
Ganga and distributed analysis in LHCb
Ulrik Egede

On behalf of the LHCb collaboration and the Ganga Core
development team

Sinaia, Romania, 13-18 Oct 2006

Imperial College
London

2/30Imperial College LondonUlrik Egede CHEP 2006

Overview

The user analysis framework Ganga
As a general framework

As used within LHCb

From a developers point of view

Where Ganga is currently used

A demonstration of using Ganga

3/30Imperial College LondonUlrik Egede CHEP 2006

The Ganga framework

4/30Imperial College LondonUlrik Egede CHEP 2006

General Overview

Data Processing
 Applications

 GangaG
UI

CL
IP

Sc
ri

pt
s

Application
Configuration

Grid
Services

Local Batch
System

Local PC

Histograms
Monitoring
Results

Application
Environment,
User Code

Ganga is a Grid user
interface

It is a key piece of the
distributed-analysis
systems for ATLAS and
LHCb

Ganga takes care of
Configuring applications

Switching between local
testing and large-scale
processing on the Grid

Keeping track of results

Discover datasets by direct
interfacing to file
catalogues

All written in portable Python code
~20k lines of code

A joint UK/CERN project

5/30Imperial College LondonUlrik Egede CHEP 2006

Command Line Interface

● Ganga provides interactive access to objects either via the an enhanced Python
shell (IPython)

● Fully object oriented approach

j = Job(application = Root(), backend = LCG(), splitter = ArgSplitter())

j.application.script = 'HiggsFit.C'

j.splitter = [['A‘, 110],['A‘, 130],['B‘, 270]]

j.outputsandbox = 'output.root'

j.submit()

An example of commands for job
submission

help> index

Ganga Public Interface (GPI) Index

Classes:

 File Represent the files, both local and remote and provide an interface to transparently get access
to them.

 ………..

HiggsFit(const char* SUSYModel, double HiggsMass) { ...

TFile f("output.root","RECREATE");

 ...
}

An example of a ROOT script “HiggsFit.C”

Interactive help system is available from
the command line

6/30Imperial College LondonUlrik Egede CHEP 2006

Ganga GUI

● The GUI interface is built on the top of the GPI using the PyQt graphics libraries
● Most of the panels are build dynamically using the widget description from the class schema

Job details

Logical
Folders

Job Monitoring

Log window

Job builder

Scriptor

Screenshot of the Ganga
GUI

Dockable
windows

7/30Imperial College LondonUlrik Egede CHEP 2006

Deployment

CERN, September 2005 Cambridge, January 2006 Bologna, June 2006

Tutorials for ATLAS and LHCb in various locations => Ganga tried out
by close to a 100 people

Distributed analysis recently integrated into the overall training for
analysis in LHCb.

Regular set of tutorials within ATLAS

Support provide by developers through the CERN Savannah system.

8/30Imperial College LondonUlrik Egede CHEP 2006

Ganga as used in LHCb

9/30Imperial College LondonUlrik Egede CHEP 2006

LHCb analysis model (1/2)

Analysis at all Tier 1
centres with LHCb
involvement.

Stripped data will be:
Disk resident

Replicated to all
sites.

Stripping is centrally
managed analysis run
as a production.

Reduces analysis
datasets to a size of
106 to 107 events.

User analysis ongoing
during the year.

10/30Imperial College LondonUlrik Egede CHEP 2006

LHCb analysis model (2/2)

User Analysis

11/30Imperial College LondonUlrik Egede CHEP 2006

Analysis access to the Grid (1/2)

No direct submission of jobs to LCG for LHCb
Analysis jobs are submitted to the Dirac workload management system
(WMS) originally developed for LHCb Monte Carlo production.

This gives us the advantage to:
Reduce the knowledge required of users.

Provides transparent access for reading and writing data on SE's

Allows LHCb to set priorities and/or restrictions for analysis jobs.

See presentation by Andrei Tsaregorodtsev for many more details on
the DIRAC system.

12/30Imperial College LondonUlrik Egede CHEP 2006

Analysis access to the Grid (2/2)

User sends job to the DIRAC WMS

WMS sends a pilot agent as an
LCG job

When pilot agent runs safely on a
worker node it fetches job from
WMS

Small data files returned to WMS

Large files registered in LFC file
catalogue

User query WMS for status and
finally retrieve output from there.

13/30Imperial College LondonUlrik Egede CHEP 2006

User view of analysis using Ganga

To define a job we combine different parts to create a job

An application

A dataset

A backend

A job

Repository of
 past jobs

14/30Imperial College LondonUlrik Egede CHEP 2006

Creating an analysis (1/3)

Predefined Python classes with specific knowledge about LHCb
applications:

Objects know how to compile code, extract configuration, place user
DLLs in input sandbox, specify files for output sandbox etc.

Define an application object
app = DaVinci(version = 'v12r15',
 cmt_user_path = '~/public/cmt',
 optsfile = 'myopts.opts',
 extraopts = 'ApplicationMgr.EvtMax = 10;')

Gauss – for simulating events

DaVinci – for physics analysis

5 other LHCb applications

15/30Imperial College LondonUlrik Egede CHEP 2006

Creating an analysis (2/3)

A backend describes how the job will be executed

Define a Dirac backend object
d = Dirac(CPUtime=3600)
print d
Out[34]: Dirac (
 status = None ,
 CPUtime = 3600 ,
 id = None
)

Local – run in the background on the client

LSF/PBS/SGE – submit to the batch system

Dirac – submit to the Grid via Dirac

16/30Imperial College LondonUlrik Egede CHEP 2006

Creating an analysis (3/3)

To put together and submit a job is simply by combining the different
parts:
Create an LHCb job and submit
j = Job(name='MyJob',
 application=app,
 backend=d,

inputdata = ...)
print j
Out[38]: Job(
 status = 'new' ,
 name = 'MyJob' ,
 application = DaVinci (...)
 backend = Dirac (...)
 dataset = LHCbDataset(...))
j.submit()

A job

DaVinci

Dirac

Dataset

17/30Imperial College LondonUlrik Egede CHEP 2006

From a developers view

18/30Imperial College LondonUlrik Egede CHEP 2006

Architecture

Ganga Core performs most
common tasks. It is represented
by 4 main components:

Client

Application Manager

Job Manager

Job Repository and File
Workspace

Plugin components provide
specific functionality

All components are linked
together and communicate via
the Ganga Public Interface (GPI)

19/30Imperial College LondonUlrik Egede CHEP 2006

Job Representation
The building blocks are
implemented as plugin classes

Applications:
Generic Executable application

ROOT application

ATLAS ATHENA application

GAUDI-based applications of LHCb

Backend Plugins:
LCG, gLITE

DIRAC

LSF, PBS, Condor, SGE

Local PC

Each plugin has its own schema,
which describes the configurable
properties

20/30Imperial College LondonUlrik Egede CHEP 2006

Persistency

AMGA interface for remote database

Job repository provides for
storage and retrieval of
job objects

Either on local file system,
or with repository on
remote server using
certificate-based
authentication.

API for local and remote repositories are identical
Support for selections, bulk operations, and fast retrieval of summary data

Good scalability (has tested up to10 thousand jobs per user)

Average time of job creation being 0.2 and 0.4 second for the local and
remote repository respectively

21/30Imperial College LondonUlrik Egede CHEP 2006

Plugins

The Interface classes document
the required methods

The Plugins inherit from a
common interface class

Class schema introduces a
uniform description of all

methods and data members
visible to the uses

The plugin modules represent different types of applications and
backends.

Such a modular design allows the functionality to be extended in an
easy way to suit particular needs of the experiments

22/30Imperial College LondonUlrik Egede CHEP 2006

Extensions

● GUI and CLIP representations of
the plugin classes can be built
automatically

● Can add a new plugin without
special knowledge of the GUI and
CLIP frameworks

● To build an extension:
1. Derive a class from

corresponding plugin
interface

2. Describe the class schema
3. Specify GUI appearance (if

any)
4. Implement plugin methods
5. Create a configuration unit to

set up default values (if
required)

6. Specify path to the extension
module in the configuration
file

● No need to change anything in the
released code!

_schema = Schema(Version(2,0), {

 'exe' : SimpleItem(defvalue= '',

 doc='File object with executable.‘),

 'args' : SimpleItem(defvalue=[],sequence=1,

 doc="List of arguments.“)})

preferences for the GUI...

_GUIPrefs = [{ 'attribute' : 'exe‘, 'widget' : 'File' },

{ 'attribute' : 'args‘, 'widget' : 'String_List' }]

[Configuration]

RUNTIME_PATH = /my/SpecialExtensions:GangaAtlas

class Executable(IApplication):

""" Executable application -- running arbitrary programs. """
1

2

3

6

def configure(self, masterappconfig):

 # do the validation of input attributes
4

[Executable_Properties]

exe = echo

args = ["Hello World"]

5

23/30Imperial College LondonUlrik Egede CHEP 2006

Current uses of Ganga

24/30Imperial College LondonUlrik Egede CHEP 2006

LHCb distributed analysis performance

Monitor daily performance of
LHCb analysis jobs sent to
the DIRAC WMS.

Evaluates performance of full
analysis chain right to the
correct output.

Automatic notifications.
Will get triggered when
performance goes below a
certain level.

25/30Imperial College LondonUlrik Egede CHEP 2006

LHCb distributed analysis performance

Also monitor where the analysis jobs run and their relative success

26/30Imperial College LondonUlrik Egede CHEP 2006

LHCb distributed analysis performance

Look at waiting time from job submission until it starts consuming CPU
All jobs runs in competition with very high rate of production jobs

27/30Imperial College LondonUlrik Egede CHEP 2006

Toy Monte Carlo studies

Run large number of toy MC studies
for resolution and correlation studies
in B

d
 → K*0µ+µ- decay.

Using RooFit package

Ganga jobs submitted to LCG

28/30Imperial College LondonUlrik Egede CHEP 2006

Use within EGEE

• Use of Grid in search for drugs
against avian flu widely reported
•About one eighth of jobs
submitted using Ganga/DIANE

Job statistics from Ganga

• Geant 4 regression tests performed
for major releases (twice per year)
 ⇒ Search for differences in
simulation results
• Ganga/DIANE adopted for running
these tests on the Grid
 ⇒ First use December 2005

• ITU Regional Radio
 Conference held in Geneva, May-
June 2006
• Required real-time optimisation
of evolving plan for sharing
frequencies between 120 countries
 ⇒ Maximise number of satisfied
requests
 ⇒ Minimise interference

•Ganga/DIANE used to run
optimisation jobs on the Grid

In EGEE, Ganga is used as submission engine and monitoring system
for the DIANE job-distribution framework

29/30Imperial College LondonUlrik Egede CHEP 2006

Demonstration

30/30Imperial College LondonUlrik Egede CHEP 2006

Conclusion

The Ganga framework allows to submit jobs to the Grid in an easy and
transparent way.

The Ganga framework makes it trivial to perform testing on local
system and then transfer to the Grid for full scale analysis.

Steady build-up of user base within both LHCb and ATLAS for
distributed analysis.

General implementation of Ganga allows the use in may other areas
without modifications to the Core.

Documentation of Ganga system is available at http://cern.ch/ganga.

