
LH
C

b-
PR

O
C

-2
00

6-
00

5
17

/0
2/

20
06

GANGA: A GRID USER INTERFACE

K. Harrison, Cavendish Laboratory, University of Cambridge, CB3 0HE, UK
C.L. Tan, School of Physics and Astronomy, University of Birmingham, B15 2TT, UK

D. Liko, A. Maier, J.T. Moscicki, CERN, CH-1211 Geneva 23, Switzerland
U. Egede, Department of Physics, Imperial College London, SW7 2AZ, UK

R.W.L. Jones, Department of Physics, University of Lancaster, LA1 4YB, UK
A. Soroko, Department of Physics, University of Oxford, OX1 3RH, UK

G.N. Patrick, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK

Abstract

Details are presented of GANGA, the Grid user interface
being developed to enable large-scale distributed analysis
by physicists in the ATLAS and LHCb experiments.

INTRODUCTION

GANGA [1] is an easy-to-use frontend for job definition
and management, implemented in Python [2]. It is being
developed to meet the needs of ATLAS [3] and LHCb [4]
for a Grid user interface, and is a key piece of the experi-
ments’ distributed-analysis systems [5, 6].

ATLAS and LHCb will investigate various aspects of
particle production and decay in high-energy proton-proton
interactions at the Large Hadron Collider (LHC) [7], due
to start operation at the European Laboratory for Par-
ticle Physics (CERN), Geneva, in 2007. Both experi-
ments will require processing of data volumes of the or-
der of petabytes per year, and will rely on computing
resources distributed across multiple locations. The ex-
periments’ data-processing applications, including simu-
lation, reconstruction and physics analysis, are based on
the GAUDI/ATHENA C++ framework [8]. This provides
core services, such as message logging, data access, his-
togramming; and allows run-time configuration via options
files. These can be written in Python, or using a value-
assignment syntax similar to that of C++, and may have
considerable complexity.

GAUDI/ATHENA jobs for simulation and reconstruction
typically use software that results from a coordinated,
experiment-wide effort, and is installed at many sites. The
person submitting the jobs, possibly a production manager,
performs the job configuration, which involves selecting
the algorithms to be run, defining the algorithm properties
and specifying inputs and outputs. The situation is simi-
lar for an analysis job, except that the physicists running a
given analysis will usually want to load one or more algo-
rithms that they have written themselves, and so use code
that may be available only in an individual physicist’s work
area.

GANGA (GAUDI/ATHENA and Grid Alliance) deals with
configuring the ATLAS and LHCb applications, allows
switching between testing on a local batch system and

large-scale processing on the Grid, and helps keep track
of results. This paper outlines the system’s design, and de-
scribes its use.

JOB REPRESENTATION

A job in GANGA is constructed from a set of building
blocks (Fig. 1). All jobs must specify the software to be
run (application) and the processing system (backend) to
be used. Many jobs will specify an input dataset to be read
and/or an output dataset to be produced. Optionally, a job
may also define functions (splitters and mergers) for divid-
ing a job into subjobs that can be processed in parallel, and
for combining the resultant outputs.

Figure 1: Building blocks for constructing a GANGA job.

Different types of application, backend, dataset, split-
ter and merger are implemented as plugin classes (Fig. 2).
Each of these has its own schema, which places in evidence
the configurable properties and their meanings. Properties
are defined both to permit the user to set values defining
the operations to be performed within a job, and to store
information returned by the processing system, allowing
tracking of job progress.

Plugins associated with a given category of job build-
ing block inherit from a common interface class - one of
IApplication, IBackend, IDataset, ISplitter and IMerger.
This documents the required methods – a backend plu-
gin, for example must have submit and kill methods – and
contains default (often dummy) implementations. The in-
terface classes have a common base class, GangaObject,
which provides a persistency mechanism and allows user
default values for plugin properties to be set via a configu-
ration file.



Figure 2: GANGA plugins. Plugins for different types of application, backend, dataset, splitter and merger inherit from
interface classes, which have a common base class. Schemas for the Executable application and for the LCG backend are
shown as examples.

Applications for which plugins have been written
include a generic Executable application, the ATLAS
ATHENA application, and the GAUDI-based applications
of LHCb: GAUSS (simulation), BOOLE (digitisation),
BRUNEL (reconstruction) and DAVINCI (analysis). The
backend plugins cover generic distributed systems, such
as the LHC Computing Grid (LCG) [9] and GLITE [10];
experiment-specific distributed systems, such as DIAL [11]
in ATLAS and DIRAC [12] in LHCb; and local batch sys-
tems, including LSF, PBS and Condor. Other plugins
provide for file-based datasets, for the splitting of these
datasets, and for the merging of output histogram files.
Users can easily add new plugin classes, or suppress the
loading of unwanted classes. As a result, GANGA can read-
ily be extended or customised to meet the requirements of
different user communities.

ARCHITECTURE
The functionality of GANGA is divided between compo-

nents (Fig. 3):

• the Application Manager deals with defining the task
to be performed within a job, including the applica-
tion to be run, the user code needed, the values to be
assigned to any configurable parameters, and the data
to be processed;

• the Job Manager takes care of any job splitting re-
quested, packages up required user code, performs
submission to the backend, monitors job progress, and
retrieves output files when jobs complete;

• the Archivist provides a repository for storing job in-
formation, and manages Ganga’s workspace, keeping
track of the locations of input and output files;

• the Core deals with startup operations, mediates com-
munication between the other components, and makes
functionality available through the GANGA Public In-
terface (GPI);

• the Client allows access to GPI commands in any of
three ways: through a shell – the Command Line

Interface in Python (CLIP); using GPI scripts, or
through a Graphical User Interface (GUI).

USER VIEW

Configuration

GANGA has default parameters and behaviour that can be
redefined at startup using one or more configuration files,
which use the syntax understood by the standard Python [2]
ConfigParser module. Configuration files can be intro-
duced at the level of system, group or user, with each suc-
cessive file processed able to override settings from pre-
ceding files. The configuration files allow selection of the
Python packages that should be initialised when GANGA
starts, and consequently of the modules, classes, objects
and functions that are made available through the GPI.
They also allow modification of the default values to be
used when creating objects from plugin classes, and per-
mit actions such as choosing the log level for messaging,
specifying the location of the job repository, and changing
certain visual aspects of GANGA.

Command Line Interface in Python

GANGA’s Command Line Interface in Python (CLIP)
provides for interactive job definition and submission from
an enhanced Python shell, IPython [13], with many nice
features. A user needs to enter only a few commands to set
application properties and submit a job to run the applica-
tion on a chosen backend, and switching from one backend
to another is trivial. CLIP includes possibilities for organ-
ising jobs in logical files, for creating job templates, and for
exporting jobs to GPI scripts. Exported jobs can be freely
edited, shared with others, and/or loaded back into GANGA.
CLIP is especially useful for learning how GANGA works,
for one-off job-submissions, and – particularly for develop-
ers – for understanding problems if anything goes wrong.

GPI scripts

GPI scripts allow sequences of commands to be executed
in the GANGA environment, and are ideal for automating



Figure 3: Schematic representation of the GANGA architecture. The main functionality is divided between Application
Manager, Job Manager and Archivist, and is accessed by the Client through the GANGA Public Interface (GPI). The client
can run the Graphical User Interface (GUI), the Command-Line Interface In Python (CLIP) or GPI scripts.

repetitive tasks.
GANGA includes commands that can be used outside of

the Python/IPython environment to create GPI scripts con-
taining job definitions; to perform job submission based on
these scripts, or on scripts exported from CLIP; to query
job progress; and to kill jobs. Working with these com-
mands is similar to working with the commands typically
encountered when running jobs on a local batch system,
and for users can have the appeal of being immediately fa-
miliar.

Graphical User Interface

The GUI (Fig. 4) aims to further simplify user interaction
with GANGA. It is based on the PyQt [14] graphics toolkit,
and includes:

• a job tree, which allows browsing of logical folders;

• a monitoring panel, which shows the status of user
jobs selected from the job tree;

• a job-details panel, which allows inspection of job
definitions;

• a job-builder panel, for job creation and modification;

• a log panel, where message from GANGA are directed;

• a scriptor panel, which allows the user to execute arbi-
trary Python scripts and GPI commands, maximising
flexibility when working inside the GUI.

By default, panels are shown together in a single win-
dow, but the panels are dockable, and can be resized and
placed according to the tastes of the individual user. Job
definition and submission is accomplished through mouse
clicks and form completion, with overall functionality sim-
ilar to CLIP.

Use within the experiments
Although still in the development phase, GANGA already

has functionality that make it useful for physics studies.
Tutorials for ATLAS and LHCb have been held in the UK
and at CERN, and have led to GANGA being tried out by
close to 100 people. Feedback has been positive, especially
as regards the ease of use. GANGA has a small but growing
number of frequent users, and is enabling them to run large-
scale analyses successfully on the Grid, without needing to
worry about Grid technicalities.

CONCLUSIONS
GANGA is being developed as a Grid user interface

for physicists in the ATLAS and LHCb experiments.
It simplifies configuration of applications based on the
GAUDI/ATHENA framework used in these experiments; al-
lows trivial switching between testing on a local batch sys-
tem and running full-scale analyses on the Grid, hiding
Grid technicalities; provides for job splitting and merg-
ing; and includes automated job monitoring and output re-
trieval. GANGA offers possibilities for working in an en-
hanced Python shell, with scripts, and through a graphical
interface.



Figure 4: Screenshot of the GANGA GUI, showing: a main window (right), displaying job tree, monitoring panel and job
details; and an undocked scriptor panel (left).

.
Although specifically addressing the needs of ATLAS

and LHCb for running applications performing large-scale
data processing on today’s Grid systems, GANGA has a
component architecture that readily allows extension to
support other application types and future Grid evolutions.
This choice of architecture, together with the possibilities
allowed for configuration at startup, make GANGA poten-
tially interesting for a range of user communities.

GANGA bas been tried out by close to 100 people from
ATLAS and LHCb, and a small but growing number of
physicists use GANGA routinely for running analyses on
the Grid, with considerable success.

ACKNOWLEDGEMENTS

We are pleased to acknowledge support for the work on
GANGA from GridPP in the UK and from the ARDA group
at CERN. GridPP is funded by the UK Particle Physics and
Astronomy Research Council (PPARC). ARDA is part of
the EGEE project, funded by the European Union under
contract number INFSO-RI-508833.

REFERENCES
[1] http://ganga.web.cern.ch/ganga/

[2] G. van Rossum and F. L. Drake, Jr. (eds.), Python Reference
Manual, Release 2.4.3 (Python Software Foundation, 2006);
http://www.python.org/

[3] ATLAS Collaboration, Atlas - Technical Proposal,
CERN/LHCC94-43 (1994);
http://atlas.web.cern.ch/Atlas/

[4] LHCb Collaboration, LHCb - Technical Proposal,
CERN/LHCC98-4 (1998);
http://lhcb.web.cern.ch/lhcb/

[5] D. Liko et al., The ATLAS strategy for Distributed Analysis
in several Grid infrastructures, in: Proc. 2006 Conference
for Computing in High Energy and Nuclear Physics, (Mum-
bai, India, 2006)

[6] U. Egede et al., Experience with distributed analysis in
LHCb, in: Proc. 2006 Conference for Computing in High
Energy and Nuclear Physics, (Mumbai, India, 2006)

[7] LHC Study Group, The LHC conceptual design report,
CERN/AC/95-05 (1995);
http://lhc-new-homepage.web.cern.ch/

lhc-new-homepage/

[8] P. Mato, GAUDI - Architecture design document, LCHb-
98-064 (1998);
http://proj-gaudi.web.cern.ch/proj-gaudi/

welcome.html

http://atlas-computing.web.cern.ch/

atlas-computing/packages/athenaCore.php

[9] http://lcg.web.cern.ch/lcg/

[10] http://glite.web.cern.ch/glite/

[11] D. Adams et al., DIAL: Distributed Interactive Analysis of
Large Datasets, in: Proc. 2006 Conference for Computing in
High Energy and Nuclear Physics, (Mumbai, India, 2006);
http://www.usatlas.bnl.gov/∼dladams/dial/

[12] A. Tsaregorodtsev et al., DIRAC – the LHCb Data Produc-
tion and Distributed Analysis system, in: Proc. 2006 Con-
ference for Computing in High Energy and Nuclear Physics,
(Mumbai, India, 2006)

[13] http://ipython.scipy.org/

[14] http://www.riverbankcomputing.co.uk/pyqt/

http://ganga.web.cern.ch/ganga/
http://www.python.org/
http://atlas.web.cern.ch/Atlas/
http://lhcb.web.cern.ch/lhcb/
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/
http://proj-gaudi.web.cern.ch/proj-gaudi/welcome.html
http://proj-gaudi.web.cern.ch/proj-gaudi/welcome.html
http://atlas-computing.web.cern.ch/atlas-computing/packages/athenaCore.php
http://atlas-computing.web.cern.ch/atlas-computing/packages/athenaCore.php
http://lcg.web.cern.ch/lcg/
http://glite.web.cern.ch/glite/
http://www.usatlas.bnl.gov/~dladams/dial/
http://ipython.scipy.org/
http://www.riverbankcomputing.co.uk/pyqt/

