PVSS & SMI++

Tools for the Automation of large
distributed control systems

Clara Gaspar, PVSS Users Meeting, April 2005

I Some requirements of large control
systems (for physics experiments)

i Contro
i Contro

System Architecture
Framework

I SCADA: PVSS IT
I FSM toolkit: SMI++

I Some important features

Clara Gaspar, April 2005

“?ﬂ Some Reguur'emem's...

I Large number of devices/IOchannels
®» Need for:

I Parallel and Distributed

| Data acquisition & Monitoring

1 Hierarchical Control

| Summarize information up
| Distribute commands down

I Decentralized Decision
Making

Clara Gaspar, April 2005

“?ﬂ Some Reguurements...

I Large number of independent teams
I Very different operation modes

®» Need for: a2
I Partitioning: o DI

The capability of
operating parts of D
the system
independently and
concurrently

To Devices (HW or SW)

Clara Gaspar, April 2005 4

@‘ Some Reguuremen’rs...

I High Complexity
I Non-expert Operators

®» Need for:

I Full Automation of:
| Standard Procedures
| Error Recovery Procedures

I Intuitive User Interfaces

Clara Gaspar, April 2005

@“ Control System Architecture

f

Control Units
AL
%

@ Cev @ @ $ Device Units

To Devices (HW or SW)

Clara Gaspar, April 2005

Status & Alarms

Commands

@ Control Units

1 Each node is able to:
I Summarize information (for the above levels)
I “Expand" actions (to the lower levels)

I Implement specific behaviour
& Take local decisions
| Sequence & Automate operations
| Recover errors
I Include/Exclude children (i.e. partitioning)
| Excluded nodes can run is stand-alone

I User Interfacing

| Present information and receive commands
Clara Gaspar, April 2005 7

@ The Control Framework

I The JCOP Framework™ is based on:

I SCADA System - PVSSII for:

4 |
v
+ |
S5 |
mff_’)< |
+ > |
<
) O |
_< .
O
4
<
o |
O
\ |

Device Description (Run-time Database)

Device Access (OPC, Profibus, drivers)

Alarm Handling (Generation, Filtering, Masking, etc)
Archiving, Logging, Scripting, Trending

User Interface Builder

Alarm Display, Access Control, etc.

I SMI++ providing:

Abstract behavior modeling (Finite State Machines)
Automation & Error Recovery (Rule based system)

*Please See Talk S11-1

Clara Gaspar, April 2005

I Method

I Classes and Objects

| Allow the decomposition of a complex system into
smaller manageable entities

I Finite State Machines

| Allow the modeling of the behavior of each entity
and of the interaction between entities in terms of
STATES and ACTIONS

I Rule-based reasoning
| Allow Automation and Error Recovery

Clara Gaspar, April 2005 9

i Method (Cont.)

I SMI++ Objects can be:
| Abstract (e.g. a Run or the DCS)
| Concrete (e.g. a power supply or a temp. sensor)

I Concrete objects are implemented externally
either in "C", in C++, or in PVSS (ctrl scripts)

I Logically related objects can be grouped
inside "SMI domains" representing a given

sub-system
Clara Gaspar, April 2005 10

‘@‘ SMI++ Run-time Environment

I Device Level: Proxies

| C, C++,PVSS ctrl scripts
| drive the hardware:
Obj | deduceState
Ob) | handleCommands

I Abstract Levels: Domains

| Internal objects
=l il | Implement the logical model
Obj))j | Dedicated language

I User Interfaces
| For User Interaction

Obj

Proxy

A A A

VVY

Hardware Devices

Clara Gaspar, April 2005 11

I SMI++ - The Language

I SML -State Management Language

| Finite State Logic

| Objects are described as FSMs
their main attribute is a STATE

| Parallelism

| Actions can be sent in parallel to several objects.
Tests on the state of objects can block if the objects are
still “transiting”

| Asynchronous Rules

| Actions can be triggered by logical conditions on the state
of other objects

Clara Gaspar, April 2005 12

@‘ SML example

I Device:

class: PowerSupply /associated

state: UNKNOWN /dead_state
state: OFF

action : SWITCH_ON
state: ON

action : SWITCH_OFF
state: TRIP

action : RESET

object: PS1 is_of class PowerSupply

I Sub System:

class: HighVoltage
state: NOT_READY /initial_state
action: GOTO_READY
do SWITCH_ON PS1
if (PS1 in_state ON) then
move_to READY
endif
move_to ERROR
state: READY
when (PS1 in_state TRIP) do RECOVER
action: RECOVER
do RESET PS1
do SWITCH_ON PS1

a(;ii.on: GOTO_NOT_READY

state: ERROR

object: SubDetHV is_of_class HighVoltage

Clara Gaspar, April 2005

13

“ﬂ SML example (many objs)

I Devices:

class: PowerSupply /associated

state: UNKNOWN /dead_state
state: OFF

action : SWITCH_ON
state: ON

action : SWITCH_OFF
state: TRIP

action : RESET

object: PS1 is_of class PowerSupply
object: PS2 is_of_class PowerSupply
object: PS3 is_of class PowerSupply

objectset: PSS {PS1, PS2, PS3, ...}

I Objects can be dynamically
included/excluded in a Set

I Sub System:

class: HighVoltage
state: NOT_READY /initial_state
action: GOTO_READY
do SWITCH_ON all_in PSS
if (all_in PSS in_state ON) then
move_to READY
endif
move_to ERROR
state: READY
when (any_in PSS in_state TRIP) do RECOVER
action: RECOVER
do RESET all_in PSS
do SWITCH_ON all_in PSS

action: GOTO_NOT READY

state: ERROR

object: SubDetHV is_of class HighVoltage

Clara Gaspar, April 2005 14

@‘ SML example (automation)

I External Device:

object: LHC::STATE /associated
state: UNKNOWN /dead_state
state: PHYSICS
state: SETUP
state: OFF

I Sub System:

object: RUN_CONTROL
state: TEST_MODE
when (LHC::STATE in_state PHYSICS) do PHYSICS
action: PHYSICS
do GOTO_READY SubDetHV

Hllove_to PHYSICS MODE
state: PHYSICS MODE

Clara Gaspar, April 2005 15

@E‘ SMI++ Run-time Tools

I Device Level: Proxies
| C, C++,PVSS ctrl scripts

| Use a Run Time Library: smirtl
Ob)j To Communicate with their domain

obj)l | Abstract Levels: Domains

") | A C++ engine: smiSM - reads the
translated SML code and
Obj instantiates the objects
SMI Domain I USer' In'l'er‘faces
obj))) | Use a Run Time Library: smiuirtl
To communicate with the domains
I All Tools available on:
Proxy

e | Windows, Unix (Linux)

yyy I All Communications are

H i . .
L dynamically (re)established
Clara Gaspar, April 2005 16

”@‘ SMI++ History

I 1989: First implemented for DELPHI in ADA

I DELPHT used it throughout the experiment

I A Top level domain:
Big-Brother automatically
piloted the experiment

I 1997: Rewritten in C++

I 1999: Is used by BaBar
for the Run-Control and
high level automation

i 2002: Integration in
PVSS for use at LHC

Clara Gaspar, April 2005 17

@ PVSS/SMI++ Integration

: smi_object_states i - 0] x|

I Graphical Configuration

Object Type: HYHode F'anel:l HywMode. pnl .
of SMI++ Using PVSS
Simple Config Copy from Type: | -l 0
instr_when i - O] =
Object Parameters yivhan
ini ?ﬂtgt_: ;i;;u[]"f ACHD: IAN‘T“ j IChiIdren DfT}rpej IF'DwerSuppIy j Iin_state j ITRIF' j o
I j I j I j I j I j and
4|[ERROR C.
A = 7| 2 — e
| = = =l =l =1 =
State: Colar: Acti
II_—:aEt;DY I:l-I:Ir RCEE; I j I j I j I j I j I j
T CH— | a ™ Megate Expression
Execute Action: ICONFIGURE j
C
When List: r Go To State: I ERROR j
when { $ANY §PowerSupply in_state TRIF
ﬂ when [FANYFPowerSupply in_state OFF when | ANTPowerSupply in state TRIP] move to ERROR]
3
A | Femove
Type Cwerview | Apply 4] _}ILI
0] | cancel |

F o4

4% vision_1: Device Editor &

Device Editor & Navigator

=101 %]

Funning Dn:l dist_3

Start/Festart All

-dist_3: =
-TOR
-0Cs
&SubDetl
&:SubDet?
-suhDet3
= View
=y Skart/Restart Mode
F3 Sktop Mode
P54
P=E StarkfRestart Tree
+Temperatul Stop Tree
+3ubletd |
+TestTap
+Haorizontal
+HRAPIM 1 ll

Stop All

Citd DNS NODE: pelhch39.cern.ch |

Mavigator mode

Go to Editor |

Close |

@) Building Hierarchies

I Hierarchy of CUs

I Distributed over
several machines

| "&" means reference to
a CU in another system

I Editor Mode:

| Add / Remove / Change
Settings

I Navigator Mode
| Start / Stop / View

Clara Gaspar, April 2005 19

@ control Unit Run-Time

I Dynamically generated operation panels
(Uniform look and feel)

1 Configurable
User Panels

15 DCS: dist_3:Manager2 100 x|
290352005 18:14:52
System Ntate
Q) - [ES— o
RESET DCS ‘//
Sub-Syst
NLET, State ahicd Mag Is Excluded
SubDet1
SubDet2
SubDet3
SubDet4
SubDetd::SubDetd
Is Included
Messages
29-Mar-2005 19:14:46 - Can not Take: SubDet1 on syste
29-Mar-2005 19:14:46 - Can not Take: SubDet? on syste
Close |

Clara Gaspar, April 2005

20

@E‘ Full Experiment Control

1 ECS

| When LHC in PHYSICS
-> GET_READY DCS
-> GET_READY DAQ
-> START_RUN DAQ

Clara Gaspar, April 2005 21

@‘ Parallel Hierarchies

I Safety

| When GAS in ERROR
-> SWITCH_OFF HVs

Clara Gaspar, April 2005 20

@‘ Features of PVSS/SMI++

I Task Separation:

I SMI Proxies/PVSS Scripts execute only
basic actions - No intelligence

I SMI Objects implement the logic behaviour

I Advantages:

| Change the HW
-> change only PVSS

| Change logic behaviour
sequencing and dependency of actions, etc
-> change only SMI rules

Clara Gaspar, April 2005 23

@‘ Features of PVSS/SMI++

I Error Recovery Mechanism

1 Bottom Up
| SMI Objects react to changes of their children

| In an event-driven, asynchronous, fashion

I Distributed

| Each Sub-System recovers its errors
| Each team knows how to recover local errors

I Hierarchical/Parallel recovery

I Can provide complete automation even for
very large systems

Clara Gaspar, April 2005 24

