

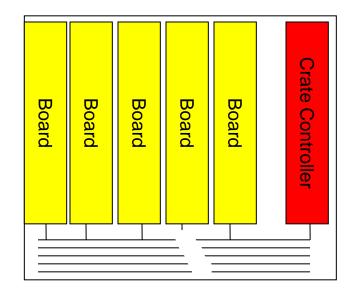
Real-time control using embedded micro-controllers

Flavio Fontanelli, Giuseppe Mini, Mario Sannino, INFN Genoa Zbigniew Guzik, Institute for Nuclear Research Richard Jacobsson, Beat Jost, <u>Niko Neufeld</u> CERN, PH

Traditional board-control

IHC

ONLINE

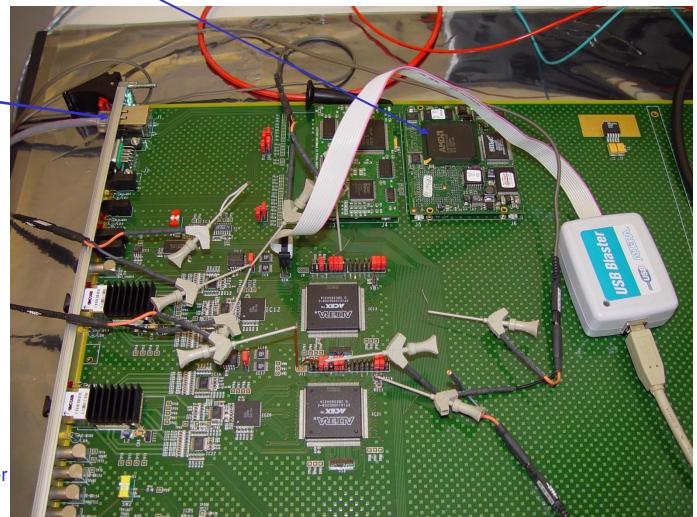


Problems with Crate-based Board Control

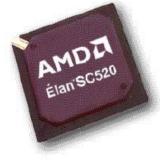
Scalability / Throughput

Robustness

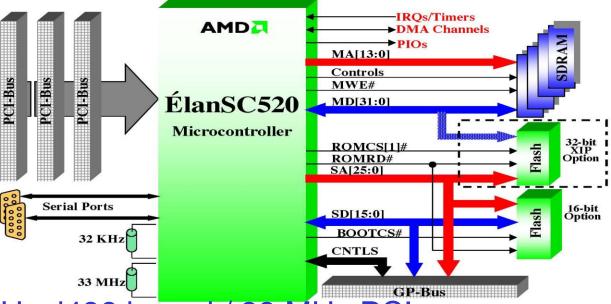
 Each board shares the bus (bandwidth) and resources in
 Controller
 Need crate-controller + crate for a single board



Access to all boards blocked!



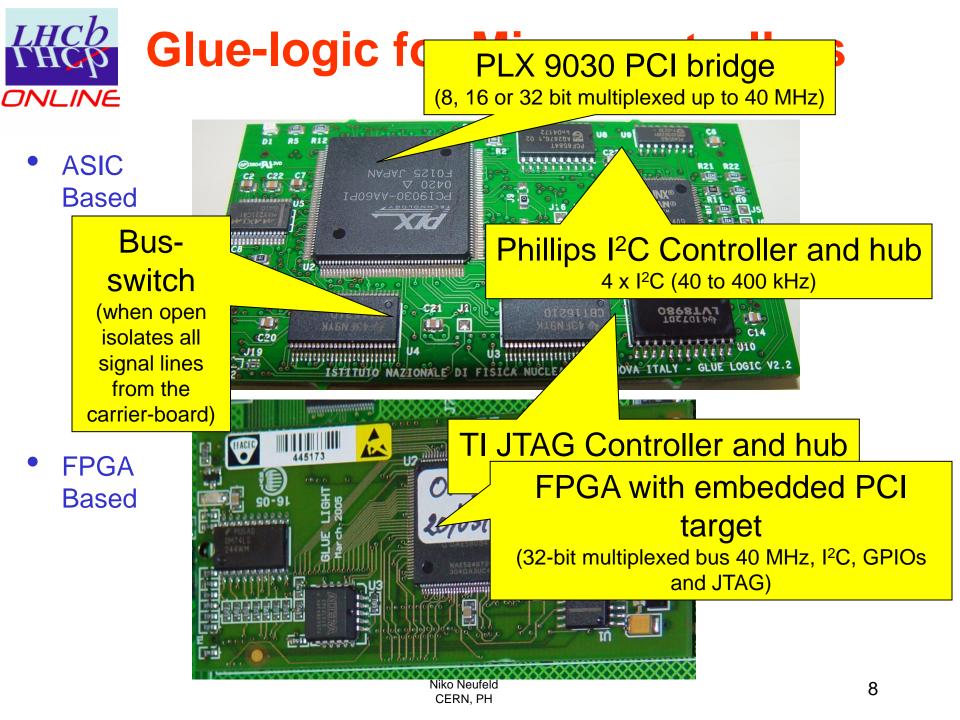
- Accessed via cheap ubiquitous LAN infrastructure (Ethernet)
- Scales well
 (you pay what you need)
- Nice for table setups (Debugging!)


(thanks to M. Mücke (Poster S10-2) for the photo)

NNI INF

- 32-bit, 133 MHz, i486 based / 33 MHz PCI,
- Lots of useful features: hardware watch-dog, high-resolution timers, GPIOs
- Low-power (1.4 W typical, 2 W max), no active cooling necessary
- Enormous software base of i386 (GNU/Linux, MS-Windows)
- Other examples: P2-3, P2-8 Niko Neufeld

A Microcontroller is not (yet) a board-controller


- Add a "few" things (Ethernet, USB, Flash) to make an Embedded PC from a Microcontroller
- Use a commercially available device SM520PC from Digital Logic AG Switzerland, http://www.digitallogic.ch

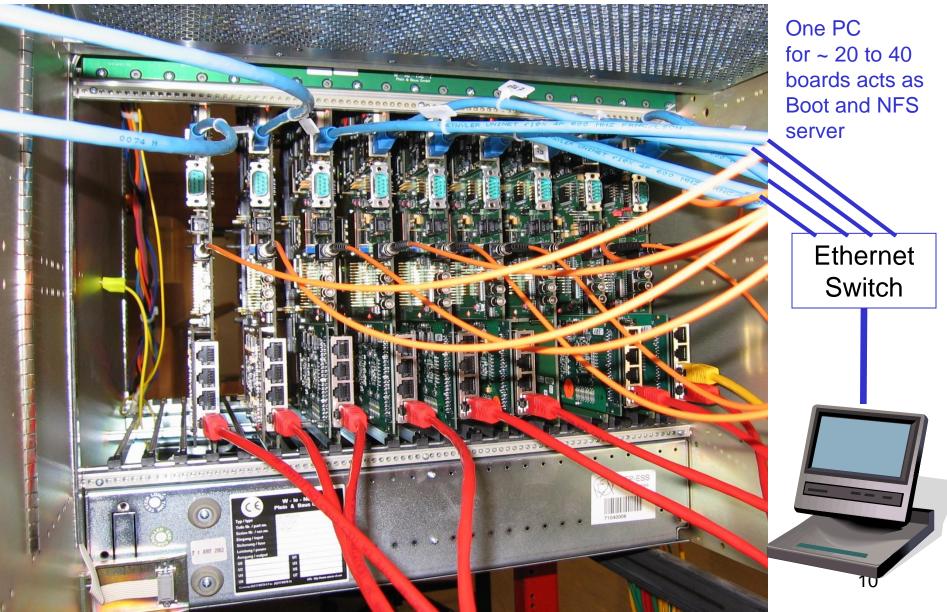
An embedded PC is still not a board-controller

- Traditional PC interfaces: PCI, ISA, parallel port, USB
- For controlling, configuring and monitoring FPGAs and ASICS need rather I²C, JTAG and a high-speed, "simple", long distance parallel bus
- Need some small adapter or "glue-"logic

Full System in Action: the

SM520PC

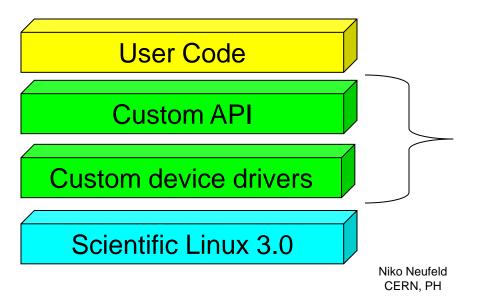
Crediticard PC"


LHCb Readout Board TELL

In the final LHCb experiment ~ 400 boards of ~15 types In the current phase, 10 setups in labs a over Europe, all using **Ethernet** to centrally maintained SM520PC software base at CERN

Illine yelline with the filling

A complete crate


Capabilities and Performances

- 4 I2C, 3 JTAG, PLX 9030 bus, 8 GPIOs, busswitch to isolate all signal lines of the SM520PC/Gluecard (manually or automatically when reset-line of SM520PC is pulled low), attached via 100 MBit Ethernet
- Running Linux and standard software we achieve: > 20 MB/s throughput on 9030 bus (read) from memory and FPGA registers, > 1.5 MBit/s on JTAG
- Program configuration devices and FPGAs via JTAG
- 64 MB Ram, 2 MB Flash, 133 MHz CPU (66 "Bogomips"), can do quite some processing

And what about software?

- We use Scientific Linux, a freely available Linux distribution made by Fermilab and CERN, fully compatible with Redhat Enterprise Linux (<u>https://www.scientificlinux.org</u>)
- We provide a software package for automatic setup of the boot and NFS server for the embedded PCs a
- User applications can developed/compiled on any (Linux) PC. Practically any available software (java, apache, X11 etc...) can be used together with a common set of custom libraries to access the board-resources

~ 15 Packages to access all resources on board Central web-repository Automatic updates in all collaborating labs Special small footprint kernel diskless boot

High Level Software: SCADA

LHCb

JNLINE	教 Vision_1: (Nol	Name) as Local Bus I ^p C JTAG		
DNLINE Graphical user interfact	es by integrating		Commands	
into commercial SCAD			States	
(using tools developed		pclbcc06	Current State Idle	1
Controls Project (JCOI	P) Chain	1	Reset	
in S4-1 and especially	y S11-1 Device	0 [0x40a093]	Idle	
🕅 Vision_1: (NoName)			TAP Reset	🗖 pclbcc06 [chain:1] 📃 🗆 📔
General Settings Local Bus I ² C JTAG				Device Id
Parameters	Commands		Chain Scan	Device 0 0x40a093
			Get Devices ID	
CCPC pclbcc06	Init/Reset		IR Scan	
I ² C bus 0	Write	🗖 pclbcc06 [bus:0] 📃 🗆 🔀	DR Scan	
I ² C Address 50	Read	Address range		
I ² C Sub Address 00		From 45 to 55		
C Bin	Scan (Slave	address device		
(Hex	Scan all C Master	Ox4a No device Ox4b No device		Close
Size of data (bytes) 4		Dx4c No device Dx4d No device		
Data in		0x4e No device 0x4f No device	CI	ose
Data out 01121962	Registering	0x50 Device present 0x51 Device present ≡		
	Services No service 🚽	0x52 Device present 0x53 Device present		
Status Reading successful	Refresh 0 🐳 (seconds)	0x54 Device present		
		6 devices found.		
	Start	Start Close		
		More	e on PVSS and	JCOP
A. MOREAU { alexandre.moreau@cern.ch } / May 2005	Close	in S4	4-1 and espec	ially S11-1
These screenshots thanks to A	Alexandre Moreau, ISIMA Nił	ko Neufeld	-	13

CERN, PH

A word about "Real-time"

- Do you need it for board-control? Really?
- Standard Linux has no hard real-time support (i.e. guaranteed maximum time to handle an interrupt/syscall). It has however support for soft or maybe better quasi real-time (i.e. processes can be strictly prioritised)
- In LHCb we have not (yet) found an application for even soft real-time. Polling critical registers if necessary gives a very good response time.
- There exist of course a host of true real-time OS or Linux variants (RTLinux), which would run fine on the Elan520

Lessons / What we could do better

- Ideally fully integrated device "surrounded" by FPGA
- Exists: see P2-3, P2-8 (but not PC/i386 compatible)
- i386 and Linux are a good thing (PPC and Linux are probably also good)
- and for free (total software effort probably o1.5 manyears)
- Central software repository and automated distribution of packages allows keeping disconnected sites up-to-date easing (remote) trouble-shooting
- Using commercial hardware is great (Microcontroller change) but need still to verify *everything...*