LHCb-PROC-2006-003

@ 13/02/2006

DIRAC Security Infrastructure

A. Casajus Ramo*
R. Graciani Diaz'
Universitat de Barcelona, Departament d’Estructura i Constituents de la Materia

Abstract

DIRAC is the LHCb Workload and Data Man-
agement System. Based on a service-oriented ar-
chitecture, it enables generic distributed computing
with lightweight Agents and Clients for job execu-
tion and data transfers. DIRAC implements a client-
server architecture exposing server methods through
XML Remote Procedure Call (XML-RPC) protocol.
DIRAC is mostly coded in python.

DIRAC security infrastructure has been designed to
be a completely generic XML-RPC transport over a
SSL tunnel. This new security layer is able to han-
dle standard X509 certificates as well as grid-proxies
to authenticate both sides of the connection. Server
and client authentication relies over OpenSSL and py-
OpenSSL, but to be able to handle grid proxies some
modifications have been added to those libraries.

DIRAC security infrastructure handles authoriza-
tion and authorization as well as provides extended
capabilities like secure connection tunnelling and file
transfer.

Using this new security infrastructure all LHCb

users can safely make use of all the computing re-
sources available on the Grid through DIRAC.

SECURITY INFRASTRUCTURE DESIGN

As most grid middleware, DIRAC security is based
on digital certificates and grid proxies. Both certifi-
cates and proxies are signed by a trusted Certification
Authority (CA). Whenever a grid certificate has to be
authenticated, the CA signature carried by the certifi-
cate is verified agaings the trusted ones. Grid proxies
are special self-signed time resticted user certificate
and key kept together.

DIRAC security infrastructure is based on three
principles:

1. Authentication to ensure that both client and
server are identified by each other.

2. Authorization to restrict access to server function-
ality according to the identity of clients.

3. Logging to allow traceability of client requests and
server actions.

*adria@ecm.ub.es
T graciani@ecm.ub.es

When a connection is established not only the client
is authenticated by the server, but also the server must
be authenticated by the client. Authenticating both
sides of the connection is the first step to perform a
secure connection. The server knows who is perform-
ing the query and the client knows that the connection
is being established with the right server. After this
initial identification, and following the Secure Socket
Layer (SSL) protocol, the client-server communication
is encrypted.

At this moment, no one can stand in the middle of
the connection without being noticed. Once the au-
thentication has taken place, the user gets identified
by the Distinguised Name (DN) included in the cer-
tificate or the proxy.

Once the mutual authentication has been done, the
client sends a query to the server and the authorization
takes place. In the XML-RPC protocol, a query is a
call to a server exported method with certain param-
eters. At this point, the server decides, based on its
configuration, if the identified user is allowed to access
the requested method. Authorization is the second
step to perform a secure connection.

If the user is authorized, the server executes the
method and returns the result. Both the query and
the returned value are logged together with the iden-
tity of the user and a timestamp. All data sent through
the connection is encrypted to prevent third parties
from getting any data. Logging information is ex-
tremely important to ensure that all actions can be
traced back. Logging is the third step to perform a
fully secure and traceable implementation.

DISET TRANSPORT

The initial DIRAC versions did not have any secu-
rity since its use was reduced to a limited number of
production manager responsibles for the Monte Carlo
simulation activites at LHCD sites. In order to make
use of DIRAC in a distributed GRID environment it
was necesary to add a security layer in its architecture.
Therefore, the DIRAC Secure Transport (DISET) was
born.

DISET is an extension of the hypertext transfer
protocol over ssl(HTTPS) supporting X509 certificates
and grid proxies. It also enhances some of the native
python XML-RPC capabilities.

DISET hides all nasty SSL code, authentication and
first level of authorization mechanisms, under simple



python calls. Developers just use DISET objects as if
they were the native python XML-RPC objects.
DIRAC developers can use DISET to perform XML-
RPC queries over secure and insecure connections de-
pending on the protocol set (http/https/diset) in the
Universal Resource Locator (URL). When performing
a query over an insecure connection, native python’s
xmlrpclib module is used. But, when the query is
made over a secure connection, DISET relies on py-
OpenSSL and OpenSSL to handle all cryptographic
authentication algorithms, as seen in Fig. 1.
Furthermore DISET includes an authorization
mechanism that controls access at the level of each
method based on user groups, and provides the authet-
icated user information to the developer of the method
handler in case a finer grain control is necesary.

Insecure connection

Secure connection

python
httplib &
xmirpclib

pyOpenSSL

python xmlrpclib

Native OpenSSL

Figure 1: DISET dependencies

DISET third party dependencies are:

e OpenSSL is an open source full-featured toolkit
implementing Secure Sockets Layer (SSL v2/3)
and Transport Layer Security (TLS). OpenSSL is
able to handle authentication of X509 certificates,
but is unable to authenticate grid proxies.

e pyOpenSSL is a python module encapsulating
some of the native OpenSSL functionalities.

pyOpenSSL did not have all needed functionalities
so some modifications were made:

¢ Some missing OpenSSL methods were added.

e An external authentication callback for OpenSSL
was added. This new callback is able to recog-
nize grid proxies and certificates. Calling a py-
OpenSSL python method makes this callback the
one OpenSSL will use to authenticate.

DISET usage

DISET provides DIRAC developers with a secure
XML-RPC client and server framework. DISET
client is used just as python native XML-RPC client.
Furthemore, DISET client will establish a secure

or an insecure connection based on the protocol
(http/https/diset) specified in the given URL. Pro-
vided that a grid proxy and CA public keys and
Certification Revocation Lists (CRL) are available
at predefined standard locations, no configuration is
needed on the client. Appropriated configuration pa-
rameters are available to change these defaults.

DISET provides a framework to ease developing
XML-RPC servers. Developers just need to code the
server’s request handler. Everything else is handled by
DISET.

Server handler must inherit from DISETRe-
questHandler and automatically all methods begin-
ning with ”export_” will be accessible for clients.

Once the server handler is coded, it needs to be at-
tached to a server object to be able to handle queries.
DISET provides a secure (DISETSecureServer) and
a insecure server object (DISETInsecureServer) both
sharing the same interface. Making a server secure
just depends on the server object used.

Authentication and authorization scheme

When establishing a connection using DISET, both
sides must authenticate. To do so, DISET uses the
SSL handshake provided by OpenSSL. The client
sends it’s certificate or proxy certificate to the server.
If the certificate valid time has not expired, the cetifi-
cate is checked against all CA’s the server knows until
one CA verifies the certificate. Once a CA ackowledges
the certificate, it’s checked against that CA’s CRL to
see if it has been revoked by the CA. If it hasn’t been
revoked, the certificate gets verified and the user is au-
thenticated. Then, the server sends it’s certificate to
the client. The certificate is checked against all CA’s
the client knows to authenticate the server, the CA’s
CRL and certificate time validity. When both sides get
authenticated the actual communication can start. If
any part fails to verify the other, the connection is
closed.

The authentication mechanism is handled automat-
ically by DISET.

In order to increase performance, DISET uses SSL
sessions to reduce the number of SSL authentications
needed. When a user gets authenticated for the first
time, a SSL session is established so further queries
by the same client will just use the previous session
instead of having to get authenticated again. SSL ses-
sions are handed internally by OpenSSL and they have
a lifetime. Whenever the lifetime expires, the client
needs to get authenticated again and another session
is generated. SSL sessions lifetime is a OpenSSL pa-
rameter defined through the server configuration.

DISET has two levels of authorization:

e The first level of authorization allows or denies
clients to call each method. This level of autho-
rizations is based in groups. LHCb defines groups



of users in the DIRAC Configuration Service (CS)
and the server configuration defines which groups
are authorized to execute each of the exported
methods. A given user may belong to more than
one group but when making a query the user
must specify which group he wants to use for this
call. If the user belongs to the specified group
and this group is allowed to execute the requested
method the DISET handler will call the appropri-
ated method. Otherwise, the query will be denied
returning a message to the user. This level of au-
thorization is provided automatically by DISET
and Every query performed over a secure connec-
tion must pass it.

e The second level of authorization is finer grained
but optional. The developer of the server may
program further authorization inside the method
making use of the authenticated user’s DN and
group that are provided by DISET.

DISET PORTALS

DISET provides a connection tunnelling mechanism.
Instead of clients connecting directly to servers, a tun-
nelling server can be placed in the middle so the client
can connect to it and its request tunnelled to the
server. This tunnelling service is called DISET por-
tals.

Final destination is resolved by the DISET portal
making use of the path in the URL provided by the
client. Different paths are assigned to different final
servers. The portal connects to the final server and
forwards the request, waits for the response and hands
it back to the client as if it was the real server. Tun-
nelling proceeds as seen in Fig. 2.

2- Portal forwards query
to final server
1- Client queries portal

==

H‘H DISET server

/ =\
El DISET portal

DISET client 4- Answer is
forwarded to

originating client

3- Server anwers
query

Figure 2: DISET portal

There are two types of DISET portals:

e Secure portals perform the authentication of the
client and can thus tunnel connections to both
secure and insecure servers. In the first case the
portal authenticates itself with the server, and the
full connection is secure, while in the second case
the connection to the final server is not authenti-
cated. Secure DISET portals are programmed in
python.

e Insecure portals can only tunnel connections to
insecure final servers because no authentication
takes place. Insecure portals are also available in
PHP using a web server.

For insecure connections DISET clients and servers
do not know if there’s a portal between them. The
portal behaves as a server for the originating client and
as a client for the final server. For secure connections,
the DISET client will not see any difference between
connecting to a server directly or via a portal. On the
other hand, DISET secure servers need a list of trusted
portals. When tunnelling the connection the portal
presents its own certificate to the final server and, once
authenticated it will trust the client identification done
by the portal. From then on, the authorization takes
place at the server with the forwarded user’s DN and
group presented by the portal.

Advantages of DISET Portals

DISET portals are single points of entry for all ser-
vices. So just one point of access must be authorized
to receive incoming connections.

Portals can be used to achieve load balancing. Each
query can be tunnelled to a different server using sim-
ple balancing algorithms.

When using secure connections, the number of SSL
authentications can be reduced by using SSL sessions
intensively. By placing a DISET portal, final servers
will only receive connections from portals so the num-
ber of queries per session will be drastically increased.
Originating clients will only connect to portals so, in-
stead of having to do one handshake per server, just
one will be made for all servers tunneled through the
same portal. The overall number of SSL authentica-
tions is minimized by placing a DISET secure portal.

DISET TRANSFERS

DISET includes a fast and easy to use mechanism to
transfer files over secure and insecure channels. Trans-
fer petitions use standard XML-RPC protocol to send
transfer and authentication data, and a binary proto-
col to send file data and transfer confirmation, all over
the same connection. XML-RPC transfer request and
server response are handled as other DISET methods
but, instead of closing the connection, the socket re-
mains open and binary transfer takes place. Changing
protocols is handled internally by DISET so the de-
veloper only has to program request handler’s logic.
When transferring through a secure connection the
same authentication and authorization mechanisms as
other DISET methods can be applied.

DISET servers can serve both XML-RPC queries
and transfer queries. Server developers just need to
code some special callbacks to allow file transfers. All



the underlying protocols and data handling is done by
DISET.

SUMMARY AND OUTLOOK

DISET provides an easy to use framework for devel-
oping grid enabled secure services using XML-RPC.
It also eases deployment of services by minimizing de-
pendencies to just pyOpenSSL and OpenSSL, and they
can be shipped together with the service.

Developers just need to code servers logic. Con-
nections are handled by the DISET server objects.
Turning a insecure interface into a secure one depends
on the DISET server object used. And by placing a
DISET portal mltiple servers can be accessed from just
one host, that tunels the connection to the final server.

DISET also enhances XML-RPC capabilities by be-
ing able to transfer files over the XML-RPC connection
in binary format.

Currently, work is on going to make use of voms-
proxies which, apart from the user DN, include a user
requested group and role signed by an authorized voms
server. These groups are going to be matched to the
exsiting groups currently defined in the DIRAC Con-
figuration Service, thus making the system more dy-
namic.

REFERENCES

[1] Tsaregorodtsev, A. et al., DIRAC, the LHCb Data
Production and Distributed Analysis system, CHEPO06,
Mumbai, India.

[2] Paterson, S. and Tsaregorodtsev, A., DIRAC Infras-
tructure for Distributed Analysis, CHEP06, Mumbai,
India.



