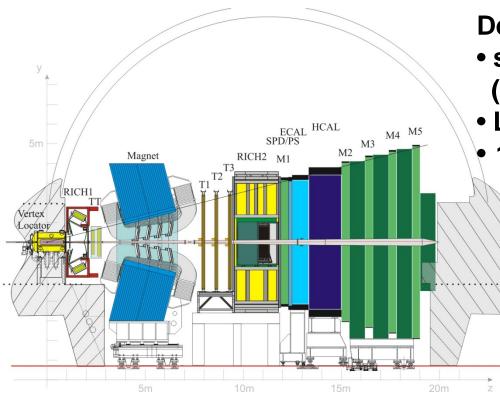


Control and Operation of the LHCb Readout Boards using Embedded Microcontrollers and the PVSSII SCADA System

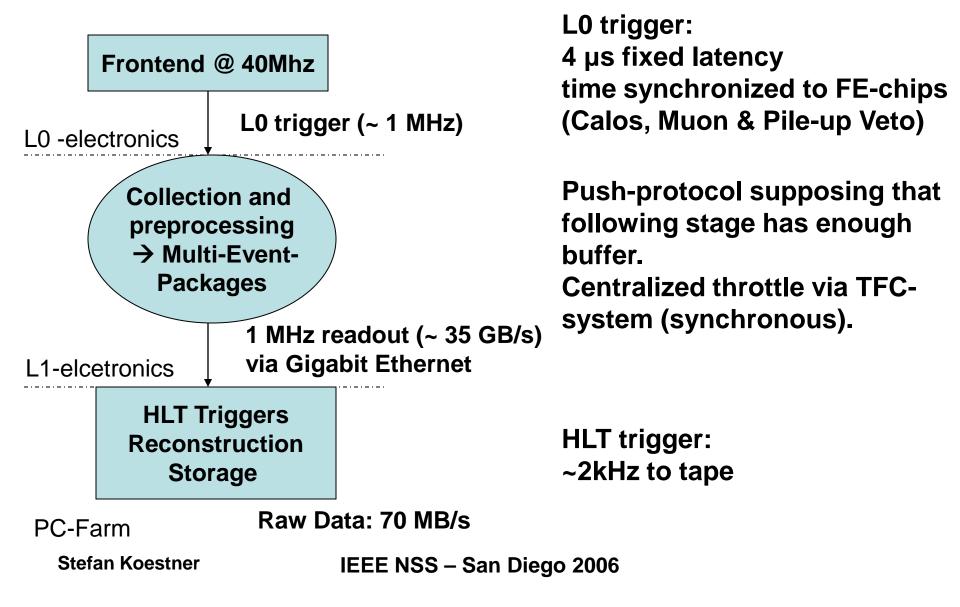

Stefan Koestner

on behalf of the LHCb Online Group (email: Stefan.Koestner@cern.ch)

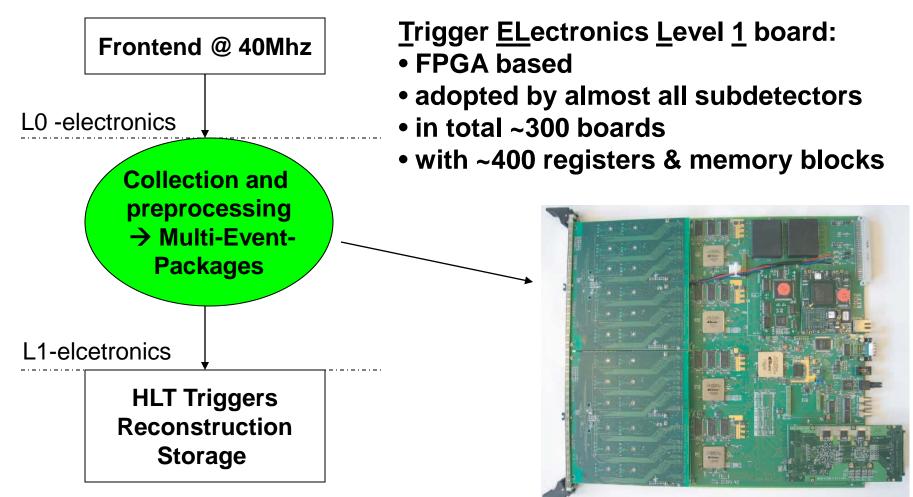
IEEE - Nuclear Science Symposium San Diego, Oct. 31st 2006

The LHCb experiment

Dedicated to 'B-physics':

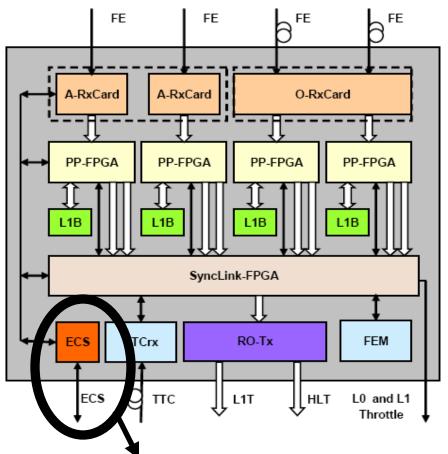

- single arm forward spectrometer (15 - 300 mrad)
- $L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1} (\sim 1 \text{ evt/bx})$
- 10¹² bb-pairs (~100 kHz)

fraction of interest just 10⁻⁵ → efficient trigger necessary to enrich the data sample! (implemented in 2 levels)


- Ten sub-detectors with approx. 1.1 million readout channels in total
- average total event size (at average occupancy) is 35 kB (after ZS)

Stefan Koestner

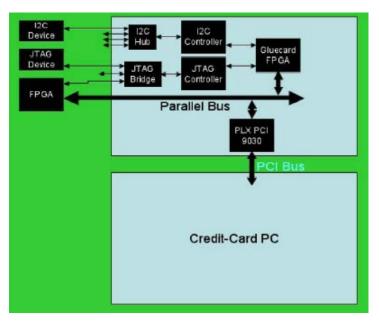
Trigger and DAQ system


TELL1 - board

PC-Farm

Stefan Koestner

TELL1 - board



- ADC conversion
- Synchronisation, reordering, pedestal subtraction
- Common mode suppression
- Zero Suppression
- Multi Event Packing
- IP Framing
- Gigabit Ethernet Link
- ECS interface via creditcard sized PC connected to 10/100 Ethernet
- Controls network separated from Data network
- isolated access path \rightarrow robustness

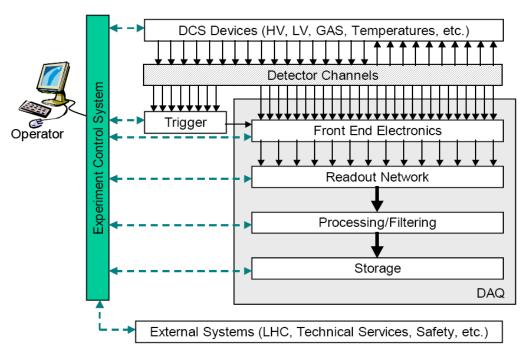
Stefan Koestner

Credit Card PC

- 4" SM520PCX (Digitallogic) CCPC:
- i486 compatible microcontroller (AMD ELAN 520)
- Linux Kernel at 133 MHz
- reading from local bus 20 MB/s
- filesystem shared over server

Access to board via gluecard over a PLX PCI9030 bridge:

Parallel bus (8/16/32), 3 JTAG chains (2 MHz), 4 I²C lines and 9 GPIO lines

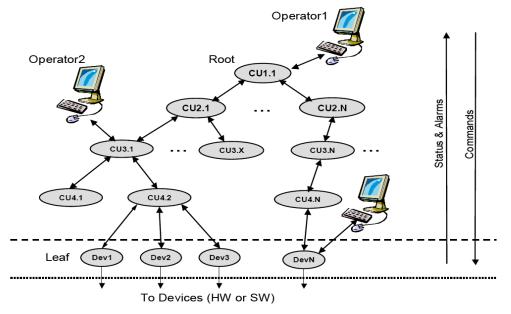

low level libraries	LIBI2CU	LIBJTAG	
under SLC4	CB_x	xx.so	
(maintenance)	LIBLB	LIBGLUE	
(maintenance)	PLX	driver	

Stefan Koestner

Experiment Control System

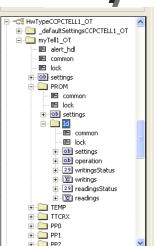
A uniform and homogenous control system based on the 'Joint Controls Project' (JCOP) framework - tailored for LHCb needs:

- eases development as well as operation
- distributed and scalable system
- coherent interfaces


Configuration, monitoring and operation of the 'whole' experiment:

- Data acquisition & trigger
- Detector Operations (DCS)
- Experimental Infrastructure
- Interaction with accelerator
 & CERN Safety System

Industrial SCADA (PVSSII)

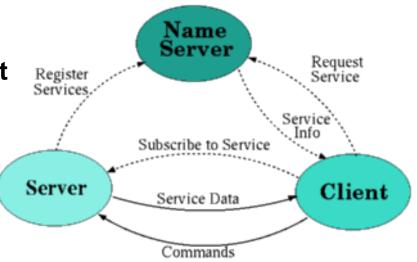

The CERN's common JCOP framework is built upon an industrial SCADA system: PVSSII

- data (registers or probes) is stored in 'data points' (=complex structures) connected to the PVSS internal memory-DB
- Change of these entries triggers a callback function
- Upon certain thresholds alerts can be launched

Extended to allow for finite state modeling & hierarchical control:

- intuitive model of subsystem
- several levels of abstraction
- sub systems can run alone
- auto-recovery from errors

Stefan Koestner


Communication Layer - DIM

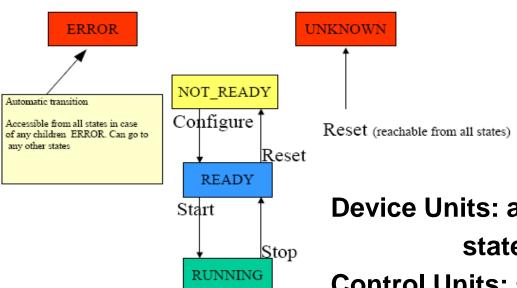
Interface from ECS to hardware realized with the 'Distributed Information Management' System (DIM) – a portable lightweight communication layer:

DIM server running on CCPC publishes services to DIM Name Server (DNS) from where the client (ECS) can subscribe to it.

Data exchange peer to peer from server to client.

Client sends commands (write/read) – server updates services (data/status)

- Portability: Clients can be installed on any machine just specifying DNS node (no need to take care of connectivity)
- Robustness: If server crashes it can easily republish on DNS node
 Stefan Koestner
 IEEE NSS San Diego 2006


Abstraction Layer - FwHw

HARDWARE ADVANCED Hardwares (type: TELL1_OT - myTell1_OT PROM (type: TEMP) TIFPGA (type: TEMPSENS) T2GBE (type: TEMPSENS) TTCRX (type: TTCRX) - PPO (type: PPOT) CHNCTRL (type: CONTROL)	Common settings (hardware: CMNCTRL) PC pctell07
- myTelll_OT PROM (type: EEPROM) - TEMP (type: TEMP) TLFPGA (type: TEMPSENS) T2GBE (type: TEMPSENS) TTCRX (type: TCRX) - PPO (type: PPOT) CMNCTRL (type: CONTROL)	
PROM (type: EEPROM) - TEMP (type: TEMP) T1FPGA (type: TEMPSENS) T2C6BE (type: TEMPSENS) TTCRX (type: TTCRX) - PPO (type: PPOT) CMNCTRL (type: CONTROL)	PC pctell07
Create Remove Clone Save as Default Settings Apply Default Settings Subscribe Unsubscribe View/Recipes	Save Cancel Defaul
egisters (hardware: PORTD) PPResetReg (type: LBUS) PPCtrlReg0 (type: LBUS)	Specific settings (register: PPCtrlReg1) LBUS address (hex) 4000008
PPCtrlReg1 (type: LBUS)	Type 4 Size (words) 1
	Refresh rate (seconds) 0 Data change (0 or 1) 0
Show registers of type (All)	Save Cancel Defaul

Introduced a tool to model hardware as PVSSdatapoints:

- hides diversity and complexity of the various hardware/bus types
- takes care of the communication with the Tell1 (using DIM)
- framework function calls by register name

Finite State Machines

Further abstraction as finite state machines (SMI++): defined transition from one state of the board into another with possibility to autorecover

Device Units: act on hardware (data points) state can be triggered by hardware Control Units: send commands to children (DU) state transition when children change

- Firmware can be downloaded to board in state NOT_READY
- Configuration of board (mainly writing registers) via 'recipes' downloaded from Configuration Database (different settings for different run conditions)

Stefan Koestner IEEE NSS – San Diego 2006

Tell1 Control Unit

An example for a Tell1 CU panel (under construction)

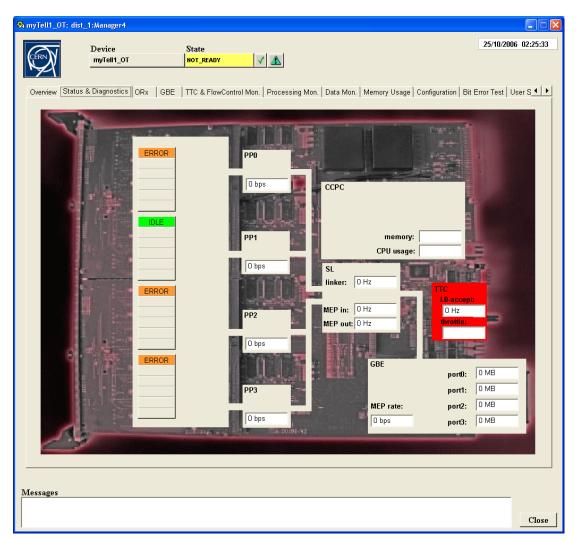
🕅 Tell1Control: dis	t_1:Manager4		
Sub-System myTell1_OT myTell1_VeLo Velo1 Velo2 OT1 OT2 OT3 OT4	System Tell1Control State CONFIGURING NOT_READY READY READY READY READY READY READY READY	State NOT_READY	25/10/2006 01:54: TELL1 CONTROL UNIT
0T4 0T5	READY	×	
			Configuration (Start Up) Choose Device Unit myTell1_OT Assign POF File: D:/tell1_OT_v1.7.pof Send Assign CFG File: D:/OT_v17.cfg Send Send Configuration to ALL
			Assign CCPC: pctell07 Send
Messages			
			Clos

 states of children (DUs) define state of CU

 commands are propagated downwards

 partitioning of the system is a key feature (partitions can have their own trigger)

• clicking on device unit allows to open operator panels for the device (boards)


Tell1 Device Unit

Screenshot of a Tell1 DU panel – operator interface:

yTell1_OT: dist_1:Ma	nager4							
	rice Tell1_OT	State NOT_READY	1	′ 🔺				25/10/2006 03:01:4
Overview Status & Dia	gnostics ORx GBE	TTC & Flow	Control Mon.	Processing N	lon. Data Mon	. Memory Us	age Configuration Bit	Error Test User S
гнср			Temp PP Temp GBE	27 C 21 C	_	TC: • ORx :PC: • CFG:	flow contr	ol: OK Jsage: OK
Counters	Hexadeo	imal: 🔽						
LO-Events	0x0000000							
LO-FE resets	0x0							
LO-EvCnt resets	0x0							
BCNCnt resets	0x0							. D. L. W. C.
MEPs transm.	0x0000000							
MEP factor	No MEPs sent currently							
	GBE Tx Status GBE ID ASCII:							
	More Coun	ters	[MBytes]	Tx_OK	Tx_Error	Link Status	Dest. MAC	Dest. IP
Versions			port 0	0 MB	0 MB	Not_OKI	00:02:B3:D4:FB:96	11.0.0.14
Frmwr Version	USR: 0.0 PP: 0.0 S	L: 0.0	port 1	0 MB	0 MB	Not_OK!	00:02:B3:D4:FB:96	11.0.0.14
CFG Version			port 2	0 MB	0 MB	OK!	00:02:B3:D4:FB:96	11.0.0.14
Server Version	2-2-1		port 3	0 MB	0 MB	OK!	00:02:B3:D4:FB:96	11.0.0.14
	More Inform	nation	Tell1 Src IF					
Configure	Registers used in Panel		Source IP	11.0.0.15		Souri	e MAC 00:02:83:D4:	
essages								
								Clos

- identifies board type
- evaluates malfunctioning parts of the board
- quick overview of important counters and registers
- reconfiguration of refresh rate

Tell1 Device Unit

 registers (=data points) can be connected to callback functions which allow to evaluate the functionality of subcomponents (inside Ctrl-script)

• error recovery or alerts can be implemented

Tell1 Device Unit

many panels to monitor registers – grouped in sub panels panels for interaction and

reconfiguration of registers AmyTell1_0T: dist_1:Manager4 25/10/2006 02:15:28 Device State CERN myTell1_OT NOT_READY V 🔥 🕅 myTell1_OT: dist_1:Manager4 Overview Status & Diagnostics ORx GBE TTC & FlowControl Mon. Processing Mon. Data Mon. Memory Usage Configuration Bit Er 25/10/2006 02:13:18 -TTC Counters Device State ÇERN mvTell1 OT NOT READY V \Lambda number of SPI3 TX MEP 32 bit 00000000 SPI3 TX packet size 16 bi number of SPI3 TX SOP 32 bi 00000000 Overview | Status & Diagnostics | ORx | GBE | TTC & FlowControl Mon. | Processing Mon. | Data Mon. | Memory Usage | Configuration | Bit Error Test | User S 4 🕨 number of SPI3 TX EOP 32 bit number of TTC triggers 32 bit 00000000 GBE Configuration number of TTC trigger types 32 bi number of TTC dest IP 32 bi 00000000 Port 0 Port 1 Port 2 Port 3 Enable/Disable number of TTC LD-EVID Error 16 bit 0 number of TTC MEP flush signals 8 bit 00 Dest. MAC Scr MAC number of TTC LOFE reset signal 8 bit 08 number of TTC BCNT reset signal 00 8 hi Hex Dest. IP Src IP number of TTC EVCNT reset signal 8 bit 00 C Dec configure configure configure configure configure Scr Flow Control information (only hexadecimal) Throttle cunters Current log All Ports like Port0 configure all Ports cancel all PP-FPGA 0 16 bit FlowCtrl info in SL_FRAG_LEN_FIFO_ALMOST_FULL 0 PP-FPGA 1 16 bit FlowCtrl info in SL_FRAG_HEADER_FIFO_ALMOST_FULL PP-FPGA 2 16 bit FlowCtrl info in SL FRAG DATA FIFO ALMOST FULL Processing Configuration ECS Configuration 16 hit PP.EPGA 3 FlowCtrl info in SL SEP FIFO ALMOST FULL MEP Buffer 16 bit FlowCtrl info in SL SL INFIFO ALMOST FULLD Info sent by ECS - triggers and all info sent by ECS $\overline{\mathbf{A}}$ Trigger number per DAQ loop FlowCtrl info in SL_SL_INFIFO_ALMOST_FULL1 Trigger info 16 bit Consecutive trigger numbe FlowCtrl info in SL_SL_INFIFO_ALMOST_FULL2 Total 00000000 32 bit FlowCtrl info in SL_SL_INFIFO_ALMOST_FULL3 Wait cycles between triggers (25ns) Dest IP sent by ECS - triggers and all info sent by ECS MEP Factor max 31 ECS - triggers and all info sent by ECS Physics Trigger Type sen by Trigger Type • \checkmark Data Gen Enable ★ disable ped nZS ZS 0 🗸 Bank Class err ✓ enable Error bank cancel configure Messages • Hex C Dec Messages Close

Stefan Koestner

Conclusions

- Presented the basic concepts for implementing the LHCb readout boards into the Experiment Control System with a focus on the various layers and frameworks used
- The system is currently under test for commissioning of the sub-detectors (refinements still ongoing)
- A generic design was of major importance to allow for the usage by different subdetectors and board types
- Further wizards to facilitate board implementation by non experts