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In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by tempera-
ture and exactly conserved combinations of baryon and lepton numbers. We show that at non-zero values of the
global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system
transits into a new state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking
character of weak interactions and chiral anomaly. This situation can occur in the early Universe and may play
an important role in its subsequent evolution.

It is generally believed that the ground state of the Standard
Model at high temperatures is homogeneous and isotropic.
This assumption underlies the description of all the important
processes in the early Universe: baryogenesis, cosmological
phase transitions, primordial nucleosynthesis, etc.[44]In this
work we demonstrate, however, that at finite density of lepton
or baryon numbers due to parity-violating nature of the weak
interactions this homogeneous “ground state” becomes unsta-
ble by developing a long-rangemagnetic field. The transition
to the “true” ground state may depend on the details of the
non-equilibrium dynamics, when various violent dissipative
processes (e.g. turbulence, radiation emission, finite conduc-
tivity of plasma) play an important role.

What are the conditions for the translational invariance to
be spontaneously broken by a long-range field? It is suffi-
cient for the free energy of the gauge fields to contain an in-
teraction term that dominates over the kinetic energy and can
be both positive and negative. An example is provided by a
Chern-SimonstermICS ∝ A∂A, that has less derivatives that
the kinetic term(∂A)2 and therefore can dominate over it at
large scales. The presence of the Chern-Simons term in the
Maxwell equations is known to lead to an instability and gen-
eration of magnetic fields.

At zero temperatures and densities the Chern-Simons term
for electromagnetic fields is prohibited as a consequence of
gauge invariance and Lorentz symmetry (Furry theorem[1]).
At finite temperatures and densities the plasma creates a pre-
ferred reference frame and the 4-dimensional Lorentz invari-
ance is broken down to 3-dimensional one. As a result the free
energy of static gauge fields is

F [A] =

∫

d3pAi(~p)Πij(p)Aj(−~p) +O(A3) (1)

with thepolarization operator

Πij(~p) = (p2δij − pipj)Π1(p
2) + iǫijkp

kΠ2(p
2) , (2)

where i, j, k = 1, 2, 3 are spacial indices;p2 = |~p|2; ǫijk
is the antisymmetric tensor. Eq. (2) is the most general form
of Πij satisfying the gauge-invariance transversality condition
piΠij = 0. In the long wavelength limitp2 → 0 a non-zero
Π2(0) means that the Chern-Simons termΠ2(0) ~A · ~∇ × ~A

appears in (1). The3× 3 matrix (2) has then a negative eigen-
value for sufficiently small momentap < |Π2(p

2)/Π1(p
2)|

and the corresponding eigenmode grows larger and larger (un-
til the higher order inA terms would stabilize it). In the above
consideration it is important that the gauge field is Abelian.
Unlike the Yang-Mills fields [2] the magnetic component of
the photon field does not get screened in plasma [3] (i.e.
Π1(0) remains finite) and therefore the instability does not
require largeΠ2(0).

In this work we demonstrate that in the Standard Model
plasma in the Higgs phase anequilibriumvalue ofΠ2(0) for
electromagnetic fields is non-zero and proportional to the val-
ues of the global charges:baryon(B) andflavor leptonnum-
bersLα (index α runs over flavours). Unlike the previous
works [4–8] (see discussion below) it is important that evenif
the anomalous chargeB + L is absent,Π2(0) remains non-
zero and magnetic fields develop [45].

Chern-Simons term and axial anomaly. The origin of the
Π2 term has its roots in the axial anomaly (see e.g. [4, 6, 9–
11]). Indeed, the non-conservation of the axial current at finite
densities of left or right fermionsnL, nR means that one can
convert fermions into gauge field configurations with a non-
trivial Chern-Simons numberNCS ≡

∫

d3xA ·B (whereB =
∇×A is a magnetic field):

d(nL − nR)

dt
=

e2

2π2

∫

d3xE · B =
α

π

dNCS

dt
(3)

(hereE = −Ȧ is an electric field andα = e2

4π is the
fine-structure constant). Let us consider the simplest exam-
ple of left and right fermions at zero temperature with dif-
ferent Fermi energies (chemical potentials)µL 6= µR. In-
finitesimal change of the gauge fieldδA will destroy (create)
δnL,R = ± α

2π δNCS of real fermions around the Fermi level.
The total energy of the system will change byδF = (µL −
µR)

α
2π δNCS [6], which leads to the parity-odd Chern-Simons

term in the free energy:F [A] = α(µL−µR)
2π

∫

d3xA · B.
This remains true in any vector-like gauge theory at finite

temperature/density where there is a difference of chemical
potentials of left and right-chiral charged particles [4, 9, 12]
(also [13, 14]). Indeed, to calculate the polarization opera-
tor (2) we need to analyze one-loop contribution from charged
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FIG. 1: Polarization operator (a), one-loop weak corrections to it ((b) and (c)) and its expansion in∆µ/T (d).

fermions described by the diagram 1a. If the left and right
fermions have different chemical potentials such that

GL,R =
1

γ0(iωn + µL,R) + γ · pPL,R (4)

(whereωn = π(2n+ 1)T , n ∈ Z are the Matsubara frequen-
cies andPL,R = 1

2 (1±γ5) are chiral projectors) their contribu-
tions to this diagram are different. Assuming first that∆µ ≪
T , let us consider linear in∆µ/T , correction to the polariza-
tion operator (for this one should differentiate the fermions
Greens function (4) with respect toµ). This correction is de-
scribed by the diagram 1d, with∆µ playing the role of a third
external field. The diagram 1a thus turns into the famous tri-
angular graph for the axial anomaly [15–17], with the third
vertex containing “axial vector field”Xβ = δβ0∆µγ0γ5. The
resulting term in the effective action,∝ ǫαβµνXαAβ∂µAν ,
again reduces to the Chern-Simons term withΠ2(0) =

α
2π∆µ.

This expression forΠ2(0) is actually exact in∆µ andT [4].
Similar logic applies to the non-Abelian gauge fields [5, 7,

9–11]. In the Standard Model with its chiral weak charges of
fermions the coefficient in front of the SU(2) Chern-Simons
term can be expressed in terms ofµB+L (B being baryon and
L lepton numbers) [7, 18]. However, in this case a homoge-
neous state becomes unstable only at large values of chemical
potential, exceeding the mass of weak bosons. Even at high
temperatures in the symmetric phase the “magnetic screen-
ing” effect [2] requires∆µ & T to overcome the “mag-
netic mass”mmagn ∼ αWT . Moreover, anomalous non-
conservation ofB + L current drives the coefficient of cor-
responding Chern-Simons term to zero [19] and the stand-
ing wave-like configurations of the gauge fields are actually
metastable (see discussion in [7]).

An example of the situation when the non-zero coefficient
in front of the Chern-Simons is realized in the Standard Model
at high temperatures,T ≫ mf , when the smallness of the
electron’s Yukawa coupling makes the number ofright elec-
tronsconserved at classical level. If the initial conditions have
non-zeroµeR , the Chern-Simons term for the U(1) hyper-
field is then generated (withΠ2(0) ∝ µeR) and the genera-
tion of long wave-length magnetic fields occurs [8], until the
chirality-flipping reactions, suppressed as(me/T )

2 do not de-
stroy theµeR . In the early Universe where such a situation can
be realized, the rate of these reactions becomes comparableto
the Hubble expansion rate at high temperaturesT ∼ 80 TeV.

GFψL,R ψL,R

FIG. 2: Fermi corrections to the self-energy of the fermion.
The loop gives non-zero contribution only at finite lepton and

baryon number density.

Magnetic fields, generated in such a way are rather short-
wavelength (much smaller than the horizon size at that epoch)
and are probably erased during the subsequent evolution due
to plasma dissipative processes. At lower temperatures all
the chirality-flipping reactions are in thermal equilibrium and
naively the chemical potentials of all left and right-chiral par-
ticles are equal. However, it was shown in [20] that if strong
helical magnetic fields are initially present in the plasma,then
the relaxation rate both for∆µ for electrons and for helical
fields significantly increases and they both can survive down
to T ∼ 10 MeV. The ground state that the system eventually
reaches contains neither fields nor∆µ.

We demonstrate below that although these considerations
are true for electrodynamics, in the Standard Model where
fermions are also involved in parity-violating weak interac-
tions, the difference of chemical potentials ofall left- and
right-chiral fermions is actually present (with all chirality-
flipping reactions taken into account) and leads to the gen-
eration of magnetic fields.

In this paper we analyze the simplest situation when this
effect is present: the caseT ≪ mW (mass of theW -boson)
when weak interactions can be described by the Fermi theory:

LF =
4GF√

2
[(JNC

µ )2 + 2(JCC
µ )2] . (5)

The full Hamiltonian of the theoryH = H0+HF+HEM has
a free part for fermions and photons,H0, and terms describing
electromagnetic (HEM) and Fermi (HF) interactions [46].

Dispersion relation of fermions and chemical potentials.
To describe the equilibrium plasma atT ≪ mW we intro-

duced the density matrix,̺̂= Z−1 exp
(

−β
(

H−∑

α
λαLα−
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λQQ−λBB
)

)

. Five global charges commute with the Hamil-

tonianH: threeLα,B andQ (λα, λQ, λB are the correspond-
ing Lagrange multipliers); and the partition functionZ en-
sures thattr(ˆ̺) = 1.

To find the distribution functions of left and right-chiral par-
ticles we compute the correlators〈ψ̄PL,Rψ〉 = tr(ˆ̺ψ̄PL,Rψ).
We expand the density matrix in interactions to get

ˆ̺≈ ˆ̺0

(

1− βHF − βHEM − β2

2
HEMHF + . . .

)

. (6)

At zeroth order in interactions one gets〈ψ̄PLψ〉0 =

〈ψ̄PRψ〉0 = 1
2 〈ψ̄ψ〉0. The propagators of left and right par-

ticles (up to corrections of the orderm/T ≪ 1) have the
form (4) with µL = µR. This conclusion remains true if we
take into account parity-preserving electromagnetic interac-
tions.

Taking into account chiral Fermi interactions,ˆ̺F ≈ ˆ̺0(1−
βHF) one finds that〈ψ̄PLψ〉F 6= 〈ψ̄PRψ〉F. The Green’s func-
tion is found viaG−1 = G−1

0 − Σ where for example the
self-energy of left electron,ΣeL , is

ΣeL =
4GF√

2



2geL



geLγ
µPL〈eē〉0γµPL +

∑

ψ

gψL,Rγ
µPL〈ψ̄γµPL,Rψ〉0



+
1

2
γµPL〈νν̄〉0γµPL



 ≡ δµeLγ0PL . (7)

Expression (7) does not depend on momentum, the thermal
averages〈ψψ̄〉0 and 〈ψ̄γµPL,Rψ〉0 are proportional to the
particle-antiparticle asymmetry (see e.g. [21]). To compute
δµeL one should substitute in (7) the thermal averages, sum-
marized in the Table 1 in Appendix B. As a result, for example
the electron propagator becomes

G =
1

γ0
(

δµeLPL + δµeRPR + µtree
)

+ /p+me

, (8)

i.e. thedispersion relationof electrons change when taking
into account Fermi corrections (c.f. [21], [47]). Indeed, from
(/p − m − Σ)ψ = 0 we see that the “on-shell conditions”:
(ω − µtree)

2 = p2 +m2 gets shifted for left (right) particles
by 2(ω−µtree)δµL,R (in the limit δµL,R ≪ ω), whereµtree =
(λQ − λe). In the limit me/T → 0. Eq. (8) splits into the
sum of free propagators in the form (4)with different chemical
potentialsµL,R.

This difference can give rise to a parity-odd term in polar-
ization operator of photons [4]. Indeed the polarization oper-
ator that was parity-even when computed with respect to the
density matrixˆ̺0 acquires a parity-odd part when averaged
with respect to thê̺ F . The lowest order weak corrections
are represented by two diagrams, 1c and 1b. The computation
of the diagram 1b is quite similar to that of [4] and givesa
non-zeroΠ2(0) =

α
2π

∑

f q
2
f (δµfL − δµfR):

Π2(0) =
α

2π

4GF√
2

[

cLα
Lα + cBB

]

, (9)

where coefficientscLα
, cB ∼ O(1) depend on the fermionic

content of the plasma (details are summarized in Appendix)
[48]. The diagram 1c does not contribute to theΠ2(0) as it
can be cut into two diagrams 1a along the vertical dotted line,
each of which isat leastfirst order in momentum (Eq. (2)).

Although the Fermi theory (5) is not renormalizable, the
result (9) is given by the non-divergent part of the diagram 2

and is expressed in terms of well-defined physical quantities
(c.f. [21]).

Chern-Simons coefficient at two loops and “non-
renormalization theorems” . The diagram 1d is similar
to the triangular diagram, responsible e.g. forπ0 → 2γ
decay (with∆µψ̄γ0γ5ψ playing the role of the only non-zero
component of the chiral current, describing pion) [15–17].
It is well known that the axial anomaly should be calculated
at one loop only and is not renormalized by higher-loop
corrections [22–25], also at finite temperature and density.
At the same time our result becomes non-zero only at
two loops. There is, however, no contradiction. What is
non-renormalized for the chiral anomaly is the numerical
coefficient in front of the proper combination of external
fields, (e.g. α2π in Eq. (3)). In our case this coefficient is also
not renormalized. The structure of the parity-odd one loop
term has the same form at tree-level and at one-loop inGF :
Π2(0) =

α
2π (∆µtree+ δµ)A ·B. The numerical coefficient is

dictated by the axial anomaly;∆µtree is a possible difference
of chemical potentials present at tree-level (zero in our case);
andδµ is theshift generated by the diagram 1b. The structure
of theΠ2(0) term therefore remains the same as in [4] with
thetotal difference of chemical potential(∆µtree+ δµ).

Also a four dimensional theory at finite temperatures can be
regarded as a three dimensional Eucledian model albeit with
the infinite number of particles– each Matsubara mode of a
fermion becomes a “particle” with the massωn = π(2n+1)T ,
n ∈ Z. Therefore (as it was argued in [26]) our result
may seem to be in contradiction with the “Coleman and Hill
(CH) theorem” [27] that states that in any Eucledian three-
dimensional gauge theory without massless particlesΠ2(0) =
∑

f

q2f
4π

mf

|mf |
and is exact at one loop. However, the pres-

ence of the infinite number of modes changes the situation,
as can be seen already in the simplest chiral gauge theory,
if one computes theΠ2(0) in the Matsubara formalism (see
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e.g. [9]). Formally, considering the left- and right-chiral par-
ticles as fermions with “complex mass”mn ≡ (ωn − iµL,R),
and applying directly to results of [27] one would arrive
to an undefined expressionΠ2(0) = e2

4π

∑

n∈Z

ωn−iµL√
(ωn−iµL)2

−
ωn−iµR√
(ωn−iµR)2

. The reason why this happens is clear: the

degree of divergence of the diagrams is different in 3 and
4 dimensions (hence the infinite sum overn). In particu-
lar, if we first summed over the Matsubara frequencies and
then integrating over momentum (or if one uses dimensional
regularization in 3-momentum integral and then takes a limit
d → 3, [9], see also [11]) one obtains a well-defined answer
of [4]

Moreover, the CH theorem uses the fact that the 3-point
vertexΓ(3)(p1 . . . ) = O(p1). This is not true in our case,
as the diagram 1d becomeslinearly divergentin 4 dimen-
sions and therefore the shift of integration momentum by any
fixed vectork changes its parity-odd part by a finite amount
∝ ∆µǫijnAjknAj [28, 29].

Ground state. The presence ofΠ2(0) 6= 0 leads to the
generation of magnetic fields. The Chern-Simons number
NCS ∼ kA2 will increase until it reachesαπNCS ∼ (nL −
nR) ∼ GFLtot (see e.g. [6]). At fixedNCS the magnetic field
tends to increase its wavelength to decrease the total energy
(B2 ∼ kNCS). As a result, the system does not have a ther-
modynamic (infinite volume) limit (c.f. [6]): the value of the
field and the scale of the inhomogeneity will be determined
by the size of the system. It is clear, however, that in realistic
systems establishing of the long-range field is a complicated
process (see e.g. [20]), greatly affected by the dissipative pro-
cesses and by existence of different relaxation channels ofNCS

(resistivity of plasma, energy radiation, turbulence, etc., see
e.g. [30–32]). This may significantly affect subsequent evolu-
tion and even the final state of the system.

Discussion. In this work we demonstrated that the Standard
Model plasma at finite densities of lepton and baryon numbers
becomes unstable and tends to develop large scale magnetic
fields. We considered electrodynamics plus Fermi theory (5),
a description of weak interactions valid whene−mW /T .
(T/mW )2, i.e. atT . 40 GeV. At higher temperatures one
should consider full electroweak theory and perform two-loop
computations ofΠ2(0). At even higher temperatures (in the
symmetric phase) one should analyze hypermagnetic fields.
We leave these analyses for future works. We expect however
that our conclusion about the instability of a homogeneous
state will hold.

Below we discuss several realistic systems in which the ef-
fects discussed here can become important. As a first exam-
ple, let us consider the primordial plasma at radiation domi-
nated epoch. Eq. (9) givesΠ2(0) ∼ c×α(GFT 3)ηL,B where
ηL,B < 1 is the ratio of the total lepton (baryon) number to the

number of photons,nγ = 6ζ(3)
π2 T 3 and the numerical coeffi-

cientc ≈ 2.5×10−2. We see that the CS coefficient decreases

with temperature fast and therefore the effect is the strongest
at high temperaturesT . mW [49].

The instability starts to develop at scalesk ∼ Π2(0) and
the magnetic field initially growth aseβ whereβ ≡ k2t/σ
(see e.g. [8, 20]). The conductivity of the plasma isσ ∼
O(102)T [33]. The requirement for an instability to develop
over the characteristic time of temperature change (i.e. Hub-

ble time) is: β(T ) ≈ 2.0
(

T
mW

)3
( ηL,B

10−2

)2
> 1. We see

that the measured value ofbaryon asymmetryηB ∼ 6.0 ×
10−10 [34] is too small to trigger any instability. The sit-
uation is different for lepton asymmetry where only the up-
per bounds at the epoch of primordial nucleosynthesis exist:
|ηL| . few × 10−2 [35]. At earlier epochs evenηL ∼ 1 is
possible (if this lepton asymmetry disappears later). Thisis
the case e.g. in theνMSM (see [36] for review), where the
lepton asymmetry keeps being generated below the sphaleron
freeze-out temperature and as a result may reach the levels
ηL ∼ 10−2÷10−1 before it disappears atT ∼ few GeV [37].
We see that significant magnetic fields can develop in this
case, which can play an important role for analysis of the cos-
mological implications of theνMSM.

As a next application we consider a high density degenerate
electron plasma (appearing e.g. in white dwarfs and neutron
stars, [38]). Notice, that our consideration remains validin
this regime, as Eq. (7) makes no assumption about the rela-
tion between mass, temperature and chemical potential of the
particles. Only the numerical coefficient in Eq. (9) changes
and we checked that it is non-zero andO(1). The same re-
lation Π2(0) ∼ α

4πGFLtot holds, however nowLtot = ne
(density of electrons) that can be quite essential, reaching
1030 ÷ 1035 cm−3 in the crust of neutron stars [39]. The
corresponding scale of the instabilityk ∼ Π2(0) is then in
(sub)km size and the time of its development is much shorter
than the lifetime of the star.

To summarize: in this work we discussed a previously un-
known effect that occurs in the Standard Model at finite tem-
perature and density. It implies that a number of processes
in the early Universe can be affected, including cosmolog-
ical phase transition, baryogenesis, dark matter production.
This effect may in particular lead to the generation of horizon-
scale helical cosmic magnetic fieldspurely within the Stan-
dard Model. Such fields may survive till present and serve as
seeds for the observed magnetic fields in galaxies and clusters.
The effect may also be important for explanation of physics of
compact stars.
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initions e.g. in [40, Chapter 20]).
[47] Technically, this is close to the appearance of a chiralshift pa-

rameter in the dispersion relation of particles in the magnetic
fields, discussed in the context of compact stars and heavy ion
collisions (see [41] and references therein). However, thephys-
ically effect we discuss is of course very different.

[48] Unlike the effect claimed in [42] this result does not require
spatial (temporal) variations of lepton asymmetry and depends
only on its uniform value.

[49] Higher-order couplings between fermions and photons,
such as those leading to anomalous magnetic moment (∼
GFmf ψ̄σµνψF

µν ) are suppressed compared to the considered
corrections asO(mf/Energy).
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Charged leptons:〈ℓ̄γµPℓ〉 = δµ0 1

2
∆nℓ

〈ℓℓ̄〉 = 1

4
γ0(−∆nℓ)

Neutrinos: 〈ν̄γµPν〉 = δµ0∆nν

〈νν̄〉 = 1

2
PLγ0(−∆nν)

Quarks: 〈q̄γµPq〉 = δµ0 1

2
∆nq

〈qq̄〉 = 1

12
γ0(−∆nq)

TABLE I: Thermal averages of fermions. Particle-antiparticle asymmetry is defined as∆n = g
2

∫

d3~p
(2π)3

[

fp − f̄p
]

, fp(f̄p) is the
Fermi-Dirac distribution for particles (anti-particles)and the number of internal degrees of freedom,g = 2 for neutrinosν;

g = 4 for charged leptonsℓ; g = 12 for quarksq.

Appendix A: Fermi theory

For completeness we summarize in this Appendix the definitions of charged and neutral currents in the Fermi theory (see e.g.
Chapter 20 in [40]). Thecharged currentsare defined as

JCC,+
µ =

1√
2

(

ēLγµνL + d̄LγµuL
)

+ other generations, (A1)

andneutral currentsare

JNC
µ =

∑

ψ

ψ̄γµ
(

gψLPL + gψRPR

)

ψ . (A2)

HerePL,R = 1
2 (1±γ5) are chiral projectors, chargesgψL = (T3−sin2 θWQ), gψR = (− sin2 θWQ), T3 = ± 1

2 is the 3rd generator
of SU(2),Q is theelectric chargeand the sum in (A2) goes over fermions in all flavours.

Appendix B: General expression for the Chern-Simons coefficient Π2(0)

A general expression forΠ2(0) is given through the asymmetries of all fermions (if some fermions are absent in the plasma,
their asymmetry should be put to zero).

Π2(0) =
α

2π

4GF√
2

(

−2

9

∑

α

∆nνα − 31

36

(

1− 2 cos(2θW )
)

∑

α

∆nℓα

+
1

81

(

17− 62 cos(2θW )
)

(∆nu +∆nc)

+
1

324

(

91 + 134 cos(2θW )
)

(∆nd +∆ns)

+
67

324

(

1 + 2 cos(2θW )
)

∆nb

)

,

(B1)

(hereθW is the Weinberg’s angle).
Once the asymmetries of all particles∆n are expressed through the conserved chargesB andLα under the condition of

electric neutrality of the plasma [43], the expression (B1)reduces to the form (9):

Π2(0) =
α

2π

4GF√
2

[

cLα
Lα + cBB

]

, (B2)

where the values of coefficients depend on the fermionic content of the plasma. For example, if plasma contains 5 quarks (except
for the top quark) and all leptons, then

cLα
=

8
(

22 cos(2θW )− 45
)

621
, cB =

(

53 cos(2θW ) + 430
)

621
(B3)


