

LHCb measurements of ϕ_s , semileptonic asymmetries and B lifetimes

16-18 April 2012

CERN, LHCb Implications workshop

LHCD Exploring New Physics at LHCb

• Flavour Changing Neutral Currents

- New Physics appears as virtual particles in loop processes
- leading to observable deviations from SM expectations in flavour physics and CP violation (CPP)

B_s-B_s oscillations

LHCD CP Violation in B_s decays

• CP Violation

- In interference between mixing and decays to CP eigenstates
- $\sin \phi_s = \Im m \lambda_f$ where

$$\lambda_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} \qquad \left| \frac{q}{p} \right| = 1 = \left| \frac{\overline{A}_{f}}{A_{f}} \right|$$

• CP violating phase ϕ_s

- measured in $B_s \rightarrow J/\psi \phi$ decays
- in Standard Model (SM) ϕ_s prediction is small and precise
- ϕ_s sensitive to new physics

$$\phi_s^{SM} \approx -2\beta_s \equiv -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = -0.036 \pm 0.002$$

$$\phi_s = \phi_s^{SM} + \phi_s^{NP}$$
 J. Charles et al., Phys. Rev. D 84,
033005 (2011).

- CP Violation in mixing
 - \mathcal{P} in B_s mixing A_{sl} measured in semileptonic asymmetry

$\frac{LHCb}{CP} CP Violation in B_{s} \rightarrow J/\psi\phi$

- $B_s \rightarrow J/\psi \varphi$
 - tree decay
 - sensitive to NP in mixing
- Decay rate terms

- $e.g. h_1(B_s^{(-)} \to J/\psi\phi)(t) = N \exp(-\Gamma_s t) \left[\cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) \cos\phi_s \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) \pm \sin\phi_s \sin\Delta m_s t \right]$
- Signal for *SP*
 - sinusoidal term in proper time distribution
 - amplitude proportional to sinp_s
 - opposite sign for $B_s/anti-B_s \rightarrow tagging required$
 - diluted by wrong-tag fraction and time resolution
- Analysis method
 - basically we look for $sin(\phi_s) \ge (1 2\omega_{tag}) \ge sin(\Delta m_s t)$

$\frac{LHCb}{HCp} B_s \rightarrow J/\psi \phi \text{ decay rates}$

Full differential decay rate

- $B \rightarrow VV decay$
- angular analysis required to disentangle
 CP-even and CP-odd components

 $\frac{\mathrm{d}^4 \Gamma(B_s^0 \to J/\psi \,\phi)}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) \,f_k(\Omega)$

$$h_k(t) = N_k e^{-\Gamma_s t} \left[c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) + a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) \right]$$

- Include S-wave in KK final state under φ peak \rightarrow 4 additional terms

Physics parameters

- ϕ_s , Γ_s , $\Delta\Gamma_s$, Δm_s
- 3 polarisation amplitudes, 3 strong phase differences, set $\delta_0 = 0$

Hicp Flavour Tagging

Tagging method

- Tag initial B_s flavour with opposite b-decay: charge of muon, electron, kaon or vertex charge (OST)
- tag initial B_s flavour with charge of same side kaon (SST)
- calibrate with flavour specific decays of similar topology
- Tagging power for $B_s \rightarrow J/\psi \varphi$
 - OST only, calibration with $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^{*0}$

Mistag probability ω $(36.81 \pm 0.18 \pm 0.74) \%$ Tagging efficiency ϵ_{tag} $(32.99 \pm 0.33) \%$ Tagging power $\epsilon_{tag} (1-2\omega)^2$ $(2.29 \pm 0.07 \pm 0.26) \%$

LHCb-PAPER-2011-027 arXiv:1202.4979 submitted to EPJC

16-18 April 2012

CERN, LHCb Implications workshop

6

LHCb Δm, & SST Flavour Tagging

• $B_s \rightarrow D_s^{-}(K^{-}K^{+}\pi^{-})\pi^{+}$

- SST global calibration
- $\epsilon D^2 = (1.2 \pm 0.4)\%$

• Δm_s measurement

- OST calibration with $B^0 \rightarrow D^- \pi^+$
- $\epsilon D^2 = (3.1 \pm 0.8)\%$
- $\Delta m_s = 17.725 \pm 0.041 \pm 0.026 \text{ ps}^{-1}$

LHCb-CONF-2011-050

• Reminder

- 2010 result, independent data set
- Δm_s =17.63+0.11+0.01 ps⁻¹

LHCb, PLB 709 (2012) 177

16-18 April 2012

$\frac{LHCb}{P} CP Violation in B_s \rightarrow J/\psi\phi$

Published result

0.37 fb⁻¹ data set

0.37 fb⁻¹, PRL 108, 101803 (2012)

 $\phi_s = 0.15 \pm 0.18(\text{stat}) \pm 0.06(\text{syst})\text{rad},$

 $\Gamma_s = 0.657 \pm 0.009 (\text{stat}) \pm 0.008 (\text{syst}) \text{ ps}^{-1}$,

 $\Delta \Gamma_s = 0.123 \pm 0.029 (\text{stat}) \pm 0.011 (\text{syst}) \text{ ps}^{-1}$

• Implications

 limits parameter space for new physics

-
$$M_{12} = M_{12}^{SM} \Delta_s$$

CERN, LHCb Implications workshop

$\frac{LHCb}{MCp}$ CP Violation in $B_s \rightarrow J/\psi\phi$

1 fb⁻¹, LHCb-CONF-2012-002

New preliminary measurement

- full 2011 data set (1 fb⁻¹)
- ~ 21200 $B_s \rightarrow J/\psi\phi$ signal candidates

- Resolutions
 - B_s Mass ~ 8 MeV/c²
 - ~ 45 fs decay time resolution
 - measured with prompt J/ψ 's

$\frac{LHCb}{HCp} CP Violation in B_s \rightarrow J/\psi\phi$

1 fb⁻¹, LHCb-CONF-2012-002

- New preliminary measurement
 - full fit to B_s mass, decay time and angular distribution
 - use opposite sign tags
- CP violating weak phase ϕ_s and decay width difference $\Delta\Gamma_s$
 - φ_s and $\ensuremath{\Delta\Gamma_s}$ compatible with SM prediction
 - first >5 σ observation of non-zero $\Delta\Gamma_s$
 - two fold ambiguity $\rightarrow 2^{nd}$ solution with $\phi_s \rightarrow \pi \phi_s$ and $\Delta \Gamma_s \rightarrow -\Delta \Gamma_s$

$$\begin{split} \varphi_s &= -0.001 \pm 0.101 \pm 0.027 \\ \Delta \Gamma_s &= 0.116 \pm 0.018 \pm 0.006 \text{ ps}^{\text{-1}} \\ \Gamma_s &= 0.6580 \pm 0.0054 \pm 0.0066 \text{ ps}^{\text{-1}} \\ |A_{\perp}|^2 &= 0.246 \pm 0.010 \pm 0.013 \\ |A_0|^2 &= 0.523 \pm 0.007 \pm 0.024 \\ F_s &= 0.022 \pm 0.012 \pm 0.007 \\ \delta_{\perp} &= 2.90 \pm 0.36 \pm 0.07 \\ \delta_{||} &= [2.81, 3.47] \pm 0.13 \end{split}$$

$\frac{LHCb}{HCp}$ Sign of B_s Width Difference $\Delta\Gamma_s$

Intrinsic 2-fold ambiguity

0.37 fb⁻¹, LHCb-PAPER-2011-028 arXiv:1202.4717, submitted to PRL

 $\delta_{S^+} \Leftrightarrow -\pi - \delta_{S^+}$

where $\delta_{S^{\perp}} = \delta_{S} - \delta_{\perp}$

$$\left(\phi_{s},\Delta\Gamma_{s,}\delta_{//},\delta_{\perp},\delta_{s}\right) \Leftrightarrow \left(\pi-\phi_{s},-\Delta\Gamma_{s,}-\delta_{//},\pi-\delta_{\perp},-\delta_{s}\right)$$

- Interference between S and P-wave
 - sensitive to cos\u03c6_s
- Y. Xie et al., arXiv:1107.0266
- P-wave phases increase rapidly with m(KK)
- S-wave phase varies slowly
- physical solution for $\delta_{\text{S}\perp}$ decreases with m(KK)

Result

- using 0.37fb⁻¹ data set
- analyse larger m(KK) range
- $\delta_{s\perp}$ decreases for solution with $\Delta\Gamma_s > 0$ at 4.7 σ
- Heavy B_s meson lives longer

16-18 April 2012

$\frac{LHCb}{CP} CP Violation in B_s \rightarrow J/\psi f_0$

CP violating weak phase φ_s

- no angular analysis required
 CP-odd fraction > 97.7%
 at 95% CL
- $\phi_{\rm s} = -0.02 \pm 0.17 \pm 0.02$
- Combination of $B_s \rightarrow J/\psi \varphi$ and $B_s \rightarrow J/\psi f_0$ preliminary

 $- \phi_{\rm s} = -0.002 \pm 0.083 \pm 0.027$

1 fb⁻¹, LHCb-PAPER-2012-006

16-18 April 2012

$\frac{LHCb}{HCb}$ Penguin in $B_s \rightarrow J/\psi\phi$ decay

- Penguin diagrams
 - can contribute to $B_s \rightarrow J/\psi \phi$
 - expected to be small
- Question to theorists
 - require calculation of irreducible error for ϕ_s
- $B_s \rightarrow J/\psi K^{\star 0}$
 - related to $B_s \rightarrow J/\psi\phi$ by SU(3) Flavour '
 - useful for penguin control ?
 - angular time dependent analysis
 - direct CP asymmetries
- LHCb $B_s \rightarrow J/\psi K^{\star 0}$ result
 - 2010 data, observe evidence at 4.7σ

S.Faller, R. Fleischer, T. Mannel, Phys. Rev. D 79, 014005 (2009)

Lifetimes

Preliminary measurements

- 2010 dataset
- B⁺ and B⁰ lifetime
 limited by systematics

36 pb⁻¹, LHCb-CONF-2011-001

$\tau(B^+ \rightarrow J/\psi K^+)$	=	1.689 ± 0.022 (stat.) ± 0.047 (syst.)	ps,
$\tau(B^0 \rightarrow J/\psi K^{*0})$	=	1.512 ± 0.032 (stat.) ± 0.042 (syst.)	ps,
$\tau(B^0 \rightarrow J/\psi K_s^0)$	=	$1.558 \pm 0.056 \text{ (stat.)} \pm 0.022 \text{ (syst.)}$	ps,
$\tau^{\text{single}}(B_s^0 \rightarrow J/\psi \phi)$	=	$1.447 \pm 0.064 \text{ (stat.)} \pm 0.056 \text{ (syst.)}$	ps,
$\tau(\Lambda_b \rightarrow J/\psi \Lambda)$	=	$1.353 \pm 0.108 \text{ (stat.)} \pm 0.035 \text{ (syst.)}$	ps,

• LHCb - Ongoing Work and Plans

- Λ_b lifetime with $\Lambda_b \rightarrow J/\psi \Lambda$ expected precision $\tau(\Lambda_b) \sim 0.020 \text{ ps}$
- B_s lifetime and width difference Γ_s and $\Delta\Gamma_s$
- B^0 width difference $\Delta \Gamma_d$
- experimentally must determine acceptances from trigger, reconstruction and selection
- question to theorists is it worth pushing B⁺ and B⁰ lifetimes?
- PDG 2012: $\tau(B^0) = 1.519 \pm 0.007$ ps and $\tau(B^+) = 1.641 \pm 0.008$ ps

$\frac{LHCb}{Lifetimes} - \Gamma_s \& \Delta \Gamma_s \text{ and } \Delta \Gamma_d$

• B_s lifetime and width difference Γ_s and $\Delta\Gamma_s$

- measure CP-odd, CP-even, average and flavour specific lifetimes
 P > T/mb T/mf P > T/mp(n')
 - $B_s \rightarrow J/\psi \phi, J/\psi f_0, B_s \rightarrow J/\psi \eta(\eta'), B_s \rightarrow D_s^- D_s^+$
 - $B_s \rightarrow D_s^{-}(K^-K^+\pi^-)\pi^+ \text{ and } B_s \rightarrow K^+K^-$
- precision measurement of $\Delta \Gamma_s$ $\sigma(\Delta \Gamma_s) < 0.01 \text{ ps}^{-1}$
- question to theorists Δ precision of $\tau(B_s)/\tau(B^0)$ prediction?
- B^0 width difference $\Delta\Gamma_d$
 - SM null test
 - measure lifetime ratio $\tau(B^0 \rightarrow J/\psi K_S^0) / \tau(B^0 \rightarrow J/\psi K^{*0})$
 - estimated statistical sensitivity $\sigma(\Delta\Gamma_d/\Gamma_d)$ ~0.02 for 2011 data set

LHCD Semileptonic Asymmetry A_{sl}

- D0 evidence
 - A_{sl} >> SM prediction
- What can LHCb do?
 - Time-integrated measurement of $B_s \rightarrow D_s^- \mu^+ v$
 - 0.25% projected
 statistical uncertainty
 with 1 fb⁻¹
 - Result expected soon
 - (Time-dependent) measurement of $A_{sl}{}^s - A_{sl}{}^d$ with $B_s \rightarrow D_s{}^-\mu^+\nu$ and $B^0 \rightarrow D{}^-\mu^+\nu$

LHCD Outlook / Conclusion

- LHCb updated φ_s and $\Delta\Gamma_s$ measurements
 - $\phi_s = -0.001 \pm 0.101 \pm 0.027$ from $B_s \rightarrow J/\psi \phi$
 - $\Delta\Gamma_{\rm s}$ = 0.116 ± 0.018 ± 0.006 ps⁻¹ from B_s \rightarrow J/ $\psi \phi$
 - $\phi_s = -0.02 \pm 0.17 \pm 0.02 \qquad \text{from } B_s \to J/\psi f_0$
 - puts severe restrictions on new physics parameter space
- Outlook on φ_s
 - add Same-Side Tag
 - improve selections
 - add new modes $B_s \rightarrow J/\psi \eta(\eta'), B_s \rightarrow \psi(2S)\phi$
- Semileptonic Asymmetry
 - expect A_{sl}^{s} result with time-integrated measurement with $B_{s} \rightarrow D_{s}\mu v$
- B lifetimes
 - Λ_b lifetime
 - B_s lifetime and width difference Γ_s and $\Delta\Gamma_s$
- Collect ~1.5 fb⁻¹ in 2012 Stay tuned

16-18 April 2012

CERN, LHCb Implications workshop

16-18 April 2012

CERN, LHCb Implications workshop

20

$\frac{LHCb}{HCp} B_s \rightarrow J/\psi\phi \text{ decay rates}$

• Full differential decay rate

$$\frac{\mathrm{d}^4 \Gamma(B_s^0 \to J/\psi \phi)}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$

 $h_k(t) = N_k e^{-\Gamma_s t} \left[c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) + a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) \right]$

- S-wave KK final state under ϕ peak \rightarrow 4 additional terms

Physics parameters

k	$f_k(heta,\psi,arphi)$	N_k	a_k	b_k	c_k	d_k
1	$2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi ight)$	$ A_0(0) ^2$	1	$-\cos\phi_s$	0	$\sin \phi_s$
2	$\sin^2\psi\left(1-\sin^2 heta\sin^2\phi ight)$	$ A_{ }(0) ^{2}$	1	$-\cos\phi_s$	0	$\sin \phi_s$
3	$\sin^2\psi\sin^2 heta$	$ A_{\perp}(0) ^2$	1	$\cos\phi_s$	0	$-\sin\phi_s$
4	$-\sin^2\psi\sin2\theta\sin\phi$	$ A_{\parallel}(0)A_{\perp}(0) $	0	$-\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_s$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_s$
5	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin^2\theta \sin 2\phi$	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel}-\delta_{0})$	$-\cos(\delta_{\parallel}-\delta_0)\cos\phi_s$	0	$\cos(\delta_{\parallel} - \delta_0)\sin\phi_s$
6	$\frac{1}{2}\sqrt{2}\sin 2\psi\sin 2\theta\cos\phi$	$ A_0(0)A_{\perp}(0) $	0	$-\cos(\delta_{\perp}-\delta_0)\sin\phi_s$	$\sin(\delta_{\perp} - \delta_0)$	$-\cos(\delta_{\perp}-\delta_0)\cos\phi_s$
7	$\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$	$ A_s(0) ^2$	1	$\cos\phi_s$	0	$-\sin\phi_s$
8	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin2\phi$	$ A_s(0)A_{\parallel}(0) $	0	$-\sin(\delta_{\parallel}-\delta_{\rm S})\sin\phi_s$	$\cos(\delta_{\parallel}-\delta_{ m S})$	$-\sin(\delta_{\parallel}-\delta_{ m S})\cos\phi_s$
9	$\frac{1}{3}\sqrt{6}\sin\psi\sin2\theta\cos\phi$	$ A_s(0)A_{\perp}(0) $	$\sin(\delta_{\perp} - \delta_{\rm S})$	$\sin(\delta_{\perp} - \delta_{\rm S})\cos\phi_s$	0	$-\sin(\delta_{\perp}-\delta_{\rm S})\sin\phi_s$
10	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$	$ A_s(0)A_0(0) $	0	$-\sin(\delta_0-\delta_{\rm S})\sin\phi_s$	$\cos(\delta_0 - \delta_{ m S})$	$-\sin(\delta_0-\delta_{\rm S})\cos\phi_s$

16-18 April 2012

LHCb, arXiv:1112.4695,

- First observation of $B_s \rightarrow J/\psi f'_2(1525)$
 - observe $f'_2(1525) \rightarrow K^+K^-$ mass peak
 - dominant \$\u03c6(1020)\$ peak
 - non-resonant K⁺K⁻ component
- $B_s \rightarrow J/\psi f_0$ (980), $f_0(980) \rightarrow \pi^+\pi^-$
 - pure CP-odd mode

no angular analysis required

Phys. Rev. Lett. 108, 151801 (2012)

Hep Lifetimes - Γ_s & ΔΓ_s

• HFAG 2012

16-18 April 2012

CERN, LHCb Implications workshop

24