
Clara Gaspar, PVSS Users Meeting, April 2005

PVSS & SMI++

Tools for the Automation of large
distributed control systems

Clara Gaspar, April 2005 2

Outline

❚ Some requirements of large control
systems (for physics experiments)

❚ Control System Architecture

❚ Control Framework
❙ SCADA: PVSS II

❙ FSM toolkit: SMI++

❚ Some important features

Clara Gaspar, April 2005 3

Some Requirements…

❚ Large number of devices/IOchannels

➨ Need for:

❙ Parallel and Distributed
❘ Data acquisition & Monitoring

❙ Hierarchical Control
❘ Summarize information up

❘ Distribute commands down

❙ Decentralized Decision
Making

Dev
1

Dev
2

Dev
3

Dev
n

Devi

SubSys
2

SubSysn
SubSys

1
...

DetDcs1
DetDcs

N
...

DCS

Clara Gaspar, April 2005 4

Some Requirements…

➨ Need for:

❙ Partitioning:
The capability of
operating parts of
the system
independently and
concurrently

❚ Large number of independent teams

❚ Very different operation modes
DCS

DetDcs1 DetDcs
N

SubSys
1

SubSys
2

Dev
1

Dev
2

Dev
3

...

To Devices (HW or SW)

Clara Gaspar, April 2005 5

Some Requirements…

❚ High Complexity

❚ Non-expert Operators

➨ Need for:

❙ Full Automation of:
❘ Standard Procedures

❘ Error Recovery Procedures

❙ Intuitive User Interfaces

Clara Gaspar, April 2005 6

Control System Architecture

To Devices (HW or SW)

SubSys
1

SubSys
2 SubSysN

...

C
om

m
an

d
s

S

ta
tu

s
&

 A
la

rm
s

ECS

DCS DAQ

DetDcs1 DetDcs
N

DetDaq
1

LHC
T.S
.

... GAS

DSS

C
on

tr
ol

 U
ni

ts

Dev
1

Dev
2

Dev
3

Dev
N

Dev
I

...

Device Units

Clara Gaspar, April 2005 7

Control Units

❚ Each node is able to:
❙ Summarize information (for the above levels)

❙ “Expand” actions (to the lower levels)

❙ Implement specific behaviour
& Take local decisions
❘ Sequence & Automate operations

❘ Recover errors

❙ Include/Exclude children (i.e. partitioning)
❘ Excluded nodes can run is stand-alone

❙ User Interfacing
❘ Present information and receive commands

DCS

Tem

p

Tracke

r
Muon

H

V

GA

S

H

V

Clara Gaspar, April 2005 8

❚ The JCOP Framework* is based on:

❙ SCADA System - PVSSII for:
❘ Device Description (Run-time Database)

❘ Device Access (OPC, Profibus, drivers)

❘ Alarm Handling (Generation, Filtering, Masking, etc)

❘ Archiving, Logging, Scripting, Trending

❘ User Interface Builder

❘ Alarm Display, Access Control, etc.

❙ SMI++ providing:
❘ Abstract behavior modeling (Finite State Machines)

❘ Automation & Error Recovery (Rule based system)

*Please See Talk S11-1

The Control Framework
D

e
vi

ce
 U

ni
ts

C
on

tr
ol

 U
ni

ts

Clara Gaspar, April 2005 9

SMI++

❚ Method

❙ Classes and Objects

❘ Allow the decomposition of a complex system into
smaller manageable entities

❙ Finite State Machines

❘ Allow the modeling of the behavior of each entity
and of the interaction between entities in terms of
STATES and ACTIONS

❙ Rule-based reasoning

❘ Allow Automation and Error Recovery

Clara Gaspar, April 2005 10

SMI++

❚ Method (Cont.)

❙ SMI++ Objects can be:

❘ Abstract (e.g. a Run or the DCS)

❘ Concrete (e.g. a power supply or a temp. sensor)

❙ Concrete objects are implemented externally

either in "C", in C++, or in PVSS (ctrl scripts)

❙ Logically related objects can be grouped

inside "SMI domains" representing a given

sub-system

Clara Gaspar, April 2005 11

SMI++ Run-time Environment

Proxy Proxy Proxy

Hardware Devices

Obj

Obj

Obj

SMI Domain

Obj Obj Obj

Obj

Obj SMI Domain

❙ Device Level: Proxies
❘ C, C++, PVSS ctrl scripts

❘ drive the hardware:

〡deduceState

〡handleCommands

❙ Abstract Levels: Domains
❘ Internal objects

❘ Implement the logical model

❘ Dedicated language

❙ User Interfaces
❘ For User Interaction

Clara Gaspar, April 2005 12

SMI++

❚ SMI++ - The Language

❙ SML –State Management Language
❘ Finite State Logic

〡Objects are described as FSMs
their main attribute is a STATE

❘ Parallelism
〡Actions can be sent in parallel to several objects.

Tests on the state of objects can block if the objects are
still “transiting”

❘ Asynchronous Rules
〡Actions can be triggered by logical conditions on the state

of other objects

Clara Gaspar, April 2005 13

SML example
❚ Device:

class: HighVoltage
 state: NOT_READY /initial_state
 action: GOTO_READY
 do SWITCH_ON PS1
 if (PS1 in_state ON) then
 move_to READY
 endif
 move_to ERROR
 state: READY
 when (PS1 in_state TRIP) do RECOVER
 action: RECOVER
 do RESET PS1
 do SWITCH_ON PS1
 …
 action: GOTO_NOT_READY
 …
 state: ERROR
 …

object: SubDetHV is_of_class HighVoltage

class: PowerSupply /associated
 state: UNKNOWN /dead_state
 state: OFF
 action : SWITCH_ON
 state: ON
 action : SWITCH_OFF
 state: TRIP
 action : RESET
 …

object: PS1 is_of_class PowerSupply

❚ Sub System:

Clara Gaspar, April 2005 14

SML example (many objs)

class: HighVoltage
 state: NOT_READY /initial_state
 action: GOTO_READY
 do SWITCH_ON all_in PSS
 if (all_in PSS in_state ON) then
 move_to READY
 endif
 move_to ERROR
 state: READY
 when (any_in PSS in_state TRIP) do RECOVER
 action: RECOVER
 do RESET all_in PSS
 do SWITCH_ON all_in PSS
 …
 action: GOTO_NOT_READY
 …
 state: ERROR
 …

object: SubDetHV is_of_class HighVoltage

class: PowerSupply /associated
 state: UNKNOWN /dead_state
 state: OFF
 action : SWITCH_ON
 state: ON
 action : SWITCH_OFF
 state: TRIP
 action : RESET
 …

object: PS1 is_of_class PowerSupply
object: PS2 is_of_class PowerSupply
object: PS3 is_of_class PowerSupply
…

objectset: PSS {PS1, PS2, PS3, …}

❚ Devices: ❚ Sub System:

❚ Objects can be dynamically
included/excluded in a Set

Clara Gaspar, April 2005 15

SML example (automation)

object: RUN_CONTROL
 state: TEST_MODE
 when (LHC::STATE in_state PHYSICS) do PHYSICS
 action: PHYSICS
 do GOTO_READY SubDetHV
 …
 move_to PHYSICS_MODE
 state: PHYSICS_MODE
 …

object: LHC::STATE /associated
 state: UNKNOWN /dead_state
 state: PHYSICS
 state: SETUP
 state: OFF
 …

❚ External Device:

❚ Sub System:

Clara Gaspar, April 2005 16

SMI++ Run-time Tools

Proxy Proxy Proxy

Hardware Devices

Obj

Obj

Obj

SMI Domain

Obj Obj Obj

Obj

Obj SMI Domain

❙ Device Level: Proxies
❘ C, C++, PVSS ctrl scripts
❘ Use a Run Time Library: smirtl

To Communicate with their domain

❙ Abstract Levels: Domains
❘ A C++ engine: smiSM - reads the

translated SML code and
instantiates the objects

❙ User Interfaces
❘ Use a Run Time Library: smiuirtl

To communicate with the domains

❙ All Tools available on:
❘ Windows, Unix (Linux)

❙ All Communications are
dynamically (re)established

Clara Gaspar, April 2005 17

SMI++ History

❙ A Top level domain:
Big-Brother automatically
piloted the experiment

❚ 1997: Rewritten in C++

❚ 1999: Is used by BaBar
for the Run-Control and
high level automation

❚ 2002: Integration in
PVSS for use at LHC

❚ 1989: First implemented for DELPHI in ADA
❙ DELPHI used it throughout the experiment

Clara Gaspar, April 2005 18

PVSS/SMI++ Integration
❚ Graphical Configuration

of SMI++ Using PVSS

Clara Gaspar, April 2005 19

Building Hierarchies

❚ Hierarchy of CUs
❙ Distributed over

several machines
❘ "&" means reference to

a CU in another system

❙ Editor Mode:
❘ Add / Remove / Change

Settings

❙ Navigator Mode
❘ Start / Stop / View

Clara Gaspar, April 2005 20

Control Unit Run-Time

❚ Dynamically generated operation panels
(Uniform look and feel) ❚ Configurable

User Panels

Clara Gaspar, April 2005 21

Full Experiment Control

ECS

DCS DAQ

Vertex

GA
S

H
V

Tracke
r

Muon Vertex
Tracke

r
Muon

Tem
p

H
V

GA
S

H
V

FE
R
U

FE
R
U

FE
R
U

LHC

❙ ECS
❘ When LHC in PHYSICS

-> GET_READY DCS
-> GET_READY DAQ
-> START_RUN DAQ

Clara Gaspar, April 2005 22

Parallel Hierarchies

ECS

DCS DAQ

Vertex

GA
S

H
V

Tracke
r

Muon Vertex
Tracke

r
Muon

Tem
p

H
V

GA
S

H
V

FE
R
U

FE
R
U

FE
R
U

LHC

❙ Safety
❘ When GAS in ERROR

-> SWITCH_OFF HVs

Safety

Vertex

FE
R
U

Clara Gaspar, April 2005 23

Features of PVSS/SMI++

❚ Task Separation:
❙ SMI Proxies/PVSS Scripts execute only

basic actions – No intelligence

❙ SMI Objects implement the logic behaviour

❙ Advantages:
❘ Change the HW

-> change only PVSS

❘ Change logic behaviour
sequencing and dependency of actions, etc
-> change only SMI rules

Clara Gaspar, April 2005 24

Features of PVSS/SMI++

❚ Error Recovery Mechanism
❙ Bottom Up

❘ SMI Objects react to changes of their children
〡In an event-driven, asynchronous, fashion

❙ Distributed
❘ Each Sub-System recovers its errors

〡Each team knows how to recover local errors

❙ Hierarchical/Parallel recovery

❙ Can provide complete automation even for
very large systems

