
Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 1

Optimization of Event-Building Implementation
on Top of Gigabit Ethernet

IEEE Real-Time conference 2005

Benjamin Gaidioz Artur Barczyk Niko Neufeld Beat Jost

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 2

architecture of the system

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 3

architecture of the system

■ data packets are sent by sources, gathered by a “gateway”,
Detector Front End

~500 data sourcesNIC NICNIC

All local
connections
GbE

Switched
Network

Core DAQ
Network10GbE uplink

to local storage
and CERN

Storage
Network

~100 GatewaysCPUCPU CPU

Distribution Layer

~2000 Farm Nodes
Storage

Up to 23
CPUs per

subnet

■ events are sent by the gateway to computing nodes.
■ this gateway is our object of study here.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 3

architecture of the system

■ data packets are sent by sources, gathered by a “gateway”,
Detector Front End

~500 data sourcesNIC NICNIC

All local
connections
GbE

Switched
Network

Core DAQ
Network10GbE uplink

to local storage
and CERN

Storage
Network

~100 GatewaysCPUCPU CPU

Distribution Layer

~2000 Farm Nodes
Storage

Up to 23
CPUs per

subnet

■ events are sent by the gateway to computing nodes.
■ this gateway is our object of study here.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 4

data packets

■ a data packet: Nf event fragments in an Ethernet frame
(decreases frame rate, increases network usage),
Ether Ipv4

frag1 frag2 fragNf
events fragments

■ in real life: packets of about 1KB,
◆ 10 to 30 fragments,
◆ 32 to 100 bytes per fragment.

■ a set of data packets: Ns data packets with Nf fragments
each→ Nf events made of Ns fragments each.

one event

Ns packets

■ a gateway reassembles fragments and sends them to
computing nodes

■ L1 events: about 4.5 KB, HLT events: about 30 KB.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 4

data packets

■ a data packet: Nf event fragments in an Ethernet frame
(decreases frame rate, increases network usage),
Ether Ipv4

frag1 frag2 fragNf
events fragments

■ in real life: packets of about 1KB,
◆ 10 to 30 fragments,
◆ 32 to 100 bytes per fragment.

■ a set of data packets: Ns data packets with Nf fragments
each→ Nf events made of Ns fragments each.

one event

Ns packets

■ a gateway reassembles fragments and sends them to
computing nodes

■ L1 events: about 4.5 KB, HLT events: about 30 KB.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 4

data packets

■ a data packet: Nf event fragments in an Ethernet frame
(decreases frame rate, increases network usage),
Ether Ipv4

frag1 frag2 fragNf
events fragments

■ in real life: packets of about 1KB,
◆ 10 to 30 fragments,
◆ 32 to 100 bytes per fragment.

■ a set of data packets: Ns data packets with Nf fragments
each→ Nf events made of Ns fragments each.

one event

Ns packets

■ a gateway reassembles fragments and sends them to
computing nodes

■ L1 events: about 4.5 KB, HLT events: about 30 KB.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 5

outline

We want:

■ predictability (latency constraints),
■ good input/output rate→ larger “sub-farms”,

■ goals of this presentation:
◆ describe the implementation of the (software)

component LHCb event-builder,
◆ show bottlenecks and possible improvements,
◆ tell about our experience with various implementation

details, system settings,

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 6

system

■ The host tested here is a high performance PC:
◆ a dual AMD Opteron 2.2 GHz,
◆ standard Linux kernel 2.6.11,
◆ dual port GbE NICs: Intel 82546EB and Broadcom

BCM5704.

switch

gatewayNP

“nodes”

■ LHCb-like traffic is generated by a network processor,
■ computing nodes are emulated by an other host.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 7

implementation on SMP

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 8

implementation on SMP

■ two main tasks:
1. receiving, checking and ordering data packets,
2. sending built events, managing the nodes.

■ we compare here two implementations:

CPUCPU

events

CPUCPU

eventsevents eventsdata data data data

producer / consumer one thread ran twice

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 8

implementation on SMP

■ two main tasks:
1. receiving, checking and ordering data packets,
2. sending built events, managing the nodes.

■ we compare here two implementations:

CPUCPU

events

CPUCPU

eventsevents eventsdata data data data

producer / consumer one thread ran twice

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 9

performance

■ improvement with a single threaded implementation:
max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63

an SMP implementation with
the same task running on all
CPU (like several different
hosts)

■ in the producer/consumer implementation:
◆ not a lot of shared code sections (good),
◆ data is moved from CPU0 cache to CPU1 cache (bad),

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 10

memory management

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 11

memory management

■ the application does a lot of buffering
■ data packets are kept in memory until the full set is

received,
■ event data is copied into messages and sent.

■ two implementations: stdlib or custom memory
management.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 12

Performance

■ results:
max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71

with a specific simple and
straight memory management
implemented in the application

■ cost of stdlib:
◆ malloc, realloc and free request and give back memory

pages from the operating system,
◆ the operating system clears pages before giving them

(privacy).
■ performance improves a bit
■ predictability: no more system calls, constant cost.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 13

memory copies

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 14

using sendmsg

■ many small fragments are packed into a single large
message (for sending),

■ standard way: using iovec arrays,

■ fragments locations and lengths are parameters of the
sendmsg system call

■ normally preferred because it avoids a copy.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 15

copies done by the operating system

■ the system call loops over the array and copy each
user-space fragment into a kernel buffer,

■ involves:
◆ one call to memcpy (kernel implementation),
◆ checking that the from location is lying in the process

address range,
■ checkings are implemented in software. (In a system call, if

from points in kernel space, the CPU does not fault.)
■ this is a lot of overhead for just a few bytes per fragment.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 16

copies done in userspace

■ prepare the Ethernet frames in user-space

■ memory copies can be optimized, checks are performed by
the MMU,

max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71

frames are prepared in user-
space and sent with sendmsg

■ same performance: we save and then loose CPU.

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 17

zero-copy sending

■ how to save the new memory copy to kernel space?

■ we build frames in shared memory space,
■ extension of the operating system (kernel module):

◆ based on raw packet socket (af_packet.c is a good
starting point),

◆ (mmap to share memory pages with the kernel).
■ send implementation: the buffer is already in kernel space,

add it as a DMA fragment to the frame descriptor,

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 17

zero-copy sending

■ how to save the new memory copy to kernel space?
■ we build frames in shared memory space,
■ extension of the operating system (kernel module):

◆ based on raw packet socket (af_packet.c is a good
starting point),

◆ (mmap to share memory pages with the kernel).
■ send implementation: the buffer is already in kernel space,

add it as a DMA fragment to the frame descriptor,

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 18

performance

■ it is nice to save memory copies:
max rate (Gb/s)

0

0.5

1

1.5

2

1.36 1.63 1.71 1.71 1.95

frames are prepared in shared
memory and not copied by
sendmsg

■ (zero-copy receiving has not been implemented.)

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 19

summary and conclusion

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 20

summary

■ application studied here: LHCb event-builder,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10

in
pu

t r
at

e
ha

nd
le

d
(G

b/
s)

implementation (see references in the text)

■ improvements of performance and predictability with
careful implementation:
◆ SMP implementation,
◆ optimized memcpy,
◆ study of the operating system,
◆ extensions to the operating system.

■ (. . . and specific system settings.)

Optimization of Event-Building Implementation on Top of Gigabit Ethernet – 21

conclusions

■ LHCb event-building can be implemented with a lower
number of gateways.

Detector Front End

~500 data sourcesNIC NICNIC

All local
connections
GbE

Switched
Network

Core DAQ
Network10GbE uplink

to local storage
and CERN

Storage
Network

~100 GatewaysCPUCPU CPU

Distribution Layer

~2000 Farm Nodes
Storage

Up to 23
CPUs per

subnet

■ careful look at hardware and operating system source code
is really important for both performance and guarantees:
◆ helps in increasing performance,
◆ no surprises during execution.

■ (see also poster P8-1 for performance of NIC)

