— e+ v,(v,) + ve(ve)

Since the initial cosmic-ray spectrum is not very well known, atmospheric neutrino
experiments measure the ratio betwegmandy,. The results are usually given in the
form of the double ratio

(N () /N (Ve)) data

0= NN 0)
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Figure 2.3: Excluded parameter region obtained by the KamLAND experiment, com-
pared to the region excluded by the CHOOZ experiment and the allowed region of the
LMA solution

The energy range probed by these measurements covers the range from 100 MeV up
to 10 GeV.

Nusex [23] in the Mont-Blanc tunnel and the Frejus experiment [22] at the Frejus
tunnel have obtained good agreement with the expectations. However, starting with
the IMB experiment [24] all experiments measured a deficit of neutrinos. Kamiokande
was the first experiment [18] to report convincing result concerning possible anomalies
in the flux of atmospheric neutrinos:

R swcey = 0.60 £ 0.05
Ry pmuticey = 0.57£0.07

An anomalous effect in both sub-GeV and multi-GeV samples was observed. The
multi-GeV result provided a stronger evidence since at lower energies the direction of
the outgoing lepton is smeared by the Fermi motion. Since the Kamiokande numbers
were in contradiction with the IMB results, it was important that they were confirmed
by the Sudan-Il experiment [25] which found

Rsudan—11 = 0.68 £0.11 £ 0.06

The most important contribution to the field is given by the Super-Kamiokande
experiment [20]. The Super-Kamiokande is a 50 kton water Cerenkov detector which
consists off an inner detector with1100 20-inch photomultipliers and an outer veto.
The pulse height and timing information recorded by the inner detector PMT’s are used
to reconstruct the kinematics of the neutrino events. The outer veto detector surrounds
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Figure 2.4: Zenith angle distribution of electron and muon-like events in SuperK

the inner detector completely, it is useful to identify incoming cosmic-ray muons and
exiting particles produced in neutrino events which occur in the inner detector. During
an exposure equivalent of 70 ktegear, Super-Kamiokande collected enough statis-
tics to confirm the findings of the previous experiments:

Rk supgey = 0.658 £0.016 = 0.035
Rsi yuticev = 0.702£0.032 £ 0.101

The double-ratio however does not give any information about the origin of the
anomaly. We don’t know if thes,’s are too many ov,’s are too few. At this point
Super-Kamiokande was able to provide new information, measuring the zenith angle
distribution of the incoming neutrinos. The zenith angle is a direct measure of the
flight path between the source and the detector. For downward neutrino the average
path length is about 15 km, while for upward going neutrinos produced on the opposite
side of the Earth this distance is about 12’000 km. At higher energies (>400 MeV), the
direction of the charged lepton is strongly correlated with that of the incoming neutrino
therefore the effect is best seen above this threshold.

The plots shown on Fig. 2.4 indicate that there are less upward ggiaghan
expected. The most plausible explanation is th oscillate into some other flavor.
Since in the previous section we have seen that the CHOOZ experiment practically ex-
cluded the/, — v, transition, it remains to considey, — v, oscillations, even though
thev, appearance has not been detected so far. The results of Super-Kamiokande are
consistent with full mixing §in® 20 = 1) andAm? = 3.2 x 1073 eV2 (see Fig. 2.5).

To compleat the experimental evidences of neutrino oscillations, one should prove
that disappearing,,’s in the Super-Kamiokande experiment appear.es The only
experiment forseen in the near future to detecappearance is OPERA. The goal of



2.2. Oscillation experiments 33

1 T T T T
vV -V
T
10k H =
>
L 5
~ 10 |
g
<
10 73:_ 90% C.L. \L‘ E
r  — Kamiokande R
— Super-Kamiokande (Dec. 98)
----- Super-Kamiokande (Jun. 98)
10 . ! . ! . ! . !

0 0.2 0.4 2 0.6 0.8 1
sin“29

Figure 2.5: Parameter region allowed by the Super-Kamiokande experiment

OPERA will be to measure, — v, oscillations in the parameter range indicated by
Super-Kamiokande. Further emphasizes the importance of the OPERA experiment,
the possibility to measum ; below the limit set up by the CHOOZ experiment.

In the next chapter we give a short description of the OPERA detector with the
projected physics performance of the experiment.






Chapter 3
The OPERA detector

The OPERA (Oscillation Project with Emulsion tRacking Apparatus ) experiment or
CNGS1 was approved in 2001 by CERN and presently is under construction. Data-
taking is expected to start in 2006. The detector itself is located at 120 km from Rome
in the INFN-LNGS underground laboratory in the Gran Sasso road tunnel.

OPERA is a hybrid detector comprising a number of electronic detectors and a
specially designed nuclear emulsion stack interlaced with lead plates. The total target
mass of the detector will be about 1.8 kt. This impressive mass needed for neutrino
detection is combined with an even more impressive spatial resolution of abaut a
characteristic of the nuclear emulsion technique.

3.1 CNGS

CNGS stands for “CERN Neutrino beam to Gran Sasso”. A neutrino beam produced
at CERN is directed towards the LNGS underground laboratory, 720 km away.

On Fig. 3.1 we can see the schematic view of the apparatus necessary to produce
such a beam. A 400 GeV proton beam coming from the Super Proton Synchrotron
(SPS) hits a target of 2 m long graphite rods and produces secondary pions and kaons.
To keep the secondary particles in the beam-line magnetic lenses are needed. These
are the “Horn” and “Reflector” seen on figure 3.1. The pions and kaons will enter a 1
km long decay tube where the” and K * decay producing* andv,, .

At the end of the decay tunnel the remaining hadrons hit a huge block of carbon and
iron, which absorbs everything except the neutrinos and muons. The deposited energy
is so high that a closed-circuit water cooling system is needed to prevent a meltdown.

The neutrinos continue their way towards Gran Sasso, while the remaining muons
are completely absorbed by the earth’s crust within a kilometer. The muons provide an
easy way to measure the angle and position of the beam. For that two muon detection
stations are installed, one right after the beam-stop, the other one 67 meters down-
stream in the beam. These muon detectors provide indirectly the only information
about the neutrino beam before it reaches the Gran Sasso tunnel in Italy.

35
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Figure 3.2: Energy distribution of,’s in the CNGS beam, the mean energy is 17 GeV

The CNGS beam contains mainly muon neutrinos but a small contamination of
other neutrino flavors can not be avoided. The ratio’g$ will be about 2% and
the contribution of electron- and anti-electron neutrinos will be less than 1%. The
intensity of the beam with.5 x 10'° protons on target per year is expected to be
7.45 x 1079 /m? /pot or 3.5 x 10! v/m?/year with the mean energy of 17 GeV well
above ther production threshold. In terms of neutrino interactions in the OPERA
detector at Gran Sasso this means about 30 events per day. The numibeutfinos
detected depends strongly on the oscillation parameters. Calculatefimwith= 2.4 x
10~3eV2 and full mixing Gin® 26 = 1) we expect about 15.CC interactions detected
during a five year run.

3.2 LNGS

The INFN-LNGS underground laboratory is located at 120 km from Rome in the Gran
Sasso road tunnel on the free-way Roma-Terramo. This is the longest road tunnel with
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two tubes in Europe with a length of 10 km. The laboratory is under a 1400 m rock
overburden which reduces the cosmic muon flux@o® /m?/h, making it an ideal
place for low background experiments. The placement of the OPERA detector inside
the underground laboratory is shown on Fig. 3.3.

The ground level facilities of the LNGS laboratory have an equally important role
in the experiment. The ECC Bricks (see below) after being extracted will be exposed to
cosmic rays in a specially designed pit and right after developed, in a building specially
built for the OPERA experiment. Around ten scanning stations will be installed for
Changeable Sheet scanning and the laboratory will host the database containing the
data of the electronic detectors.

HES ol
e, e g L1 vbeam fom CERN
L'AQUILA e - \

Figure 3.3: The experimental hall and the location of the OPERA detector in the Gran
Sasso tunnel

3.3 The Detector

As we can see on Fig. 3.4 the detector consists of two identical “super-modules” each
with a 900 t target mass. The basic unit of the detector is the so called Emulsion Cloud
Chamber (ECC). 57 photographic emulsions interleaved wittni thick lead plates
and are packed together in an ECC “Brick”. The Bricks are tightly and hermetically
packed with aluminum-coated paper closed with thermo sealing. The Brick packing
will be fully automatized, the so called Brick Assembly Machine (BAM) will produce
perfectly aligned, controlled quality Bricks at a rate of 1000 per day, in the loading
phase of the detector.

The Bricks are piled up in 31 walls in each of the two super-modules. In total
206336 Bricks are needed to fill the detector. Right behind each Brick-wall a so-called
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Figure 3.4: The OPERA detector

“Target-Tracker” wall is inserted. Each Target Tracker contains 4 x 64 scintillator strips
placed vertically as well as horizontally (for details see [39]). At each end of the Target
Tracker modules 64 channel photomultipliers collect the light providing information
about the position of passing through charged particles.

Each super-module has a muon-spectrometer. They consist of dipolar magnets
made of two iron walls interleaved by pairs of high resolution trackers. Each magnet
is composed of 5 cm thick 2 x 12 iron slabs. A current of about 1.2 kA produces a
magnetic field of 1.55 T in the iron. The 2 cm space between each slab is occupied by
RPC detector planes.

3.4 Electronic detectors

The Target Trackers provide the x and y coordinates of each hit with about 1 cm res-
olution. The hits from the on-board electronics of each plane are collected via an
Ethernet network to a central computer and events are reconstructed to determine the
exact location of the interaction. A display of a simulated event is shown on Fig. 3.5.
It is not easy to find out in which Brick exactly the interaction happened. Sophisticated
Brick-finding algorithms are applied to extract the right Brick from the wall with about
90% efficiency.

High energy muons produced in neutrino interactions will cross the whole detec-
tor passing through the magnets of the muon-spectrometer. The RPC planes inside
the magnets will provide the spatial resolution necessary to use Multiple Coulomb
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Figure 3.5: Simulated — . event in the OPERA target. The beam comes from the
left and the interaction occurs in the third Brick wall. The muon track corresponds to
the longest track escaping on the right.

Scattering together with the bending of the track in the magnetic field to measure the
momenta of the muon tracks with high precision. The deviation of the muon in the
magnetic field will also define the charge of the particle. Figure 3.6 shows the cross-
section of a spectrometer. On the two sides of the magnet precision trackers measure
the coordinates of muon hits. Precision trackers are composed of 8 m long vertical
drift-tubes surrounded by two layers of high precision RPC’s. The spatial resolution
of 0.5 mm of the precision tracker allows a momentum measurement with a resolution
of about 25%.

3.5 The ECC Brick

The basic unit of the OPERA detector is the so-called Emulsion Cloud Chamber
(ECC), a pile of photographic emulsions with lead plates in between. The sensitive
part are the emulsions, which offer a spatial resolution of a few microns. The total area
of emulsion films in the OPERA detector is abeut176000 m?, which corresponds
to 18 m* of dried emulsion gel. Contrary to previous experiments like CHORUS and
DONUT ([14, 15]) where the emulsions were poured by hand, the OPERA emulsions
will be made by industrial methods, by commercial photographic film production lines.
The detailed structure of an emulsion film is shown on Fig. 3.7. As we can see there
is a 50um emulsion layer on both sides of a plastic base. Thanks to the industrial
methods the thickness of the emulsion is very well under control and after develop-
ment, the thickness variation is withik2 ;sm, which is important for the precise track
reconstruction.

The typical crystal diameter in the emulsions is ab@0R xm which implies an
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intrinsic resolution for the position of a passing through track as loGG@s;m.

57 emulsions with 56 lead plates are tightly packed together forming an ECC
“Brick”. The Bricks are hermetically closed to preserve the optimal humidity con-
ditions for the emulsions. At the end of each Brick there are two additional emulsion
sheets attached externally, in such a way that they can be removed without dismantling
the Brick. The so-called Changeable Sheets (CS) will be developed underground and
analyzed in the Gran Sasso laboratories. They will help to localize neutrino interac-
tions reducing significantly the scanning load. If the Changeable Sheets confirm an
interaction in a Brick, those Bricks will be moved at ground level where they are ex-
posed to cosmic rays. High energy cosmic muons crossing the Brick provide straight
tracks for inter-calibration of the emulsion plates. The required track density for pre-
cise alignment is- 1 per mnt. The cosmic ray exposure will take place in a specially
designed pit covered with 40 cm thick iron plates to reduce electron and low energy
particle contamination. Then the Bricks will be dismantled and developed with the
help of semi-automatic machines.

After the development, similar to normal photographic emulsions, they are sent
to the scanning laboratories across Europe and Japan where they are scanned with
automatized microscopes.

3.6 The European Scanning System

The European Scanning System (ESS) is based on commercially available hardware
components. The optical tube of the microscopes contains standard optics produced
by Nikon. They are equipped with a high resolution (Mega pixel) and fast (up to 500

fps) digital cameras. A high precision translator actuated by a stepping motor moves
the optical tube up and down and the same type of translators move the target (the
emulsion sheet) in the focal plane in the x and y directions. The camera is connected
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Figure 3.8: The microscope with the automatic plate changer

to a Matrox Odyssey image processor.

Gradually moving down the microscope, each emulsion layer is sliced in 16 to-
mographic layers defined by the focal depth of the microscope. The software running
on the processor of the Matrox card selects the grains and passes their pixel wise co-
ordinates to the main scanning software (SYSAL [38]) developed in Salerno. From
the grains 3D micro-tracks are reconstructed as schematically shown on Fig. 4.1. The
output of the scanning system are these micro-tracks. In the case of bulk “volume
scan”, from this point on the analysis is continued off-line. In order to deal with the
large quantity of extracted Bricks, a scanning speed of 2Ultim needed. Several Eu-
ropean laboratories already reported to have achieved this speed [41, 40]. Even with
this speed, microscopes have to work continuously to deal with the large amount of
extracted Bricks. To keep the microscope running around the clock, automatic plate
changers are installed. Fig. 3.8 shows the microscope mounted on a scanning stage
together with the plate changer developed in Bern. 4-5 of these systems are already
fully operational.



3.7. Scanning strategies, data-storage 43

3.7 Scanning strategies, data-storage

For the European Scanning System two different scanning strategies are forseen. The
main strategy is called scan-back and consist in following the tracks upstream in the
Brick, starting with the prediction based on the Changeable Sheet analysis. The ad-
vantage of this method is the high scanning speed, since only one view (~300 x 300
wm) per track per emulsion is scanned. For each track found, a prediction is made
for the next plate and a base-track is searched for in one view around the indicated
position. If the track is found it is followed until a stopping-point. A track came to

a stopping-point if the predicted base tracks are not found in three consecutive plates.
Every stopping-point is a vertex candidate. To find the other tracks probably belong-
ing to a vertex, a larger volume is scanned around the stopping-point: 5 plates after
and 4-5 plates before, with a surface of2m2. Unfortunately this method can not
provide all the data needed for full event reconstruction. The other possible scanning
strategy is the so-called volume-scan were a full volume inside the Brick is scanned.
Volume-scan of a whole Brick (56 x 100 éjnwith the current scanning speed would
take about one month, which is obviously not feasible. In the moment of writing this
document, the official scanning strategy is the scan-back method with a volume-scan
in the region of the stopping-point, found by the scan-back. Another possibility would
be a full on-line event reconstruction. This possibility is currently under investigation
and experimental algorithms are tested.

To have a unified data format accessible for everybody in the collaboration, the
data will be filled in an ORACLE database. The scanning software (SYSAL) interacts
directly with the database and all the on-line and off-line analysis can be done with the
database. The smallest unit of the data stored are micro-tracks, leaving the possibility
for off-line reconstruction and search for interactionglecays) inside the plastic base.

3.8 Physics goals

The OPERA experiment is designated to the — v, oscillation search. It is an
appearance experiment which will detecieutrinos appearing in:a, beam. The de-

tection ofr neutrinos is not trivial since until now only fourneutrinos were detected
in the DONUT experiment [13].

The zenith angle dependence of the atmospheric neutringsobserved in the
Super-Kamiokande experiment indicates thabscillates into some other flavor. Since
the CHOOZ experiment [16] set very tight limits on thg — v, oscillation ¢35 <
10°), we expect to see,’s appearing in a/, beam. OPERA is supposed to mea-
sure the oscillation parameters around the region indicated by the Super-Kamiokande
experiment (Fig. 3.9).
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Figure 3.9: OPERA sensitivity far, — v, oscillations. Exclusion plot in the absence
of a signal.

3.8.1 v, — v, search

v, search is based on the observation of the decay of tlepton. Since neutrinos

can take away a significant part of the momentum, the decayroinégo a charged
particle and neutrinos will appear in the ECC Brick as a “kink” (shown on Fig. 3.10).
With the excellent spatial resolution of the emulsions, the kink will be visible and the
daughter particles can be separated from the ones coming from the primary interac-
tion. Sincer’s are shortlived particles, with a mean lifetime of 295 femto-seconds, the
mean decay-length in the laboratory frame is about a millimeter (depending en the
momentum). Because of the internal structure of the ECC Bricks, only about 40% of
ther decays can be directly seen in the emulsions. These are the so called long decays.
They are detected measuring the angle difference of éued the daughter track (see

Fig. 3.11).

If the 7 decays in the same plate where the interaction occurred, the kink can not be
seen. However some short decays can be recovered using the Impact Parameter (IP)
method. The Impact Parameter is defined as the 3D distance between the supposed
daughter track of the and the primary vertex as shown on Fig. 3.12. Due to the good
resolution of the vertex position, tracks with an IP of a few microns can be separated
from the primary vertex.
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Figure 3.12: Definition of the Impact Parameter. The IP can be calculated for all the
tracks attached to the vertex in a similar way

For 7 search all possible decay modes are considered:

T = e Uil
N VI 28 7

7~ — hv(n7)

Each of these decay channels needs specialized analysis and background suppression.
For ther — e channel a good electron identification algorithm is needed. At the
present we can achieve about 90% efficiency above 3 GeV. To reduce the background

from low energy electronsy(— e*e~) we require ther daughter to have an energy
above 1 GeV but not higher than 15 GeV. The 1 GeV cut is needed to remove soft gam-
mas originating from some other interaction and the upper cut is needed to suppress
background from/,CC interaction, coming from beam contamination/pr— v, 0s-
cillation. To further reduce this background a 100 MeV cut is applied on the transverse
momenta of the electron.

The most important background for the— ;. channel comes from large angle
scattering of a muon produced i)CC interactions. About 0.5% muons produced in
v, CC interactions show an apparent kink in the lead plate downstream of the vertex
plate. A cut on the transverse momenta of 250 MeV is forseen to suppress it and in
addition only muons with momenta in the range of 1 - 15 GeV are accepted. The lower
cut in the momentum is needed because of poor muon identification below 1 GeV and
the upper cut reduces the probability of muon scattering.

Ther — h channel has the largest branching ratio but suffers from the background
coming from the re-interaction of the hadrons frafNC events. Re-interacting
hadrons from/,NC and fromy,CC events with the muon not identified can mimic
the 7 kink. To suppress the background from hadronic re-interactions initially the
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| Decay mode DIS long (%) | QE long (%) | DIS short (%)| Total (%) |

T e 2.7 2.3 1.2 3.4
— 2.4 25 0.7 2.8
T—h 2.8 35 - 2.9
Total 8.0 8.3 1.9 9.1

Table 3.1:7 detection efficiency for different decay modes, topologies and type of
events (source [33]).

channel Am?(eV'?) Background
1.6x107% [ 25x 1073 [ 4.0 x 1073

7 — elong 1.4 3.4 8.6 0.15
T — plong 1.3 3.2 8.1 0.29
T — hlong 1.6 3.7 9.4 0.23
T — e short 0.4 1.0 2.5 0.03
T — w short 0.2 0.5 1.3 0.04

| Total | 49 | 118 | 300 | 074 |

Table 3.2: Expected numbers ofevents and background during a 5 year run for
different Am? values (source [33]).

following cuts were forseenP > 2GeV, P, > 600 MeV. This background can be
further reduced by applying cuts on the angle between the parent track and the showers
momentum and the missing transverse momentum at the primary vertex. The effect of
these cuts using a simulated interaction rate as a function of momenta is discussed in
more detail in Chapter 5.

In addition, in Chapter 5. we study the detection efficiencies for the decay channels
with neutral pions{ — 7 (n7")) originally not considered in the experiment proposal
[32]. Since the decay length af’s is very short, they can be detected by taggirs)
to the secondary vertex.

In table 3.1 we summarize the detection efficiencies for different topologies and
event types. The total number of expected events during a 5 year run in the OPERA
detector is given in table 3.2. This numbers are reevaluated continuously in function
of changing parameters and improving analysis methods.

3.8.2 v, — v, search

Since the ECC Brick structure allows a very good electron identification, and because
of the very low contamination with,’s of the beam, there is hope to measure the os-
cillation parameters for the, — v, oscillation bellow the limit set up by the CHOOZ
experiment.
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Figure 3.13: OPERA sensitivity far, — v, oscillations

Background is mainly coming from,NC interactions where’s are produced.
s decay iny's. To suppress low energy gammas we will not accept events with the
primary vertex momenta lover than 1 GeV. Similarly vertices with momenta higher
than 20 GeV will be rejected to suppress the signa. @oming from the beam. Figure
3.13 shows the preliminary estimate for OPERA sensitivity,jo— v, oscillation,
evaluated in [35].



Chapter 4

Analysis tools and methods

Before proceeding with the analysis, it is necessary to present the software tools de-
veloped specifically for OPERA. | will also review briefly some of the methods the
analysis algorithms are based on.

4.1 Track Reconstruction

Once the emulsion plates are scanned, the data is converted into ROOT files containing
the so-called “Edb” data structure. The raw data containing micro-tracks is processed
with the help of a software library called FEDRA developed by the Naples group [44,
45]. FEDRA stands for Framework for Emulsion Data Reconstruction and Analysis
and is based on the ROOT analysis framework.

The reconstruction of the tracks is done in the following steps (see [45]):

e Micro-track linking: A micro-track is defined by a series of clusters. The con-
nection of the clusters is done by the scanning software SYSAL. Micro-tracks
found in the top and bottom layer of the emulsion sheets have to be connected.
The two micro-tracks are fitted with a line and form a base-track. To achieve
resolution the off-line reconstruction has to correct for shrinkage and distortion.
Shrinkage is due to the reduction of the thickness of the emulsion after the de-
velopment process. The shrinkage factor is given by the rat%.
Correction is applied to the thickness of the emulsion layer until the ratio is
close to 1.

Distortions are local deformations of the emulsion and can smear the angle of
a micro-track up to several mrad (see Fig. 4.2). Fortunately, the plastic base is
practically free of distortions. Hence defining the base-track angle with the two
closest point on the two sides of the base, we can achieve a resolution between 1
and 2 mrad. In the further steps of the analysis only these base-tracks are used.

¢ Alignment of the emulsion sheets: emulsion sheets are aligned two-by-two using

49
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Figure 4.1: Base-track reconstruction starting with grains found in tomographic layers

seen by the microscope. The difference between the micro-track angles and base-track
angle shows the effect of the shrinkage.

. v :\ x 4‘/ - + 4 - Nw
- 1/\ = . ~ 2
U ~ LT - ’ -
- \‘\ — T - {\\ N~ T~ N
\.\\. t \ N y —_
. AT \ \ ‘ "
(P - N» -\ — l \ -
- — —
v/ \ S ~ 1 = r’/
_ Y/ \f —r
Lo~ N - .
T ! /?4 / Y —
- ’\ “\/ - N ~
P~ — . L — - (\e
~ ,T/ - A s
—
AN ’ v , )( ~ / .
~ N = Ve v A -
VoY - \ N
— - /
N \ — N / h / AN
~ - -~ = "

Figure 4.2: Typical distortion map of an emulsion. The arrows represent the difference

between the micro-track and the base-track angle. This particular emulsion comes
from a 2004 CERN test-beam Brick
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the base-tracks. The alignment procedure returns an affine transformation (a
rotation and a translation) for each sheet. The transformation is parameterized
in the following way:

()= (oo () (0

e Track linking: base-tracks are connected to form a volume-track. Base-tracks
are grouped according to angular and position acceptance. From many possible
connections, the tracks are selected based-ghcait. These collection of base-
tracks serves as trigger for starting the track fitting with the Kalman filter (see
Section 4.4).

e Track propagation: due to a scanning efficiency inferior to 100%, we have to
reconstruct tracks with missing base-tracks as well. Tracks are followed through
one ore more plates (usually up to three) and if base-tracks or tracks are found
they are merged with the original track. After, the Kalman filter is used for
smoothing.

After tracks are successfully reconstructed, we can proceed with the kinematical anal-
ysis of the interactions.

4.2 Monte-Carlo Simulation

For tuning and testing the analysis tools we developed a simulation tool, based on
Geant4 [42]. The advantage of using Geant4 (over Geant3) is the possibility to use new
hadronic models and the C++ language with Object Oriented design, which makes it
easy to interface with ROOT [43] the standard analysis framework.

The simulated geometry consists of only one ECC Brick, since this is the part of
the OPERA detector where most of the interactions take place. We can use the simu-
lation in single particle mode for test-beam simulations or interfaced with the NEGN
neutrino generator [48]. NEGN was derived from the event generator developed for
the NOMAD experiment. It is based on JETSET 7.4 and produces a simple text out-
put. The interface developed in Neuchatel reads in the output of NEGN, transforms
Geant3 particle codes in the Geant4 (PDG) standard and generates the particles from
the neutrino interaction in the standard UserPrimaryGeneratorAction class of Geant4.

The generated output can be used directly for analysis or is processed with a sim-
ple ROOT script to generate base-tracks for FEDRA reconstruction. Angle dependent
Gaussian smearing is added to the base-tracks to reproduce the effect of the measure-
ment error. Later, the simulation was updated to produce the required input for the
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Figure 4.3: Measurement error on the angle in function of the track angle in MC
smeared with ORFEO versus real data (errorbars are smaller than the points)

ORFEO package [47]. ORFEO simulates the measurement error in one plate and the
error of the alignment as well. Adding background from real data is also possible.
Simulated events with smearing added and after the standard reconstruction can be
hardly distinguished from real data. The scanning efficiency is simulated as well by
removing some of the base-tracks.

One important feature of the real data is that the measurement error depends on the
angle of the incident particles. This is a problem related to the optical microscope and
cannot be avoided. The angular dependence is simulated by ORFEO, smearing the z
coordinates of the micro-track. To reproduce exactly the properties of the real data |
tuned the parameters of ORFEO until the angle dependence of the angular resolution
matches the real data (see Fig. 4.3) .

The simulation tool is available on our web-page:

http://www.unine.ch/phys/corpus/OPERA/opera.html.

4.3 Momentum measurement

The indispensable ingredient of the kinematical analysis is the momentum measure-
ment. The momentum of a charged particle can be estimated from its multiple scat-
tering. Due to Multiple Coulomb Scattering (MCS) a particle traversing a medium
with thicknessz will be deflected by many small-angle scatters. The distribution of
the scattering angle is given by the Moliére distribution. If we consider only small an-
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gle deflections, the distribution can be approximated by a Gaussian. The RMS of the
scattering angle can be expressed in terms of particle momeRtuadiation length
X, and thickness of the traversed matesiatith the formula:

13.6 MeV [ x T
=, /—|1 ) In{ — 4.1
%= e VXO( o0 H<X0)) @

weref, is the RMS of the scattering angle in one plane projection
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plane space
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According to [9], the Gaussian approximation is accurate to 11% or betté for<
x/Xo < 100.

Measuring the momentum of a particle with MCS is possible with two methods:
position and the angle method. In the position method we calculate the scattering angle
0, from the positions of consecutive base-tracks:

_—

O 7

whereAz is the displacement over a cell length= 1300 um. This method depends
strongly on the alignment accuracy of the emulsion sheets which makes it difficult to
use.

The second method is the angle method: we calculate the scattering angle from the
difference of two consecutive base-track angles, which is independent of the alignment
error (see fig 4.4). The maximal momentum that can be measured with the angle
method can be estimated from the intrinsic resolution of the emulsions. According
to [32], the intrinsic angular resolution of an emulsion sheeWis= 0.4 mrad (0.8
mrad is the maximal error on the difference of two base-tracks). Using the formula
4.1 one can easily calculate that the highest momentum that can be measured by this
method is about 7 GeV/c. Furthermore, assuming a more realistic angular resolution of
2 mrad we get’,,,. < 3GeV. Measurements of the angular resolution on test-beam
data give a resolution of 1.7 mrad for small angle tracks and up to 8 mrad for large
angles (see Fig. 4.3). This means in the best case a limit of 3.4 GeV for the maximal
momenta that can be achieved with the simple method. In the light of this numbers
the measurements of high energy particles above 4 GeV seems unrealistic, even when
increasing the number of measurements (see below).

The brick consist of 56 emulsion layers. That means 110 independent measure-
ment for passing through tracks (x and y projections we assume to be independent)
which is usually not the case. Normally, we have to deal with shorter tracks and tracks
containing holes (missing base-tracks). It is important to have the highest number of
independent measurements possible to extract the maximum amount of information.
To do this we will use thewcell method described in [54, 55] and [56]. The scattering
angle is measured from the difference of angles of two base-tracks separated not by
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Figure 4.4: Calculating the scattering angle for the angle method

only one but up to several lead plates. All these measurements are not independent
and this may cause problems when dealing with real data. Starting with the formula
4.1 we can safely neglect the log term (adds a correction of about ~3% ). Substituting
xr =ncell x 1mm, [ ~ 1,62, = 02+250* , whered,, is the measured scattering angle,

00 the measurement error of the angle of one base-track, the formula becomes:

13.62ncell
0, =1 ——— + 2002 4.2

where X, = 5.6 mm the radiation length for lead.

The validity of the method first was tested with a Geant4 simulation. | simulated
a test-beam situation, shooting pions at several energies in a Brick. To the simulated
pion tracks, an angle dependent smearing was added, 1.7 mrad at O and increasing
according to a function fitted to real data measurements (see Fig. 4.3).

The method described in [54, 55] consist in fitting the square-root function 4.2 to
the scattering angle in function afcell, the distance between the base-tracks. An
example with a simulated pion track is shown on fig 4.5. In the first approach, the
points are fitted with the standarsd method of ROOT where for minimization the
MINUIT package is used. The first problem encountered is the convergence: if the
points are scattered too much, the algorithm will not converge in about 5% of the cases
for Monte-Carlo and can be up to 50% in the case of real data including short tracks
with many holes (short tracks are the tracks with less than 25 segments).

Two different methods were compared: first the measurement error is a free param-
eter, in the second method, the measurement error is set by hand to some fixed value.
The results for different momentum can be seen on Fig. 4.6. The obtained resolution
with the measurement error as a free parameter is worst than when is fixed. Setting the
measurement error @ = 2 mrad and redoing the fit with only one free parameter,
the obtained momentum resolution is in full agreement with [53, 54] but the mean of
the momenta is systematically underestimated starting from 5 GeV. Tuning the value
of 56? one can obtain a slightly underestimated momentum and an acceptable resolu-
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Figure 4.5: Mean base-track-angle difference in function of the number of lead plates
crossed, for a simulated 2GeV pion track, fitted with the function 4.2
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tion. Obtaining both a correct mean and the resolution claimed in [53, 54], it seems
impossible to achieve. Estimating the resolution for each Brick, is not feasible since
in OPERA conditions, the data contains only a few tracks with unknown momenta. In
addition, the angular resolution is affected by local distortions (see section 7.2.1) and
the resolution measured with one track in the most general case cannot be used for
another track if they are more than 1 cm apart from each other. We will have to rely
on general assumptions for the resolution. By consequence, the fit with two free pa-
rameters (momentum and measurement error) restricting the parameters to an interval,
excluding non-physical results, it seems a practical solution. For the momentum the
range is between 0.1 and 15 GeV and for the error 1 to 5 mrad. With good starting
values the fit always converges and never returns non-physical values. For results with
real data see section 6.5.

The plots shown above were done with MC data. In the case of real data, the ob-
tained mean value for the momenta is much worst: for the 8 GeV test-beam data (see
7.13) the maximum probability value of the distribution is at 6 GeV only. Knowing
that at 8 GeV the effect of MCS is much smaller than the measurement error (about 0.7
mrad for 1 mm lead), the maximal measurable moment&m;, < 6 GeV. Perform-
ing the calculation backward, we get an angular resolution of 1.1 mrad, which shows
clearly, that the ncell method exceeded the theoretical limit of the simple method but
higher momentum tracks cannot be measured by this method.

4.4 Kalman filter

The Kalman filter is a set of mathematical equations that implement a predictor-corrector
type estimator that is optimal in the sense that it minimizes the estimated covariance.
The advantage of the Kalman filter over the usual least squares estimator is that there
is no need to invert the covariance matrix with the dimension of the global state vector
(which in the general case is non diagonal). Instead we have to invert matrices only
with the dimension of the local state vector (the measurement vector). Track fitting
is a quite similar problem to autonomous navigation: each track segment corresponds
to a position measurement in time. Following the track, the Kalman filter predicts the
next segment and calculates the error of the prediction. The application of the Kalman
filter for track fitting is treated in references [49, 50, 51].

The Kalman filter is mathematically equivalent to the global fit when there is no
multiple scattering or energy loss. The natural iterativeness of this procedure allows
tracks to be fitted in pieces, track elements can be merged without redoing the whole
fit. The Kalman filter uses all the information and cannot give worst track parameters
by adding more measurements. For example, adding a point far from the vertex of a
low energy track will have a small contribution because the multiple scattering error is
large. By consequence, the Kalman filter (in this particular situation) is good at calcu-
lating track parameters at the beginning of the track and is less performant predicting
the next hit.
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Figure 4.7: Kalman filter as used for track fitting and for smoothing

Accounting for multiple scattering can also be a disadvantage, because the fitted
track parameters depend strongly on the momentum hypothesis. Overestimating the
momenta of low energy tracks can give bad results.

There are different ways of using the Kalman filter:

e FILTERING is the estimation of the “present” state vector, based upon “past”
measurements

e PREDICTIONIS the estimation of the present state vector at a “future” time.

e SMOOTHINGIS the estimation of the state vector at some time in the “past” based
on all measurements taken up to the present time.

In our case (OPERA) the time parameter is replaced by the plate index. The state
vector looks like:z), = (X,Y, Z, TX,TY, P) , it's covariance matrix i€’y.

In the first step we make a prediction of the state vector at the positi@sed on
the state vector dt — 1. The prediction equations are:

P = By Cr 't = FCry 1 FE 4 Qi

were F}, describes the propagation of the track parameters from thd position to
k. Qy is the process noise (multiple scattering in our case). The estimated residual

—k—1 - —k—1 k—1 k—1¢yT

were H,, is the projection matrixiri, the measured coordinates. The filter equations
are:

Ky = CF'HT (Vi + HCEtHD)
I = f]lz_l + K}, (77_’2]c — ka]]z_l)
Cp = (1—KyH,)Cr!

with the filtered residuals

7= (1 — KpHy) 7! Ry = (1 — Ky Hy) V,,
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K, is often called the gain matrix. Th& contribution of the filtered point is given by:

2 _ A p-1z
Xk,F—TkRk k

The system state vector at the last filtered point contains the full information from
all points. If one needs the full state vector at every point of the trajectory, the new
information has to be passed upstream with the smoother equations

Ap = OkFI?—H (01154-1)_1

—n - -m —k

Ty = T+ A (Tip — i)
Cr = Cit A (Cyy — Cfa)
FZ = my+ kaz

R} = Ry— HyA, (Cp,, —CF,) ATHT

In the current implementation in OPERA (Vt++ [46]), the full potential of the
Kalman filter is not exploited. It is used only for track fitting but not for track finding
(selecting base-tracks belonging to a track).

Using the Kalman filter for vertex fitting is based on the same principles as the track
fitting: the vertex position is updated with each track added to the vertex. Again, in the
simplest case it is the same as the least squares method. The real advantage of using
the Kalman filter for vertex fitting is that momentum information can be added and the
x? contribution of each track is directly known. On Fig. 4.8 the comparison between
the Kalman filter and the least squares fit is shown, in the case when the momentum of
the tracks is known.

4.4.1 Short decay search

Since they? contribution of each track is known, the software implementation we use
(Vt++), returns the track with the highegt value. Redoing the fit with the remaining
tracks, we can calculate the Impact Parameter of the removed track. Therefore the
Kalman filter could be used, for example to find short decays or secondary vertices
when they cannot be seen otherwise.

On Fig. 4.9 the Impact Parameter of the muon track inrthe 1 decay following
a v, interaction is shown. From the total amountof— u short decays 35% had
x2 > 4 (99.5% probability). These are the potential candidates for a short decay. |
assume that the track with the highgstcontribution is the muon track. Only 10%
cases happened that not the muon track was removed from the vertex. Therefore, with
this method we can detect short decays with about 31% efficiency even when it is not
possible to separate them based on the Impact Parameter.



4.4. Kalman filter 59

6_5 T T T T I T T T T T T T T ] T T T T I T T T T T T T T
¥
1 mm Pb

X
+
X

X
+TRXXKRHK K KX X XXX %X X
+

ETET SN R FER T SRR NE AN RN FNRRE A RAT!

+
+
Loavalasaaly

R N R R R R R R RN R

—
o

o
M

4 6 8 10 12
p [GeV/c]

Figure 4.8: The comparison of the vertex position resolution with the Kalman filter
and with the shortest distance method in the function of the momentum of the tracks.
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4.5 Interactive display tool

For testing vertex finding algorithms it is inevitable to verify the results “by-hand”,
going through some events one-by-one, visually checking if the found events are real.
| started writing a display tool that allows the visual and interactive analysis of inter-
actions inside an ECC Brick. It is based on the ROOT graphical library and uses the
FEDRA file format, therefore is a natural extension of the existing analysis tools. As
shown on Fig. 4.10 one can select a file to be analyzed in the file-selector by clicking
with the mouse. The content of thackstree is displayed using 3 projections x-z,
y-z and x-y. The tracks are represented as a line defined by the base-track coordinates.
Holding down the left mouse button one can zoom in one of the three panes and each
zoom is automatically propagated to the other two projections ( a zoom in x-z implies
a zoom of the z axis on the y-z projection and the zoom of the x axis on the x-y pro-
jection). A geometrical volume can be selected by specifying the coordinate region on
the right-bottom pane.

Selecting some tracks with the right mouse button and clicking owehexbutton
one can directly see the parameters of the fitted vertex in a terminal window. Fitted
vertices with the tracks attached will be automatically saved exiting the program. The
output file contains the santeackstree as the input with additional variables like the
vertex coordinatesy? and a vertex ID. Files already containing the vertex ID or files
with anEdbPVRetobject can be opened for event-by-event analysis.

During the development of vertex finding algorithms this simple application was
extremely useful. It can be downloaded from the same web page as the simulation
tool: http://www.unine.ch/phys/corpus/OPERA/opera.html.

4.6 \ertex reconstruction

The vertex search in OPERA is slightly different from the general problem. Which
tracks to be attached to a vertex are usually a priori known. They are the tracks fol-
lowed by the scan-back or the beam-tracks in the test-beam data. The problem is rather
to search for a vertex at the extremities of a track than finding all possible combination
of tracks that can form a vertex.

The FEDRA package provides a tool that combines all the tracks two by two and
checks if they form a vertex. After, the two track vertices are checked for common
tracks. The vertices with common tracks are combined in higher multiplicity vertices.

From the very beginning | was working on a different strategy. For the real neutrino
events, tracks can be grouped based on geometrical criteria (they all should start in
a relatively small volume), but because real data are only available from test-beam
exposure, the algorithm starts with an already selected track (a beam-track). Because
of scanning inefficiency, we have to search for vertices were the tracks don’t necessary
start in the same plate, we have to allow a few “holes”. For this reason the algorithm

'EdbPVRec is the container class of all track and vertex parameters in FEDRA
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Figure 4.10: Event display showing a simulate€C interaction. The tracks in red are
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searches for candidate tracks starting usually up to 3 segments apart from the endpoint
of the track.

Each time backscattered tracks are searched for. This way the same algorithm can
be used for “V” search as well ( V’s are vertices without incoming track) which is
useful for neutrino event, gamma conversion and neutral decay search.

The algorithm that searches for vertices at the extremities of the tracks can be used
repeatedly for the tracks attached to a vertex. Saving the tracks with a common event
ID, a full event reconstruction is done, starting from any of the tracks belonging to the
vertex.

Another possible application is the reconstruction of low momentum tracks. Large
angle scattering further reduces the base-track finding efficiency, adding so many holes
that the standard reconstruction fails. Applying the vertex finding in an iterative way to
all the fragments we can reconstruct tracks once considered lost. Examples for event
reconstruction and low momentum track reconstruction are shown on Fig. 4.11. On
the first image of Fig. 4.11 a primary interaction and a secondary vertex reconstructed
as one event can be seen. The second image shows a low momentum track broken up
in many small fragments (also reconstructed as one event).

The performance of this tools is best shown in Chapter 7, where results with real
data are presented.

The software realization of the algorithm is based on standard ROOT and FEDRA
classes and it was designed with the idea to preserve compatibility with FEDRA tools,
extensions added only when inevitable.
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Figure 4.11: Event and track reconstruction using vertex finding tools






Chapter 5

Background estimation

The content of this chapter was published in [59]. Since then the study was refined and
some corrections were made.

5.1 Hadronic background

One important background for the search is the re-interacting hadron originating
from some other interaction, like,NC or »,CC interactions. A hadronic interaction,
when only one charged particle escapes from the lead, looks very similar to the
decay. Reat events can be distinguished from background events only by the dif-
ferent kinematics of the interaction. Using a simple simulation and analysis methods
described in [32] one can try to estimate the hadronic background.

5.1.1 Definition of the kinematical parameters

In the real experiment we can not measure the momentum eflieeause of it's short
decay length. To reduce the background we have to apply cuts on the other kinematical
variables. The definition of kinematical parameters are given on Fig. B.1s the
momentum of the, P, is obtained by summing up the momenta of all other particles
attached to the primary vertex atf is the transverse component of the momenta.
Using momentum conservation with the angles defined on Fig. 5.1, we can express the
momentum of thes and the momentum of the hadrons as:

P, = P.cosf + Pyuqcosp

Pragsing = P.sinf

In the experiment we will measure onk,.,, ¢ andd. From these variables it is
possible to extracP, and P,

P .
PT hac‘i Sm @
sin 0

65
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Figure 5.1: Definition of kinematical variables for the interaction. Left: side view
of a v, interaction, right: front view showing the transverse projection of the particle
momenta. For background everitsis replaced withP,.

sz = Phad COSQO"‘SIH%O
tan 6

We also have to define the missing transverse momentum:

T
Pmiss

:|PTT_Pg;d|

Another important kinematical parameter is the angle between the transversal compo-
nent of ther momentum and the transverse momentum of the hadrons denoted with
¢ (see Fig. 5.1). The definition of the kinematical parameters is the same for all
background events except that thes replaced with a misidentified hadron. The mo-
mentum of the re-interacting hadron mimicking thelecay will be denoted witl#, .
How well can be separated the signal and the background with this kinematic param-
eters can be seen on Fig. 5.2. While g, is similar for signal and background,
there is a clear difference in the distributiongof

Another kinematic variable that can be useful in distinguislingvents is the iso-
lation variableQr. Qr is defined as the momentum component oftheerpendicular
to the hadronic shower’s momentum (see Fig. 5.3). The distributiépdor real v,
events and background is shown on Fig. 5.4. In the case of background events the
replaced with one of the hadrons from the shower and the momentum of the shower is
calculated summing up the momenta of all the other hadrons.

5.1.2 Simulation of the re-interaction rate

To estimate the re-interaction rate we used a simple Geant4 simulation. The geometry
was a 1 mm thick lead plate (like one plate from the ECC Brick) and we simulated
pion beams at different energies. A schematic drawing of the setup is shown on Fig.
5.5. We looked at the transverse momentum distribution of the outgoing particles. For
comparison, this simulation was repeated using FLUKA by the Bologna group.
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Figure 5.6:P and P* distribution of hadrons fronr,NC events. The distributions for
v, CC events look quite similar

From all the interactions we keep only events where only one non-leptonic charged
particle exits the lead and ncs point to the vertex. These are the hadronic interactions
that can be mistaken forradecay. The exiting hadron must have a momentum above 1
or 2 GeV depending on the decay channel studied and has to pass cuts on the transverse
momentum from 250 to 600 MeV. The choice of theand P cuts are justified by the
momentum distribution of the pion coming from thelecay shown on Fig. 6.2.

To estimate the background for the— 7~ (n7°)v, decay channel, we also inves-
tigated the situation where more than one gamma can be attached to the vertex.

5.2 Background for ther — u + v, + v, channel

This background originates from,NC events with a hadron identified as a muon, as
well from v,CC events with the primary muon not identified and a hadron identified
as a muon. A similar background originates from the large angle scattering of muons
from v, CC interaction, which we will not discuss here. To mimic thkink, a hadron
must interact in the lead and pass the cuts used for this channel seldcGa\V <
P, < 15 GeV and the transverse momentum with respect tortd@ection: P! >
250 MeV. The reason for chosing these cuts can be understood from the figure 5.6.
To simulate this background we estimated the interaction rate Mitipions for
each energy. We kept only events where one non-leptonic charged particle exits the
lead and no gammas can be attached to the vertex. We don’t check for other neutral
particles (mainly neutrons). We also require that the escaping hadraR’has 250
MeV. The transverse momentum is relative to the direction of the incoming hadron.
The rate obtained i3 — 4 x 10~ (see Fig. 5.8). To estimate the rate in the simulated
v,NC andv,CC events, we use a rough fit as a weight function.
The fitted function for the Geant4 simulation is:

rate= (3.8 — 0.40 x P +0.07 x P? —0.0034 x P*) x 10~* (5.1)
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Figure 5.7: Topology of the signal (left) and background events (right). In the sig-
nal event ther decays in a muon or a pion depending on the decay channel. In the
background event a hadron coming from a different type of interaction, mimics the
kink
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Figure 5.8: Interaction rate for's in 1 mm lead as function of the momentum. We
keep events with only one charged hadron exiting the lead and with no gammas point-
ing to the vertex P, > 250 MeV
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and for the Fluka simulation:
rate= (2.6 — 0.25 x P +0.0114 x P?) x 107*

5.2.1 Background fromy,NC events

In av,NC interaction, a hadron can be misidentified as a muon. These type of events
have no primary muon and the charged particles are mainly hadrons. For each hadron
from the shower satisfying the momentum aR#l cuts, the contribution is given by

the rate equation 5.1 which has to be multiplied with the probability of hadron to muon
misidentification (6%).

Since the hadron is embedded in the shower, the background could be reduced us-
ing Qr, ¢ andPL.  cuts. In table 5.1 we summarize the background rate for different
cuts. In the table the cuts are applied subsequently:Ried P and afterp, Q+ and
PT. ., in this order. The reason for this is thatand P cuts will be applied anyway
andPL. would reduce the signal by the same amount, even if the other cuts have not
been applied beforel)+ has only a small effect on signal and background. The last
colum of the table shows the total number of expected interactions for the five year run
of the OPERA experiment.

5.2.2 Background fromy,CC events

This background originates from),CC events with the primary muon not identified
and a hadron misidentified as a muon. According to [32], the probability to not iden-
tify a muon is 6.5%. We apply the same cuts asifgiC events and we multiply the
obtained rate with the probability that the muon is not identified (6.5%) and the proba-
bility that a hadron is misidentified as a muon (6%). The estimated rate with different
Qr,¢andPL. cutsis shown intable 5.1.

miss

5.3 Background for ther — 7 + v, channel

The background originates fromNC events and fronr, CC events with the primary
muon not identified. Topologically the problem is similar to the previous case: a re-
interacting hadron mimics the kink. In addition the cuts for selecting the — =«
decay channel must be satisfied:

e Atthe primary vertex:
PL. . <1GeV

miss

>3

o Atther vertex
PI' > 600 MeV with respect to the direction
P, > 2 GeV
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Cuts Background| Background| Signal | Bckg. OPERA
fromy,NC | fromv,CC | efficiency| 9810r,NC+
Ratex107° | Ratex10~° 32620v,CC
P, >1GeV &
PI > 250 MeV 21.82 2.31 100% 0.29
FLUGG 11.21 1.15 0.15
¢>7 8.45 1.32 89.78% 0.12
FLUGG 4.36 0.64 0.06
Qr > 0.4 GeV 7.74 1.24 79.73% 0.12
FLUGG 3.93 0.60 0.05
Pr..<1GeV 5.39 1.03 60.91% 0.08
FLUGG 2.83 0.50 0.04

Table 5.1: Background rates for— p + v, 4 v, channel (DIS long decay). The cuts
are always applied in addition to the previous one.

The rate shown on Fig. 5.9, is estimated with the same Geant4 simulation as before.
We require that the escaping hadron tas- 2 GeV andP? > 600 MeV. The fitted
interaction rate as a function of momentum for the Geant4 simulation is:

rate= (0.0197 + 0.0788 x P — 0.00432 x P?) x 10~* (5.2)
and for the FLUKA simulation:

rate= (0.24 — 0.0039 x P) x 10~*

5.3.1 Background fromv,NC events

The background originates from re-interacting hadrons that mimic thecay. For
each hadron from the primary vertex with > 2 GeV andP? > 600 MeV, the
contribution is given by the rate equation 5.2. Only events with at least 2 tracks are
taken. In addition we apply > 2, Q7 > 0.4 GeV andP],,. < 1GeV cuts. The
results are summarized in table 5.2 applying the cuts one after each other exactly like
in table 5.1.

5.3.2 Background fromv,CC events

v, CC events with the primary muon not identified contribute to this background. We
apply the same procedure as in the previous case, except that the rate is multiplied by
6.5%, the probability that a muon is not identified. The results are shown in table 5.2.
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Figure 5.9: Interaction rate forin 1 mm lead as function of the momentum. We keep
events with only one charged hadron exiting the lead and with no gammas pointing to
the vertex.P, > 600 MeV

Cuts Background| Background| Signal | Bckg. OPERA
fromy,NC | fromy,CC | efficiency| 9810y, NC+
Ratex107° | Ratex10~° 32620v,CC
P, >2GeV&
PT > 600 MeV 22.24 1.51 100% 0.267
FLUGG 15.78 1.08 0.190
¢>7 8.31 0.55 88.89% 0.099
FLUGG 5.88 0.39 0.070
Qr > 0.4 GeV 8.31 0.55 78.48% 0.099
FLUGG 5.88 0.39 0.070
Pl . <1GeV 4.9 0.32 60.22% 0.062
FLUGG 3.55 0.24 0.042

Table 5.2: Background far — 7 + v, channel (DIS long decay). The cuts are always
applied in addition to the previous one.
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Figure 5.10:P, > 300 MeV and more than one gamma pointing to the vertex

5.4 Background forr — 7 (n7%)v,; channel

For this decay channel we expect a significant improvement in detection efficiency by
attachingy’s from the #° decay to the secondary vertex (see Fig. 6.4). A possible
background originates from a re-interacting hadron that after mimicking tkiek
produces high energy's that can be interpreted as decayirfs. When~'s are at-
tached to the secondary vertex, the cuts which are normally used in the case of the
7 — w channel, are reduced 1. > 1 GeV andFP; > 300 MeV (see 5.7.2 and 5.7.3).

The interaction rate is simulated as before. In addition to the cuts applied to the exiting
hadron, we require to have at least twe attached to the vertex with kinetic energy
higher than 500 MeV. The rate for different energies is shown on Fig. 5.10. The fitted
rate equation for the Geant4 simulation is:

rate= (0.291 — 0.0342 x P +0.002 x P?) x 10~* (5.3)
respectively for the FLUKA simulation:
rate= (0.0048 + 0.197 x P — 0.0262 x P? 4 0.00093 x P*) x 10~*

The estimation is done for hadrons originating frepNC andv»,CC events as
before, multiplying by the probability of muon misidentification the rate obtained with
v,CC events. The resulting rates are shown in table 5.3.

It is interesting to see, that this time, the FLUKA simulation gives a higher back-
ground rate than Geant4.
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Cuts Background| Background| Signal | Bckg. OPERA
fromy,NC | fromv,CC | efficiency| 9810r,NC+
Ratex107° | Ratex10~° 32620v,CC
P, >1GeV &
PI > 300 MeV 20.05 1.35 100% 0.24
FLUGG 37.09 2.50 0.44
¢>7 7.72 0.50 89.63% 0.09
FLUGG 14.24 0.94 0.17
Qr > 0.4 GeV 7.21 0.47 80.02% 0.08
FLUGG 13.54 0.90 0.16
Pr..<1GeV 5.16 0.33 61.18% 0.06
FLUGG 9.42 0.62 0.11

Table 5.3: Background rates for the— 7~ (n7°)v, channel. The cuts are always
applied in addition to the previous one.

5.5 Summary of background estimations

In this chapter we computed the background rates originating from hadronic re-interactions,
forther - u+v,+ v, ,7 — ™+ v, andr — 7 (n7°)v, DIS long decays. The
hadron re-interaction rate was estimated with Geant4 and a comparison is done with a
similar FLUKA simulation.

After the ¢ > 7 cut we found that the total background rate for a five year run
of the OPERA experiment (shown in the last colum of table 5.1, 5.2 and 5.3) is 0.12
for ther — p + v, + v, channel, 0.09 for the — 7 4 v channel and 0.09 for the
7 — 7 (n7®)v, channel. Apparently th€@, cut has little effect and th&?. = cut
removes a significant part of the signal. Since the background rate without these cuts
it is already about 0.1 events in five years, we suggest that this cuts could be omitted
to increase detection efficiency.






Chapter 6

Detection efficiency for ther — h
channel

In this chapter we estimate detection efficiencies forithe 7v, andr — 7(n7°)v,

decay channels. The neutrino events were generated with the official neutrino genera-
tor of OPERA and the resulting particles propagated in Geant4. The numbers obtained
are compatible with previous estimations published in [32, 33].

6.1 7 energy distribution

The starting point of our simulation was the neutrino events generated with the NEGN
[48] neutrino event generaforThe v, events were generated with the same neutrino
energy spectrum as thg spectrum of the CNGS. For this reason, at the end, each re-
sult was weighted with the oscillation probability farm? = 0.002 eV?. The analysis

is done for each hadronic decay channel separately for DIS and QE events as well.

6.1.1 Long and short decay

Thev, interactions were simulated in the center of the first lead plate in the x-y plane,
randomly distributed along the z-axis. Since the identification ofrtdecays occur-

ring in the same lead plate where the neutrino interaction takes place (short decay) is
extremely difficult, we concentrate only on long decays. We found that the number of
the 7's decaying in the first lead plate is 55.4% DIS and 57.0% QE, which is in good
agreement with [32] (56.3%). The remaining 44.59% DIS and 42.91% QE decay after
the first lead plate and2.97% DIS and41.54% QE decay between the end of the
first and the end of the third plate (which corresponds to the definition of a long decay
according to [32]).

afs/cern.ch/exp/opera/may2001evegen/tauhl.beamfile & tauhgel.beamfile
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Figure 6.1:7 energy distribution from\m? = 0.002 eV? oscillated neutrinos

6.1.2 Energy distribution of the hadron

Fig 6.2 shows the momentum aiyidistributions of ther~ from ther decay (DIS) for
10.000 generated events. The decay branching ratios according to [9] &@+0.11
(1 — 77),25.41 £ 0.14 (1 — 7~ 7°), and9.39 + 0.14 (1 — 7 7°7°). The number of
7w~ surviving P, cuts of 250, 300 & 600 MeV and 1 and 2 GeV in total momenta are
shown in table 6.1 for DIS and table 6.2 for QE events. These cuts are suggested by
[32] and comparing the distributions shown on Fig. 5.6 and Fig. 6.2 they seem to be a
natural choice.

It is worse to mention that the total momentumand P, are not independent vari-
ables. E.g. intable 6.1, for, 71.21% pions survive the 600 MeN, cut and 78.11%
the 2 GeVP cut, which would result in the probability af; x ¢p, = 55.62% if they
were independent. This is less th&in&8%, the number of those which survive& P,
cuts. Hence, in the calculation of the overall efficiency the latter cuts are applied.

6.2 Vertex location using gammas

The cuts on momentum ang can be reduced usings from m, decays to identify
the secondary vertex. Ais assigned to the secondary vertex, if it points to the vertex
within the error of the measurement and if it can be clearly distinguished frem a
originating from the primary vertex. The vertex assignment depends on dhe 7°
decay length, of which the decay length distribution is shown in Fig. 6.3.

The vertex assignment has been done with the impact parameter (IP) method de-
scribed in [35]. The IP associated to the primary and secondary vertices are shown in
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P,(MeV/e)

0

250

300

600

17m~
170
270

100%
100%
100%

95.13%
79.88%
67.67%

93.4%
73.13%
58.36%

71.21%
27.61%
9.48%

177 P>1GeV
17m°P>1GeV
21P>1GeV

90.32%
80.62%
77.27%

88.15%
70.49%
59.66%

87.32%
65.66%
52.23%

70.54%
27.19%
9.48%

1~ P>2GeV
17°P>2GeV
219P>2GeV

78.11%
63.17%
51.82%

75.96%
56.11%
41.54%

75.12%
52.74%
37.76%

61.81%
24.21%
8.35%

P,(MeV/e)

0

250

300

600

17—
17
270

100%
100%
100%

94.67%
80.08%
61.72%

93.55%
74.01%
52.03%

73.9%
28.22%
9.85%

1~ P>1GeV
17m°P>1GeV
219P>1GeV

89.86%
81.35%
74.61%

86.73%
70.20%
54.87%

86.36%
65.93%
47.18%

72.46%
27.64%
9.85%

1m~P>2GeV
17'P>2GeV
210P>2GeV

78.07%
61.94%
50.60%

74.94%
55.15%
39.07%

74.57%
51.82%
34.93%

63.68%
24.07%
8.91%

Table 6.2: Number of events survivirig and P cuts for QE events

Table 6.1: Number of events surviving and P cuts for DIS events. The boldface
numbers show the effect of the cuts used in the efficiency estimations.
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Figure 6.3: Decay length of”’s originating fromr-decays

v | IP2<20 & IP1>20
170 270

DIS | 57.35% 53.15%
QE | 56.87% 56.53%

Table 6.3: Percentage ofs correctly assigned to the secondary vertex with 30% en-
ergy measurement error

figure 6.4 for a typical event topology. Due to multiple scattering of the electrons, the
direction of they can be measured with an error of:

(0.0136/(E7[Ge\/]/2)\ /1/5.6)2 +0.0012
2

g =

The analysis is done only for long decayss with an energy below 500 MeV are
rejected.y’s are assigned to the secondary vertex if the following criteria are satisfied:
IP2 <2 & IP1 > 20. The rates are shown in table 6.3, assuming a 30% measurement
error onE,, ([35]), which does not change the rate much.



82 Chapter 6. Detection efficiency for the— h channel

Figure 6.4: Definition of the impact parameters (IP) for the 1ry and the 2ry vertex
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Figure 6.5: Distribution of converteds in function of the z position

6.2.1 Gamma conversion in the Brick

In the simulation 100008’s were shot into the Brick with an energy randomly dis-
tributed between 0 and 20 GeV. The cross section is almost independent of the energy.
99.88% of they’s convert in the Brick: 74.61% of the gammas convert in the first 10
plates and 93.47% in the first 20 plates of the brick (see [32] page 162). The number
of convertedy’s as a function of z position can be seen in Fig. 6.5.

The probability that & is converted and can be used to identifgvents is 60.7%
which is the number of converteds times the probability that the primary interaction
takes place within the first 34 plates of the Brick (56-20 and -2 because of the long
decay).
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6.3 Overall efficiencies
The detection efficiency is calculated with:
Er = 8tm’g X EBrick X €Geom X Evtz X (l_gfakelep) X 8long X Ekink X €EB2BX EE X EP, X€/XBR

were: .44 IS the trigger efficiencys ... the Brick finding efficiencyg g, the geo-
metrical efficiencyg,, is the vertex location efficiency ., the lepton misidentifi-
cation probabilityg;,,,, the probability of a long decayy.,.,. the probability of seeing
a kink, e go 5 the efficiency of following an event in another Bricky andep, are the
efficiencies corresponding to energy aRdcuts andB R is the branching ratio of the
respective decay channel.

To calculate the overall efficiency channel by channel, the efficiencies from [32]
and presentations made at collaboration meetings are used except, c;ony, BR
and additional factors for the channels with

6.3.1 7 — 7wv, channel

Applying P, > 2GeV and P, > 600 MeV cuts, 61.81% of the particles from DIS
interactions and 63.68% from QE survive. 42.97% of DIS and 41.54% of QE interac-
tions are long decays and taking into account the branching ratio of 11%, one obtains:

e, =1.12%DIS &, =1.22% QE

6.3.2 7 — 7 7'v. channel

For cuts of P, > 2GeV, P, > 600 MeV and novy information, the total efficiencies
are: 1.01% for DIS and 1.07% for QE events. Ifyas associated to the secondary
vertex, the cuts are lowered 1 > 300MeV and P, > 1GeV. From that, the overall
efficiency is calculated withe, = ¢4,y X €prick X €Geom X Evte X (1 — € fakelep) X
€long X Ekink X €B2B X E€E&P, X Evyconv X Extag X ¢’ x BR. resulting in:

e, =089%DIS &, =0.94% QE

This is true if only oney is assigned to the vertex. Since there are always two in the
decay of ther’, the probability that at least onecan be assigned, is— (1 — .,14,)?,
which increases the efficiency to:

e, =121%DIS &, =1.35% QE

6.3.3 7 — 7 27 channel

In the case of’;, > 2 GeV andP; > 600 MeV, the total efficiencies are:

e, =0.12%DIS e, =0.14% QE
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The probability that at least ongis assigned to the vertex i$:— (1 — ,4,,)*. With
the lowered cutsk, > 300MeV andP > 1GeV) for the efficiencies we get:

e, =043% DIS &, =0.42% QE

6.4 Summary of efficiency estimations

Summing up the estimated efficiencies per channel, the overall efficiencies for the
hadronic channel are;. = 2.82% for DIS ands, = 2.99% for QE.

Without gamma tagging the efficiencies are smalter= 2.13% (DIS) ande, =
2.43% (QE). Hence a significant improvement can be obtained tagging.thieor
the 1 7%channel, an improvement of 20% for DIS and 40% for QE events can be
achieved. For the/2’ channel, the improvement is a factor 3 for DIS and QE. In table
6.4 we summarize our estimation based on Geant4 simulation and the numbers from
the Proposal [32, 33].

1n~ 1~ + 17 | 1m~ + 270 Total Proposal
No v tagging | 1.12(1.22)| 1.01(1.07)| 0.12(0.14)| 2.13(2.43)| 2.2(2.8)
With ~ tagging| 1.12(1.22)| 1.27(1.35)| 0.43(0.42)| 2.82(2.99)| 2.8(3.5)

Table 6.4. Comparison of efficiency estimations (DIS). In parenthesis the estimation
for QE interactions.

Despite the fact that in [32] the efficiencies are calculated with a total 50% branch-
ing ratio (in our case only 45%), our numbers are compatible, which means that a small
gain was achieved.
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Experimental results

At the moment of writing this document the OPERA detector did not start taking data.
For tuning of the scanning stations and developing analysis algorithms we had to rely
on Monte Carlo and test-beam data. The role of the simulation in the analysis pro-
cedure was presented in the previous chapter. Here | will summarize our results with
experimental data.

7.1 Test-beams

During the preparation time of the experiment several test-beam exposures were per-
formed. The ones that we were involved in, are: pion test-beam at CERN, electron
test-beam at DESY and neutrino test-beam at Fermi-lab. In these experiments ECC
Bricks similar to the final OPERA Bricks were used, sometimes with a reduced num-
ber of emulsion sheets, to reduce the cost. The emulsion sheets were exposed and
developed in various places in various conditions, therefore the data quality shows
large fluctuations. Despite of the problems with the data quality, in most of the cases
we acquired enough data to perform the track and vertex reconstruction and we could
come close to our physics goals.

7.2 8 GeV pion test-beam

This test-beam exposure was performed at CERN in November 2004 with multiple
goals in mind: to study Changeable Sheet (CS) to Brick connection, vertex location
studies, pion - electron identification and tests of Bricks made with the Brick Assembly
Machine (BAM), at that time under development.

Both Neuchéatel and Bern groups received one ECC brick with a CS exposed to a
low intensity 8 GeV pion beam. The incident angle of the beam was +50 mrad in the
x-z plane and close to 0 in the y-z plane. The beam intensity was chosen in such a way,
that the number of accumulated pion tracks is about 10 pion-traék/Ene beam con-
tains a significant muon contamination of about 20%. The exact numbers recorded by

85
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scintillator counters are shown in table 1. The full volume of both bricks was scanned.
We acquired an unprecedented (at the time of writing) quantity of experimental data,
that put to stress all the hardware and software involved in data processing.

| Brick ID | Pions| Muons | Cosmic ray exposure
#1 Neuchéate| 1139 | 220 6h
#6 Bern 1142 | 150 6h

Table 7.1: Scintillator triggers

Once the emulsions are scanned and aligned, we can search for the pion tracks. In
the first step we want to be sure that the number of tracks is consistent with the data
recorded by the electronic counters. To estimate the number of passing through pion
tracks | used interaction and collision length given by the PDG book. The observed
number of events in a fixed target taking into account the beam attenuation can be
given as:

T

N, N, lp /le ( )dx
obs — e XPpl—7—
b bAI ; p A

Where N, - is the number of beam patrticles; the target thickness; - the target
density,A; the interaction length); = 194 g/cn¥ for lead. Unfortunately, because

of limited angular acceptance we loose some of the elastic collisions, therefore the
number of passing through particles is somewhere between the one calculated with the
inelastic cross-section and the one calculated with the total cross-section. By practical
reasons related to the hardware and to reduce the scanning time, we restrict ourself
to a fiducial volume defined by only 80 énfrom the total 120 crhsurface of the
emulsion sheet. As a consequence, the effective number of beam particles is about
760 in each Brick (assuming homogeneous distribution). We expect to see between
400 and 550 tracks. Because the scanning efficiency is not better than 90% we can not
require that the tracks contain more than 50 segments (from 56). A comparison with
a Geant4 simulation with reconstruction (ORFEO) predicts about 430 passing through
tracks. On Fig. 7.1 we see the distribution of passing through tracks with more than
50 segments within an angular acceptance-6f2 mrad around the peak. The 487
tracks found, in the Brick Nb.6 are within the expectations, since we have no exact
knowledge of the beam profile, position and detector efficiency in general.

In the next step we concentrate on finding pion interactions. This means inelastic
and elastic interactions where the scattering angle is bigger than the acceptance for
track reconstruction. With the help of the vertex finding algorithm described in section
4.6, | found a considerable number of pion interactions. The expected number of
inelastic interactions is about 210.

The vertex-finding algorithm reconstructs vertices with at least one beam-track
with at least three segments. Vertices with up to 7 tracks attached to the vertex were
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Figure 7.1: Angular distribution of passing through pions in the 8 GeV test-beam data

found with backscattered particles included. One example of a high multiplicity vertex
can be seen on Fig. 7.2

The number of vertices found in the data is comparable with the one found in
simulated events. On the first two plots one can see a comparison of vertex multiplic-
ities for the vertices found in Brick Nb.6 and Geant4 simulation with 760 pions and
reconstructed with ORFEO (Fig. 7.3). The number of vertices is roughly the same
except a small difference due to the background from cosmic-rays and muons from the
accelerator. In real data, these produce interactions as well.

Figure 7.4, shows the Impact Parameter (IP) of the tracks to the fitted vertex point.
We can clearly see that the IP of tracks in the real data is better than in the case of
simulation. This is due to smearing, which reproduces only roughly the measurement
error. The relative error of two base-tracks close to each other is expected to be smaller
than the error that we measure globaly (local distortions affect them in the same way).
When treating MC data, the smearing is done independently for each base-track and
this results in worst spatial resolution in the simulation.

On Fig. 7.5 we can see the missing transverse momentum (Pt) in the vertices
found. Despite the good results, we shouldn’t be too confident with these data. After
the studies presented in this document about momentum measurement, we know that
we can measure the momentum only within a restricted range, much lower than in MC.
The technical diffculties are increased by the presence of short tracks an many missing
segments. As a consequence the measured missing Pt is pushed towards the origin, in
the real data.
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Figure 7.2: Reconstructed pion vertex in the 8 GeV test-beam data
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Figure 7.3: Vertex multiplicity in the 8 GeV pion data (left) and Geant4 simulation
(right)
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Figure 7.4: Impact Parameter of tracks attached to a vertex in the 8 GeV pion data
(left) and a Geant4 simulation reconstructed with ORFEO (right)
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Figure 7.6: 8a:m? scanned surface aligned by:#? pieces in the reference frame of
the first emulsion sheet. The displacement is magnified 10x compared to the size of
the squares.

7.2.1 Distortions in the Brick

The first problem encountered during the analysis of the B6 Brick was that a very low
number of vertices was found. Apparently aligning the sheets using the whole?’80 cm
scanned surface is not a good choice. Large distortions in the Brick are suspected that
could make the alignment of the whole surface impossible within an acceptable error.

To check the idea, | divided the data into 20, 2>xBhcm pieces and | applied
the alignment procedure with each 4 <csurface separately. To visualize the results |
draw a grid of 5x4 boxes each one representing a 2 ama of the data and | apply
the affine transformations to each one of them.

One can see on Fig. 7.6, the displacement between separately aligned areas on the
56'th plate in the reference frame of the first sheet can be up tq.600To remedy
this problem, | started the alignment in the middle of the Brick in this case | choose
the plate number 31, and | aligned the plates in the reference frame of this plate (Fig.
7.7). In this case the maximum (apparent) displacement between thé gieras is
only 200um. For further analysis | used this alignment.

The differences in the alignment can be explained with the quality of the Brick
assembly. The Bricks prepared for this test-beam, were assembled by hand using the
newly developed “spider” technique: the emulsions are hold together by a cage-like
structure cut out of an aluminum sheet. The distortions can be caused by the fact that
the extremities of the spider are bent with a hammer.

This study shows that the alignment is a very sensitive point of the reconstruction.
Doing the alignment with tracks spread over a surface of more than a féwcam
lead to efficiency problems. It also has consequences for the scan back technique
suggesting that the alignment has to be done locally to achieve better results. The
observed effect depends strongly on the quality of the Brick. We hope that in the
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Figure 7.7: 80 crhscanned surface aligned by 4 tpieces in the reference frame of
the 31'th emulsion sheet. The displacement is magnified 10x compared to the size of
the squares.

future we will see only small distortions in the Bricks assembled with the BAM (Brick
Assembly Machine).

7.2.2 Search for neutrals

In the interactions we see in the Brick there are many neutral particles produced. These
particles mainly escape from the Brick, but some of them will interact and will pro-
duce secondary interactions. The neutrals are mainly neutrons, gammas and shortlived
particles liker®'s or K”’s. If we could attach tracks from a secondary vertex, it would
provide us with additional information about the primary interaction.

In the first step | try to find vertices with no incoming tracks (“V” shaped vertices).
If this vertices are pointing in the direction of a vertex, we can assume that these are
neutrals originating from the primary vertex. On figure 7.8 we can see two events
resembling to a secondary interaction. The V’s were attached only by geometrical
considerations. Detailed analysis and estimation of the combinatorial background re-
mains to be done. To attach gammas to the vertex, the study has to be completed with
electron-showers as well.

7.3 6 GeV electron test-beam

This test-beam exposure was performed at DESY, Hamburg in July 2004. The Bricks
were prepared and developed after the experiment at CERN. The goal of the experi-
ment was to develop an electron identification algorithm, measure the energy deposited
in the shower and identify’s if possible. The DESY electron beam was running with
different energy settings for the experiment: we used the beam with 1, 3 and 6 GeV
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Figure 7.8: Secondary interaction candidates
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Figure 7.9: Electron shower. A 6 GeV electron is coming from the left upper corner
and inducing a shower. Track reconstruction with FEDRA gives a bunch of intercon-
nected tracks sharing common base-tracks

momentum. Two types of exposures were done: low density?#d high density
100/cn¥ . The Brick scanned in Neuchatel contained 20 emulsion sheets and was ex-
posed to the high intensity beam. The beam had a spot diameter of 1.4 cm. The Brick
was exposed 12 times, by shifting it horizontally and vertically a few centimeters each
time. This way we have 12 beam-spots in the Brick. Their distribution is shown in
table 7.2.

| YIX [ -46 mm]|-15mm| 15 mm| 46 mm|
34 mm 440 394 373 422
0Omm 416 420 441 390
-34 mm 355 412 349 404

Table 7.2: beam-spots

For cosmic ray exposure the bricks were left in horizontal position for 24 hours.
This, and the fact that they were developed one month later, is a source of the very
high background level observed during the scanning.

In Neuchatel we scanned a 10 tsurface of the Brick which includes two beam-
spots. In the beam-spots we can easily identify the electromagnetic showers by eye.
One example is given on Fig. 7.9, the shower in the reconstruction appears as a bunch
of interconnected tracks.

In the attempt to find the electrons, first we reconstruct the tracks with FEDRA in
the usual way. The beam direction known, | select tracks starting in the first emulsion
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sheet in the beam direction with an acceptance of 200 mrad. Then we look how many
tracks start in a 200x200 micron parallelepipedon around the incoming track. Asking
at least for 5 tracks to start inside the volume, 359 were found from the expected 441
(539 tracks in the beam direction), for the other beam-spot 265 were found and 390
expected (390 tracks in the beam direction). Asking for 3 tracks only 397 were found
with 471 tracks pointing in the beam direction (441 expected).

We can conclude that electrons can be identified with 90% efficiency (at 6 GeV)
even without additional informatior%f for example). From simulation with recon-
struction | achieved 97%, without simulating the background.

7.4 Neutrino test-beam (PEANUT)

The Neuchatel and Bern groups were actively involved in this test-beam performed
at Fermilab, Chicago, US. A detailed description of the experiment is given in [36].
The main goal of the experiment is to have ECC bricks exposed to a neutrino beam
before the OPERA experiment starts. Real neutrino events allow us to test scanning
strategies, reconstruction and analysis methods necessary to deal with the real OPERA
data and to cross-check physics performance estimated with Monte-Carlo.

The experimental setup consist of maximum 64 bricks piled up in 4 mini-walls
with Silicon Fiber Trackers in between. The whole setup is placed in the NuMI beam
just before the MINOS near detector (see [36]). The setup was prepared by the Nagoya
University recycling old Fiber Trackers used in the DONUT detector. Emulsions were
transported to Fermilab by plane after being refreshed in the Tono mine. Packing the
Bricks and the development were done on the site.

The NuMI beam can run in several configurations. Changing the target and horn
configuration the peak of the energy distribution can be shifted towards higher ener-
gies. During the test exposure the beam was running in low energy configuration, see
Fig. 7.10 With the given beam intensity we expected 4-12 interactions per Brick per
day.

For a comparison | made a simulation with the NuMI beam profile plugged in
the NEGN neutrino generator. The particles created in the neutrino interaction were
propagated with Geant4 in the ECC Brick geometry and the usual reconstruction and
vertex finding were done. The results for vertex multiplicity are shown on Fig. 7.11

7.5 Momentum measurement in real data

From test-beam exposures we have 4 different datasets good enough to measure mo-
menta: 2 and 4 GeV pions scanned in Naples from the July 2003 test-pbeé&nGeV
dataset scanned in Bologhand 8 GeV pions scanned in Bern from the Nov.2004

http://ntslab01.na.infn.it/public/Pions/
2http://www.bo.infn.it/opera/RawRoot/



7.5. Momentum measurement in real data 95

Interacted neutrino ener I S—
gy Entries 50
0.25— Mean 7.758
r RMS 8.065
0.2
0.15
0.1
0.05-
[o) Sl it P AR - N o N A
0 5 10 15 20 25 30 35 40 45 50
E (GeV)

Figure 7.10: Energy distribution of interacted neutrinos coming from the NuMI beam
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Figure 7.11: vertex multiplicity for,C'C' simulated events
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test-bearh To avoid contamination from the background-tracks, for all these mea-
surements | select only beam-tracks with at least 40 segments. For the momentum
measurement we use theell method described in Sec. 4.3 with the maximum num-
ber of lead-plates crossedcell = 18.

For the first try, | applied the method described in Sec. 4.3 with fixed measurement
error. The results can be seen on Fig. 7.12. Since the distrib%tierGaussian, the
histogram showing the momentum distribution is fitted with

wherep0, p1 andp2 are the fit parameters. The results show an acceptable resolution,
in agreement with the simulation. Unfortunately above 4 GeV we see a strong bias, the
mean of the momentum is very much underestimated at 6 and at 8 GeV. Apparently,
the effect shown on Fig. 4.6 in real data is more accentuated and it happens at lower
momentum values.

From Sec. 4.3, we already know that the fit with two free parameters gives a better
estimate if we look only the mean value of the momentum distribution. Applied to real
data, the results are shown on Fig. 7.13. We observe that the mean value obtained for
the 6 GeV data is closer to the real value, but in the case of the 8 GeV data the mean
momentum is still too much underestimated. We also notice that the resolutions are
worst, in agreement with Fig. 4.6.

In order to understand the reason why the momentum is so much underestimated
| made additional studies on the real data. For this, | plotted the angle difference of
base-tracks separated by 1,2 ... 18 lead plates, like in the ncell method but here is
done for the whole sample. The histogram | fitted with a Gaussian. The width of the
distribution as a function of lead plates crossed is shown on Fig. 7.14.

The results can be used for momentum measurement like in the ideal case (in-
finitely long track or average over many tracks). Fitting with formula 4.2 the mean
value of the momenta of all tracks can be obtained. To obtained “momentum” is in
good agreement with the mean of the momentum measured one-by-one for the 2 and 4
GeV data. For the 6 and 8GeV data clearly shows that we are above the maximal mo-
mentum that can be measured by this method. From the fitted values we can conclude
that the maximal momentum that can be measured experimenkglly: < 6 GeV.

If formula 4.2 hold(667; ; ; = 063,05 +2062,), we can simply subtract the effect of
the MCS and we are left with the measurement error only. Unfortunately subtracting
663, do not give a flat distribution. We assume that the measurement error is inde-
pendent of the position. At 8 GeV is even worse, as we can see on Fig. 7.15 that after
the effect of MCS subtracted the "measurement error” is almost always bigger than
the effect of MCS. This means that we are trying to measure an effect that is smaller

Shttp://Iheppc46.unibe.ch/MICROSCOPE2/B6_AUTO_LARGE/
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Figure 7.12: Momentum measurement with the ncell method with fixed measurement
error Q66* = 5). From top to bottom: 2,4,6 and 8 GeV data
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Figure 7.13: Momentum measurement with the ncell method with the measurement
error as a free parameter. From top to bottom: 2,4,6 and 8 GeV data.
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f = sqrt(41.4*x/par[0]+par[1])

2GeV data Pmeas = 1.97 , Er = 2.93
4GeV data Pmeas = 4.10, Er = 2.51
6GeV data Pmeas =5.15, Er = 2.92
8GeV data Pmeas = 5.38, Er = 2.
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Figure 7.14: Width of the basetrack-angle difference distribution in function of the lead
plates crossed. It can be considered as an average track for momentum measurement.

than the error. What is shown on Fig. 7.15 is an avarage over all the tracks. Individual
measurements are worsened by the statistical fluctuation, in addition.

To explain the behavior of the measurement error | found two plausible explana-
tions:

1. The validity of the formula®%¥<", /& is limited to small angle scattering

which also means high momenta. | was surprised to see the same behavior in
data simulated with Geant4 until | found out that Geant4 uses the Lewis for-

malism instead of the Moliere theory to describe MCS. The subtraction of MCS
0.555

calculated With%6 (Xi()) already gives smaller measurement error. The
disagreement between the simple approximation and the complete Lewis theory
will be bigger as the probability of large angle scattering is higher, at low energy.

This can explain what we see in the case of the 2 GeV data.

2. The effect of systematic errors: the mean value of the angular error distribution
for the four opposite corners of the Brick and the average for the whole surface
is shown on Fig. 7.16. This is in full agreement with the distortions mentioned
in section 6.2.1. Clearly if we measure the momentum of a track far from the
center of the Brick, our resolution will be worsened by a possible systematic
error, which unfortunately behaves in the same way as the “error” caused by
the multiple scattering. The systematic errors will never cancel out because we
sum up the angles quadratically. The amplitude of the systematic error is in
agreement with the remnant error at high energies (8 GeV), see Fig. 7.15.
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Figure 7.15: Width of the basetrack-angle difference distribution in function of the
lead plates crossed with the effect of multiple scattering quadratically subtracted.
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The remaining error, after the subtraction of the effect of multiple scattering has a
different amplitude at different momentum. Another explanation would be the angular
dependence of the measurement error. As mentioned in section 4.2, the measurement
error is angle dependent and the mean scattering angle depends on the momentum,

00 ~ 66 (1%1 /Xio>. For example at 2 GeV after 10 plates crossed the width of the
Moliere distribution is 10 mrad. This fact gave the idea to try out a new method that

preserves the momentum dependence of the measurement error.
Similar to reference [53] we can write the negative log likelihood function

1 1
L= 5 log (det V(P)) + 5)(2(007 Yo, P)

were? is originally the standarg? = (i — 6021 — y020)V H(P) (i — 0021 — yoZ0)
with 6, the slopey and z; the N measured), z points, andz, is an N dimensional
unit vector. V(P) is the momentum dependent covariance matrix. H&g/ method
practically consist in replacing the® function with

13.6)2x; 2
i (021 — (U252 + 2063) )
o -2(%)

1=0 v

were | denoted withx; the number of lead plates crossedtim step. Minimizing this
function is equivalent to the graphical fit method.

The main difference between the position and the angular method is that the scat-
tering angle does not depend on the scattering angle in the previous step. Therefore,
we can assume that the covariance matrix is diagonal and we can write the logarithmic
term as:

O'Z'<.’L’Z'7 P)

)

The main difficulty is finding a good formula far;. Observing that the angular error

in function of the angle can be fitted with a second order polynomial (see Fig. 4.3),
oc=17+ % seems a reasonable approximation, whefas the angular error dt
angle,C; and P are fit parameters. Other formulas that preserverfltependence of

the error did not gave better results. Finally the following formulagavas used:

N
=0

2
13.6 T;

N N emeas,i - p Xo
L= Z log(o;) + Z
i=1 i=1

0;

After minimizing the function’ the obtained momentum distribution is shown on Fig.
7.17.

The obtained resolution at 2 GeV is surprisingly good. It is comparable with the
one obtained with simulated tracks without smearing. Until now the best published
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Figure 7.17: log likelihood method. From top to bottom: 2,4,6 and 8 GeV data.
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results with real data showed about a 30% resolution. Interestingly, if the minimization
converges the fit-parametéy is almost zero. It means that the momentum dependence
of the error was removed. Like every method this one also has it's draw back: the
mean of measured distribution is strongly biased towards lower momenta. As we can
see on Fig. 7.17 a 4GeV track is measured with a mean of 4 GeV but an 8 GeV track
is measured only at 4.4-4.5 GeV. Apparently, with this method we can not exceed the
limit when the measurement error and the effect of Multiple Scattering becomes equal,
which happens around 4 GeV.

The methods presented above should not be considered as a final solution for the
problem of the Momentum Measurement. For a practical solution one could choose the
method with two free parameters (for minimum bias) and if the measured momentum
is below 4 GeV redoing the fit with the log-likelihood method one could take advantage
of minimum bias and good resolution in the same time.

Since for the kinematical analysis we assumed that the momentum measurement
works up to 15 GeV, further studies have to be done to fully understand the behavior
of the real data.






Chapter 8

Conclusions

The OPERA experiment starts taking data the summer of this year (2006), only a few
month after finishing up this document. We expect to be able to scan and analyze the
large amount of ECC Bricks extracted from the detector. While until the final analysis
is a long way to go, most of the tools are already given and will be up to the next
generation of Ph.D. students to use them at their full potential.

In this study we estimated the background originating from hadron re-interactions
in the ECC Brick. The total background rate for the five year run of the OPERA
experiment, after the suggested kinematical cuts, is estimated at 0.1 or below for each
ofther — pu+v,+v,, 7 — 7+ v, andr — 7+ nr’ + v, channels. The background
forther — 7m+nn®+ v, is estimated for the first time here. The results are consistent
with another simulation done with FLUKA. This study is important for demonstrating
that OPERA is a very low background experiment and the total number of background
events will be below one for the five year run.

The detection efficiency for alt decay channels of the OPERA detector is cur-

rently estimated at 9%. Hence a small gain in detection efficiency would be considered
as a major improvement. Based on a Geant4 simulation, here we estimated the detec-
tion efficiency of the decay channels with one charged pion-G 7= + (n7°) + v,
n = 0,1,2). We exploited the possibility to identify the decay channels with neu-
tral pions by attaching’s to the secondary vertex. The found overall efficiencies are
e, = 2.82% for DIS ande, = 2.99% for QE interactions. These numbers are consis-
tent with the ones published in [33].

Showing our results with data coming from test-beam exposures, we proved that
we will be able to analize the data when the experiment starts. The number of pion
interactions found in the November 2004 test-beam data is compatible with the number
of interactions in simulated events. In general, the real-data and the simulated one
shows a good agreement. A preliminary kinematical analysis shows the feasibility of
using cuts on the transverse momentum and the impact parameter.

Studies of the momentum measurement showed much better resolution than ever
published before [56]. We demonstrated that resolution below 20% is possible to
achieve, up to 4 GeV momentum. With an alternative method we achieved resolu-

105



106 Chapter 8. Conclusions

tion better than 15% at low momentum (2 GeV). Unfortunately we observed strong
limitations in the maximal measurable momentum, not observed in Monte Carlo data.
These studies has to be continued in order to fulfill the requirements of the kinematical
analysis.

All this proves that tracking and vertex-finding methods are in the final stage of
development, their application to neutrino events will be straight forward.
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