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Abstract

The HIE-ISOLDE linac at CERN will operate independently phased quarter-wave res-
onators (QWRs) in order to accelerate radioactive ion beams (RIBs), with mass to charge
states in the range 2.5 < A/q < 4.5, from 1.2 MeV/u up to an energy of at least 10 MeV/u.
The low-β version of the QWR will also be used to decelerate beams below 1.2 MeV/u.
The combination of low velocity and high gradient results in a significant change of the
ion velocity and a breakdown of the first-order approximation commonly used to calculate
the energy gain in accelerating cavities. The first-order transit-time factor for two gaps is
briefly reviewed before higher-order transit-time factors are derived and the energy gain
expressed, taking into account the variation in velocity, to second-order. The formalism of
J.R. Delayen, introduced in [1], is used throughout.

Geneva, Switzerland

October 2009

This is an internal CERN publication and does not necessarily reflect the views of the CERN management.



Contents

1 Introduction 3

2 Energy Gain Calculated Numerically 3

3 Energy Gain at First-order 4
3.1 Example: the HIE-ISOLDE high-β QWR . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Energy Gain at Second-order 6
4.1 Example: the HIE-ISOLDE low-β QWR . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Characteristics of Deceleration Below βg 8
5.1 Phasing the QWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Example: deceleration in the HIE-ISOLDE linac . . . . . . . . . . . . . . . . . . . . 9

6 Conclusion 10

7 Acknowledgements 10

Appendices 13

A Derivation of T̂(2) for a Two Gap Resonator 13

B Derivation of T̂(2)
s for a Two Gap Resonator 13

C T̂(2) and T̂
(2)
s for a Single Gap Resonator 16

D Standard Integrals 17

2



1 Introduction

In the baseline design for the HIE-ISOLDE linac the velocity of the beam can change by up to 10 %
in each quarter-wave resonator (QWR) immediately after injection, see [2]. Although the energy gain
integrated along the whole linac in the baseline case varies by just a few percent with respect to the
first-order approximation, the phasing of the QWRs cannot not be calculated accurately without taking
into account the effect of the velocity change, especially if the cavities are used to decelerate the beam
significantly below the geometric velocity. Accurately tuning the phases of the QWRs in the realistic
field simulations is critical in order to correctly model the transverse defocusing force acting on the
beam; using numerical methods to tune the linac is computer intensive and time consuming. The second-
order approximation of the energy gain presented here allows for a fast and accurate method of tuning. It
is also an extremely powerful tool for calculating the energy gain and understanding the stability of the
beam at velocities below the geometric velocity of the QWR. It is foreseen to fully exploit the flexibility
of the independently phased linac and to decelerate RIBs to below 1.2 MeV/u, offering an even wider
range of beam energies at ISOLDE. In this scenario, the second-order approximation will be useful in
understanding the beam dynamics at low velocities and tuning the voltages and phases of the QWRs.
The formalism used to derive the second-order transit-time factors is that of J.R. Delayen, which is
explained in [1]. Most of what follows is consistent with the referenced notation, however, it should
be noted that the expression for the first-order transit-time factor T̂ (β) used in this report includes both
the reduction in energy gain from the sinusoidal time dependence of the accelerating field and from
the difference of the ion velocity from the optimum velocity. Therefore, T̂ is related to the normalised
transit-time factor T (β) as,

T̂ (β) = ΘT (β),

where,

Θ =
Max

∫ +∞
−∞ E(z) sin (2πz

βλ
) dz

∆V0

,

and the equivalent voltage of the resonator in the electrostatic case is,

∆V0 =

∫ +∞

−∞
|E(z)| dz.

2 Energy Gain Calculated Numerically

The energy gain ∆W of an ion with charge q and reduced velocity β interacting with an rf electric field
E can be calculated by the line integral,

∆W = q

∫ +∞

−∞
E(z) sin (ψ(z) + φ) dz, (1)

where the harmonically varying accelerating field is in the z direction and φ is the phase when the
particle would cross the origin (z = 0) in the absence of acceleration. The phase of the field seen by the
particle can be written in terms of its position along the z-axis using the following relationship,

ψ(z) =
2π

λ

∫ z

zi

dz
β(z)

+ ψ(zi), (2)
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where the integral starts at an initial position zi outside of the influence of the electric field of the cavity,
i.e.,

ψ(zi) =
2πzi
β(zi)λ

. (3)

λ is the wavelength of the rf oscillations of the electric field and φ is often referred to as the synchronous
phase if the coordinate origin is positioned at the symmetry point in the centre of the accelerating gap
or cavity.

The calculation should be done numerically and the change in the velocity followed at every step
of the integration. The numerical method can be used to calculate the energy gain with the realistic
electromagnetic fields of the resonator, themselves calculated using specialised electromagnetic field
solvers. The integration must be repeated every time any of the parameters in the equation are varied,
e.g. A, q, ∆V0 or β.

3 Energy Gain at First-order

The energy gain at first-order is calculated by assuming that the ion velocity is constant in the resonator,
allowing the variables of phase and velocity to be separated as shown,

∆W = q∆V0T̂ (β) cosφ.

The energy gain will be derived for an ideal two gap resonator in which the accelerating field is constant
within the gaps, i.e. in the ‘hard-edge’ or ‘square-wave’ approximation, as shown in Figure 1.

Figure 1: The accelerating electric field configuration used to calculate the energy gain in the first-order
approximation.

In this case, the transit-time factor can be expressed as,
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T̂2 gap(β) =
βλ

πg
sin

πg

βλ
sin

πβg
2β

, (4)

where,

L =
βgλ

2
.

In the thin gap limit, i.e. g � βgλ/2, the transit-time factor is maximised at the geometric velocity
of the cavity, i.e. T̂2 gap|max= T̂2 gap(βg). This is not the case in a real resonator where the maximum
velocity of the transit-time factor, commonly known as the optimum velocity β0 must be determined
numerically from,

d

dβ
T̂2 gap

∣∣∣∣
β=β0

= 0.

One can introduce a scaling factor ξ which is dependent on the gap size, such that β0 can be represented
in the transit-time factor, as shown,

T̂2 gap(β) =
βλ

πg
sin

πg

βλ
sin

πβ0

2ξβ
, (5)

where,

β0 = ξβg.

The details of such a formalism and the behaviour of ξ as a function of g is detailed in [1].

3.1 Example: the HIE-ISOLDE high-β QWR

In a real resonator the accelerating field has a more complicated spatial structure, owing to the res-
onator’s geometry and the presence of beam ports. Therefore, in order to apply this formalism to a
realistic field, the transit-time factor is calculated numerically and the parameters representing the ef-
fective gap length and geometric velocity are attained by fitting the analytic first-order expression in
Equation 4 to the numerical data. The transit-time factor is an intrinsic property of a resonator and al-
though this procedure is numerical it only needs carrying out once. An example of such a fit is shown in
Figure 2 for the HIE-ISOLDE high-β QWR. The effective parameters calculated from the fit are com-
pared to the mechanical parameters of the QWR in Table 1. For the high-β QWR ξ = 1.09 and hence
β0 = 11.3 %.

Table 1: The fitted parameters for the first-order transit-time factor with the realistic accelerating field
of the HIE-ISOLDE high-β QWR.

Parameter Mechanical (geometric) Value Fitted (effective) Value

g (cm) 7.0 7.9
L (cm) 16.0 15. 3
βg (%) 10.8 10.4

The hard-edge approximation fits the numerical data well, however, below a velocity of about 4 % the
approximation poorly predicts the first-order transit-time factor of the realistic field in the HIE-ISOLDE
high-β QWR.
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Figure 2: The first-order transit-time factor T̂2 gap(β) calculated numerically and fitted with the analytic
approximation. The fitted parameters can be found in Table 1.

4 Energy Gain at Second-order

When a small change of velocity is considered in the cavity, the energy gain can be expressed to second-
order as,

∆W = q∆V0T̂ (β) cosφ+
(q∆V0)2

W
(T̂ (2)(β) + T̂ (2)

s (β) sin 2φ), (6)

where W is the kinetic energy and two second-order transit-time functions, T̂ (2)(β) and T̂ (2)
s (β), are

introduced in order to separate the coupled phase and velocity dependence. The second-order transit-
time factors are also intrinsic to the resonator and are related to the first-order transit-time factor as
shown,

T̂ (2)(x) = −x
4
T̂ (x)T̂ ′(x), (7)

T̂ (2)
s (x) = − x

8π

∫ +∞

−∞

T̂ ′(x+ x′)T̂ (x− x′)− T̂ (x+ x′)T̂ ′(x− x′)
x′

dx′, (8)

where,

T̂ ′(x) =
d

dx
T̂ (x).

Equations 6, 7 and 8 are derived in [1]. Using these expressions the corresponding analytic second-order
transit-time factors for a two gap resonator in the ‘square-wave’ approximation were derived:

T̂
(2)
2 gap(β) = − T̂2 gap(β)

4

[
cos

πg

βλ
sin

πβg
2β

+
βgλ

2g
sin

πg

βλ
cos

πβg
2β
− T̂2 gap(β)

]
,
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T̂
(2)
s,2 gap(β) =

πβg
16β

T̂ 2
1 gap(β) +

βλ

16πg
cos

πβg
β

[
T̂1 gap

(
β

2

)
− 1

]
,

where,

T̂1 gap(β) =
βλ

πg
sin

πg

βλ
.

The complete derivations of T̂ (2)
2 gap(β) and T̂ (2)

s,2 gap(β) are shown in Appendices A and B, and the relevant
standard integrals are collected in Appendix D.

4.1 Example: the HIE-ISOLDE low-β QWR

The transit-time factor for the HIE-ISOLDE low-β cavity is shown in Figure 3 using the realistic field
and using the analytic square-wave approximation.
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Figure 3: The first and second-order transit-time factors for the HIE-ISOLDE low-β QWR.

The validity of the analytic approximation was investigated at low velocity. The differences between
the transit-time factors of the low-β cavity produced using the realistic field profile and those produced
with the analytic square-wave field are compared in Figure 4.

For β � βg the square-wave field approximates very well the realistic field and the difference is
negligible. The second-order transit-time factors are well described by the analytic expressions derived
using the square-wave approximation and it is the first-order transit-time factor that is most sensitive to
the shape of the field at low velocity. Therefore, it is the first-order transit-time factor that limits the use
of the square-wave analytic approximation for accurate calculations of the energy change in the low-β
cavity below its geometric velocity.
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The second-order approximation can be effectively applied if the realistic field profile is used to
generate the transit-time factors and is accurate to a few percent down to βg/3, below which higher-
order approximations are required. All transit-time factors used in the following calculations were
derived numerically with the realistic field profile, using the equations described in the Appendix of [1].
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Figure 4: Difference between transit-time factors of the low-β cavity calculated using the realistic field
profile and the square-wave approximation.

5 Characteristics of Deceleration Below βg

From the second-order analytic expression for the energy change in an accelerating cavity given in
Equation 6, one can discern a few characteristics of the longitudinal beam dynamics when decelerating
in a linac composed of short and independently phased resonators:

• All three transit-time factors T̂ , T̂ (2) and T̂ (2)
s are positive in the velocity range βg/2 < β < βg.

• In this velocity range the rate of deceleration and the effective potential available for deceleration
is reduced with respect to the first-order expression in the phase-stable region of−π < φ < −π/2.

• It is possible to decelerate through the zero of T̂ .

• The phase dependence of the energy gain is not sinusoidal at low velocity and the extrema of ∆W
versus φ vary significantly from first-order estimates.

5.1 Phasing the QWR

Phase-stable deceleration through the zero of the first-order transit-time factor is possible by smoothly
varying the synchronous phase from the within the range −π < φ < −π/2 to the range −5π/4 < φ <
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−π as the sin 2φ term dominates close to βg/2, requiring a phase shift of π/2. The phase must then be
switched rapidly by π into the range −π/2 < φ < 0 and eventually into the range 0 < φ < π/2 as the
sign of the first-order transit-time factor switches and starts to dominate again below βg/2. The above
listed regions of phase stability that are compatible with deceleration are shown in bold in the schematic
of Figure 5(a) and the shifting phase of the minimum of the energy gain shown in Figure 5(b). The shift
in phase required to maintain the longitudinal phase stability of the beam can be described analytically
by calculating the extrema of the second-order approximation for the energy gain. From setting the
derivative with respect to φ to zero,

∂W

∂φ

∣∣∣∣
φ=φ∆Wmin

= −q∆V0T (β) sinφ∆Wmin +
2(q∆V0)2

W
T (2)
s (β) cos 2φ∆Wmin = 0, (9)

one can write the phase at which the energy gain is minimised as,

φ∆Wmin(β) = arcsin

±
√

1 + 32
(
q∆V0

W

)2
(
T

(2)
s (β)
T (β)

)2

− 1

8
(
q∆V0

W

) T (2)
s (β)
T (β)

, (10)

where the root should be chosen depending on the velocity of the particle. The phase of the minimum
in the second-order approximation is compared to numerical calculations in Figure 5(b), alongside the
schematic illustrating the phase shifts. The phase independent term of the second-order approximation
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Figure 5: Phasing the low-β cavity for deceleration (A/q = 4.5 and E0 = 6 MV/m).

is neglected in the schematic of Figure 5(a). An analytic understanding of the phase dependence of the
energy gain at low velocity is important for maintaining the phase stability of the beam.

5.2 Example: deceleration in the HIE-ISOLDE linac

The heaviest beams with A/q = 4.5 can be decelerated down to 0.45 MeV/u at a synchronous phase
with respect to the minimum of the energy gain of φs = +20◦ where,

φ(β) = φ∆Wmin(β) + φs, (11)
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which is equivalent to−160◦ in the first-order approximation. The deceleration in this case is limited by
the number of low-β cavities. The 12 superconducting low-β cavities provide an effective deceleration
potential of 3.4 MV for A/q = 4.5 and 3.0 MV for A/q = 3, as opposed to 10.8 MV for acceleration.
The beam energy after each cavity is shown in Figure 6 using the first and second-order approximations
with a comparison made to the numerical result and the TRACK code [6] for two beams with A/q = 4.5
and 3.
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Figure 6: Deceleration in the low energy section (Eacc = 6 MV/m and φs = +20◦).

The phase dependence of the energy gain in the cavities is shown explicitly in Figures 7 and 8 for
decelerating beams with A/q = 4.5 and 3, respectively. The linear regions become much smaller as
the velocity tends towards βg/2, which is the limiting factor for the longitudinal beam quality when
decelerating. The final subplot in each figure shows an expanded scale highlighting the reliability of the
second-order approximation, even at low velocity.

6 Conclusion

Analytic approximations to the second-order transit-time factors were derived and compared to those
calculated with the realistic field profile. The square-wave approximation breaks down most severely for
the first-order transit-time factor. Therefore, the realistic fields should be used to calculate the transit-
time factors for β � βg. The second-order formalism was used to accurately describe the longitudinal
dynamics during deceleration in the low-β cavities of the HIE-ISOLDE linac and was shown to be a
quick and easy method for calculating the phases of the cavities.
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Figure 7: ∆W vs. φ in the low-β cavities of the HIE-ISOLDE linac whilst decelerating withA/q = 4.5.
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Figure 8: ∆W vs. φ in the low-β cavities of the HIE-ISOLDE linac whilst decelerating with A/q = 3.
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Appendices
A Derivation of T̂(2) for a Two Gap Resonator

First, rewrite the expression for the first-order transit-time factor in a simpler form:

T̂2 gap(x) =
sinx

x
sinαx,

where,

x =
πg

βλ
,

and,

α =
βgλ

2g
=
L

g
.

The derivation is straightforward:

T̂ ′2 gap(x) =
d

dx
T̂2 gap(x) =

1

x

[
cosx sinαx+ α sinx cosαx− T̂2 gap(x)

]
.

Using,

T̂
(2)
2 gap(x) = −x

4
T̂2 gap(x)T̂ ′2 gap(x),

implies that,

T̂
(2)
2 gap(x) = − T̂2 gap(x)

4

[
cosx sinαx+ α sinx cosαx− T̂2 gap(x)

]
.

B Derivation of T̂(2)
s for a Two Gap Resonator

First, separate the integral into two parts, I and II:

T̂
(2)
s,2 gap = − x

8π

∫ +∞

−∞

T̂ ′2 gap(x+ x′)T̂2 gap(x− x′)− T̂2 gap(x+ x′)T̂ ′2 gap(x− x′)
x′

dx′

= − x

8π

∫ +∞

−∞

T̂ ′2 gap(x+ x′)T̂2 gap(x− x′)
x′︸ ︷︷ ︸
I

−
T̂2 gap(x+ x′)T̂ ′2 gap(x− x′))

x′︸ ︷︷ ︸
II

dx′.
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Focusing on simplifying the expressions inside the integral, I can be expressed as:

I =
1

x′(x2 − x′2)
sin (x− x′) cos (x+ x′) sin (α(x+ x′)) sin (α(x− x′))︸ ︷︷ ︸

a

+
α

x′(x2 − x′2)
sin (x− x′) sin (x+ x′) sin (α(x− x′)) cos (α(x+ x′))︸ ︷︷ ︸

b

− 1

x′(x+ x′)(x2 − x′2)
sin (x− x′) sin (x+ x′) sin (α(x− x′)) sin (α(x+ x′))︸ ︷︷ ︸

c

.

Similarly, II can be expressed as:

II =
1

x′(x2 − x′2)
sin (x+ x′) cos (x− x′) sin (α(x+ x′)) sin (α(x− x′))︸ ︷︷ ︸

a

+
α

x′(x2 − x′2)
sin (x− x′) sin (x+ x′) sin (α(x+ x′)) cos (α(x− x′))︸ ︷︷ ︸

b

− 1

x′(x− x′)(x2 − x′2)
sin (x− x′) sin (x+ x′) sin (α(x− x′)) sin (α(x+ x′))︸ ︷︷ ︸

c

.

Considering pairs of terms separately and using the trigonometric identities quoted, I.a − II.a can be
written:

I.a− II.a =

cos (2αx′)−cos (2αx)
2︷ ︸︸ ︷

sin (α(x− x′)) sin (α(x+ x′))

x′(x2 − x′2)
[sin (x− x′) cos (x+ x′)− sin (x+ x′) cos (x− x′)]︸ ︷︷ ︸

sin (−2x′)

=
cos (2αx) sin (2x′)

2x′(x2 − x′2)
− sin (2x′) cos (2αx′)

2x′(x2 − x′2)
.

I.b− II.b can be written:

I.b− II.b =
α

cos (2x′)−cos (2x)
2︷ ︸︸ ︷

sin (x− x′) sin (x+ x′)

x′(x2 − x′2)
[sin (α(x− x′)) cos (α(x+ x′))− sin (α(x+ x′)) cos (α(x− x′))]︸ ︷︷ ︸

sin (−2αx′)

=
α cos (2x) sin (2αx′)

2x′(x2 − x′2)
− α sin (2αx′) cos (2x′)

2x′(x2 − x′2)
.

And, I.c− II.c can be written:
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I.c− II.c =

2x′
x2−x′2︷ ︸︸ ︷[

1

x− x′
− 1

x+ x′

] cos (2x′)−cos (2x)
2︷ ︸︸ ︷

sin (x− x′) sin (x+ x′)

cos (2αx′)−cos (2αx)
2︷ ︸︸ ︷

sin (α(x− x′)) sin (α(x+ x′))

x′(x2 − x′2)

=
cos (2x′) cos (2αx′)

2(x2 − x′2)2
− cos (2αx) cos (2x′)

2(x2 − x′2)2
− cos (2x) cos (2αx′)

2(x2 − x′2)2
+

cos (2x) cos (2αx)

2(x2 − x′2)2
.

These expressions can then be integrated using the standard integrals included in Appendix D. The
terms denoted, a, give:

− x

8π

∫ +∞

−∞
(I.a− II.a) dx′ =

x

16π

∫ +∞

−∞

sin (2x′) cos (2αx′)

x′(x2 − x′2)
dx′︸ ︷︷ ︸∫

#3(b>a)

−x cos (2αx)

16π

∫ +∞

−∞

sin (2x′)

x′(x2 − x′2)
dx′︸ ︷︷ ︸∫

#4

=
x

16π

[
π sin 2x sin 2αx

x2

]
− x cos 2αx

16π

[
π(1− cos 2x)

x2

]
=

1

16x
[sin 2x sin 2αx− (1− cos 2x) cos 2αx] . (12)

The terms denoted, b, give:

− x

8π

∫ +∞

−∞
(I.b− II.b) dx′ =

αx

16π

∫ +∞

−∞

sin (2αx′) cos (2x′)

x′(x2 − x′2)
dx′︸ ︷︷ ︸∫

#3(a>b)

−αx cos (2x)

16π

∫ +∞

−∞

sin (2αx′)

x′(x2 − x′2)
dx′︸ ︷︷ ︸∫

#4

=
αx

16π

[
π(1− cos 2x cos 2αx)

x2

]
− αx cos 2x

16π

[
π(1− cos 2αx)

x2

]
=

α

16x
[1− cos 2x] . (13)

And the terms denoted, c, give:

− x

8π

∫ +∞

−∞
(I.c− II.c) dx′ = − x

16π

∫ +∞

−∞

cos (2x′) cos (2αx′)

(x2 − x′2)2
dx′︸ ︷︷ ︸∫

#5

+
x cos (2αx)

16π

∫ +∞

−∞

cos (2x′)

(x2 − x′2)2
dx′︸ ︷︷ ︸∫

#6

+
x cos (2x)

16π

∫ +∞

−∞

cos (2αx′)

(x2 − x′2)2
dx′︸ ︷︷ ︸∫

#6

− x cos (2x) cos (2αx)

16π

∫ +∞

−∞

1

(x2 − x′2)2
dx′︸ ︷︷ ︸∫

#7
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= − x

16π

[ π

2x3
{−2αx cos (2αx) cos (2x) + sin (2αx)(cos (2x) + 2x sin (2x))}

]
+
x cos (2αx)

16π

[ π

2x3
sin (2x)− 2x cos (2x)

]
+
x cos (2x)

16π

[ π

2x3
sin (2αx)− 2αx cos (2αx)

]

=
1

16x2

[
sin 2x cos 2αx

2
− x(sin 2x sin 2αx+ cos 2x cos 2αx)

]
. (14)

Finally, the derivation is completed by putting parts I and II together and summing Equations 12, 13
and 14. Therefore,

T̂
(2)
s,2 gap =

αx

8

sin2 x

x2
+

cos 2αx

16x

[
sin 2x

2x
− 1

]
.

The result can be rewritten in terms of the single gap transit-time factor,

T̂
(2)
s,2 gap =

αx

8
T̂ 2

1 gap(x) +
cos 2αx

16x

[
T̂1 gap(2x)− 1

]
.

C T̂(2) and T̂
(2)
s for a Single Gap Resonator

The second-order transit-time factors for a two-gap resonator can be compared to those for a single gap
shown below [7],

T̂
(2)
1 gap(x) = − T̂1 gap(x)

4

[
cosx− T̂1 gap(x)

]
and T̂

(2)
s,1 gap(x) =

1

8x

[
1− T̂1 gap(2x)

]
,

where,

T̂1 gap(x) =
sinx

x
.
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D Standard Integrals

The standard integrals were found in the tables of Gradshteyn and Ryzhik [8]. The equation reference
numbers are also quoted. ∫

#1 : (3.741.2) :

∫ +∞

−∞

sin (ax) cos (bx)

x
dx =


π if a > b ≥ 0
π
2

if a = b ≥ 0
0 if b > a ≥ 0

∫
#2 : (3.742.7) :

∫ +∞

−∞

x sin (ax) cos (bx)

c2 − x2
dx =


−π cos (ac) cos (bc) if a > b > 0

−π
2

cos (2ac) if a = b ≥ 0
π sin (ac) sin (bc) if b > a > 0

∫
#3 :

∫ +∞

−∞

sin (ax) cos (bx)

x(c2 − x2)
dx =

1

c2

∫ +∞

−∞

sin (ax) cos (bx)

x
dx︸ ︷︷ ︸∫

#1

+
1

c2

∫ +∞

−∞

x sin (ax) cos (bx)

c2 − x2
dx︸ ︷︷ ︸∫

#2

=


π
c2

(1− cos (ac) cos (bc)) if a > b > 0
π
c2

sin (ac) sin (bc) if b > a > 0
−π

4
cos (2ac) if a = b ≥ 0

∫
#4 : (3.725.2) :

∫ +∞

−∞

sin (ax)

x(b2 − x2)
dx =

π

b2
(1− cos ab).

∫
#5 : (3.728.5) :

lim
c→b

∫ +∞

−∞

cos (ax)

(b2 − x2)(c2 − x2)
dx =

∫ +∞

−∞

cos (ax)

(b2 − x2)2
dx =

π

2b3
[sin (ab)− ab cos (ab)] .
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∫
#6 : (3.728.5) :

lim
c→b

∫ +∞

−∞

cos (ax)

(b2 − x2)(c2 − x2)
dx =

∫ +∞

−∞

cos (ax)

(b2 − x2)2
dx =

π

2b3
[sin (ab)− ab cos (ab)] .

∫
#7 : (2.172) and (2.173.1) :

∫ +∞

−∞

1

(a2 − x2)2
dx = 0.
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