High performance GbE switches for Data Acquisition Systems

A. Barczyk, J-P. Dufey for the LHCb collaboration

Overview The context: LHCb readout network
Readout network topology
Evaluation: LHCb DAQ test-bed
Simulation: Extrapolation to complete system

LHCb readout network

- The LHCb readout network is built on Gigabit Ethernet technology
- ◇ From network point of view:
 - o 120 sources of high priority (Level 1 trigger) traffic
 - Latency constrained
 - Fixed arrival times ~40 kHz
 - ~ 30% link utilization
 - 300 sources of low priority traffic (High Level Trigger)
 - No latency constraints
 - Variable arrival times, mean rate ~4kHz
 - Link utilization 3-30%, with exceptions of ~ 80%
 - \circ ~100 destinations
 - Sub-Farm Controller PC
 - Act as gateways to the CPU farm_
 - Perform last stage of event building and distribution to worker nodes
- ♦ Event building traffic: all sources contain fragments of the same event → all send data to the same destination Temporary storage (round robin)
- Push protocol throughout
- No data retransmission

Possible Topologies

 ◇ Possible use of 10G Ethernet between edge and core
 ○ Optical → expensive!

Possible Topologies, cont.

- ◊ Single switch core
 - A high port density switch with
 > 500 ports would make it possible to drop the aggregation layer
 - High performance switch (router class)
 - Higher per port cost
 - Only recently available
- ◊ Simpler setup
 - No interconnecting links
 - No link aggregation necessary
 - Simplifies management and performance monitoring

Detector Front End

Switch evaluation

- Parameters we need to measure:
 - Switching latency
 - o Egress queue depths
 - o Behaviour under LHCb traffic
 - Generic performance tests (full mesh, large statistics packet loss rate, ...)
- ◇ LHCb DAQ Test-bed:
 - o FEE emulators
 - Network Processor based
 - 3 GbE ports per PCI card
 - Fully programmable traffic generators
 - Used also to analyse traffic
 - o Client-server application
 - Server running on hosts containing NPs
 - Client running on desktop box
 - Python scripts running tests
 - Downloading test application to NP
 - Defining traffic pattern
 - o Test-bed limitations
 - Size: only up to 48 GbE ports available
 - \rightarrow use simulation to extrapolate to full-sized system

Switch evaluation, cont.

High Performance GbE Switches for DAQ Systems

Hep Full scale extrapolation: simulation

- ◇ Extrapolation to full scale system
 - o Discrete time simulation
 - 0 In-house development, C
 - MC produced data samples used as input, gives realistic
 - Frame timing
 - Frame sizes
- Started with generic switch model, interconnected with 1Gbps links
- ◇ Later refined to include
 - Priority queues
 - Link aggregation (link load balancing)
 - o Internal switch architecture
 - Higher bandwidth interconnection (stacking) on internal links

Simulation model

Layout based on generic 48 ports switches

High Performance GbE Switches for DAQ Systems

Simulation

- Generic switch model:
 - o 48 ports
 - no speed-up in the fabric
 (96 Gbps fabric capacity)
- Internal connections:
 - Aggregated links with 3 GbE connections
 - Used in full-duplex
- Optimized destination port assignment improves memory utilization:
 - Force "next destination" to be on a different switch
- Single GbE connection to destination host
- ♦ Two independent flows for L1 and HLT traffic
- ◇ No priority queuing

First simulation results

- The three most interesting values: \diamond
 - L1 event latency: < 4 ms 0
 - 0
 - Internal buffer occupancy: < 260 kB / 3 ports Output port buffer occupancy: < 405 kB / port 0

High Performance GbE Switches for DAQ Systems

Model specific simulation

- Refined simulation to reflect the architecture of switch based on the Broadcom BCM5675/5695 chipset
- ♦ 48 GbE ports
- ◇ 2 x 20 Gbps stacking

Known behaviour

- ◇ We have evaluated switches based on this architecture in our test-bed
 - o Latency
 - Queue depths with different Class of Service settings
- Interesting feature: stacking for connection between aggregation and core layer

Refined simulation model

LHCh

Refined simulation results

- ♦ Additional changes:
 - 2 x 1 GbE links to destination (SFC)
 - 4 GbE in (internal) aggregated links
 - Two priority queues (L1 traffic prioritized over HLT)
- Outcome:
 - Lower L1 latency: <1 ms
 - Due to increased bandwidth on all connections (stacking, internal and to destination)
 - While keeping memory utilization low on output ports: < 400 kB
 - Within the limits of available memory

High Performance GbE Switches for DAQ Systems

Single switch simulation

- The arrival of large port density switches on the market raised our interest in the single switch solution
- Important requirements:
 - o Non-blocking
 - Over-commitment factor < 2

 (Note that LHCb DAQ traffic is uni-directional!)
- A preliminary study indicates this type of switch can be used, and available on the market
- Devised a simulation model based on an existing switch
 - o Cross-bar fabric
 - Up to 96 GbE ports per blade (\rightarrow over 1200 ports in total)
 - o 128 MB buffer memory per blades
 - LHCb timing for L1 and HLT traffic
 - Overlaid 20% large events
 - Single GbE link to destination
- Studied two cases:
 - No priority queues
 - Two priorities: high priority for L1 traffic

Preliminary simulation results

♦ No priority classes:

LHCb

- Memory utilization
 ~7 MB / blade
 (128 MB available)
- L1 traffic can be queued behind HLT traffic

Two priority queues:

- Reduces L1 latency below 5 ms
 (below 2 ms for normal events)
- Memory utilization raises insignificantly to ~8 MB / blade

High Performance GbE Switches for DAQ Systems

Summary

- The LHCb DAQ test bed has been used to evaluate Gigabit Ethernet switch performance
 - o Foundry, Nortel, Force10, Extreme, Cisco, etc...
- ◊ Typical performance figures
 - Forwarding latency
 - Edge: 15-20 μs (1500B), ~60 μs (9000B)
 - Core: ~50 μs (1500B), ~100 μs (9000B)
 - Loss rates under LHCb traffic pattern are below 10⁻¹⁰ frames for good candidates
 - Typical queue depths (frame size dependent)
 - Edge: ~100 kB
 - Core: up to ~4 MB
 - Quality of Service settings in some switches allow to use larger portions of SHARED memory
 - Up to ~800 kB per port in edge switches
 - Up to ~4MB per port in core switches
- Feedback from test-bed was used to refine our simulation model used to predict the performance of the full-size setup
- ♦ Simulation models give us predictions of
 - Level 1 event latency well below 10 ms (below 1 ms in extreme case)
 - Memory requirements below 400 kB per egress queue
- The needs of the LHCb readout network are met by high performance GbE switches with the available features (quality of service, link aggregation, stacking)