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Abstract

The top quark pair production cross section is measured in dilepton events with
one electron or muon, and one hadronically decaying τ lepton from the decay
tt→ (`ν`)(τhντ)bb, (` = e, µ). The data sample corresponds to an integrated luminos-
ity of 2.0 fb−1 for the electron channel and 2.2 fb−1 for the muon channel, collected by
the CMS detector at the LHC. This is the first measurement of the tt cross section ex-
plicitly including τ leptons in proton-proton collisions at

√
s = 7 TeV. The measured

value σtt = 143± 14(stat.) ± 22(syst.) ± 3(lumi.)pb is consistent with the standard
model predictions.
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1 Introduction
Top quarks at the Large Hadron Collider (LHC) are mostly produced in pairs with the subse-
quent decay tt → W+bW−b. The decay modes of the two W bosons determine the observed
event signature. The dilepton decay channel denotes the case where both W bosons from the
decaying top quark pair decay leptonically. In this Letter, top quark decays in the “tau dilep-
ton” channel are studied, where one W boson decays into eν or µν and the other into the
hadronically decaying τ lepton and ν, in the final state tt→ (`ν`)(τhντ)bb, where ` = e, µ. The
expected fraction of events in the dilepton channel with at least one τ lepton in the final state
is approximately 6% (5/81) of all tt decays, i.e. higher than the fraction of the light dilepton
channels (ee, µµ, eµ) which is equal to 4/81 of all tt decays. The tau dilepton channel is of
particular interest because the existence of a charged Higgs boson [1, 2] with a mass smaller
than the top quark mass could give rise to anomalous τ lepton production, which could be di-
rectly observable in this decay channel. Furthermore, in the final state studied, the t→ (τντ)b
decay exclusively involves third generation leptons and quarks. Understanding the τ yield in
top quark decays is important to increase the acceptance for tt events and to search for new
physics processes.

This is the first measurement of the tt production cross section at the LHC that explicitly in-
cludes τ leptons, improving over the results obtained at the Tevatron which are limited by the
small number of candidate events found [3–5]. Experimentally, the τ lepton is identified by
its decay products, either hadrons (τh) or leptons (τ`), with the corresponding branching frac-
tions Br(τh → hadrons + ντ) ' 65% and Br(τ` → ` ν`ντ, ` = e, µ) ' 35%. In the first case,
a narrow jet with a distinct signature is produced; in the case of leptonic decays, the distinc-
tion from prompt electron or muon production is experimentally difficult, consequently only
hadronic τ decays are studied here. The cross section is measured by counting the number of
eτh + X and µτh + X events consistent with originating from tt, subtracting the contributions
from other processes, and correcting for the efficiency of the event selection. The measurement
is based on data collected by the Compact Muon Solenoid (CMS) experiment in 2011. The inte-
grated luminosity of the data samples are 1.99 fb−1 and 2.22 fb−1 for the eτh and µτh final states,
respectively.

The CMS detector is briefly summarized in Section 2, details of the simulated samples are given
in Section 3, a brief description of the event reconstruction and event selection is provided in
Section 4, followed by the description of the background determination and systematic uncer-
tainties in Sections 5 and 6, respectively. The measurement of the cross section is discussed in
Section 7, and the results are summarized in Section 8.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m
in diameter, which provides an axial magnetic field of 3.8 T. Inside the solenoid, various parti-
cle detection systems are employed. Charged particle trajectories are measured by the silicon
pixel and strip tracker, covering 0 < ϕ < 2π in azimuth and |η| < 2.5, where the pseudora-
pidity η is defined as η = − ln[tan(θ/2)], with θ being the polar angle of the trajectory of the
particle with respect to the counterclockwise beam direction. A crystal electromagnetic calori-
meter and a brass/scintillator hadron calorimeter surround the tracking volume; in this anal-
ysis the calorimetry provides high-resolution energy and direction measurements of electrons
and hadronic jets. Muon detection systems are located outside of the solenoid and embedded
in the steel return yoke. The detector is nearly hermetic, allowing for energy balance measure-
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ments in the plane transverse to the beam directions. A two-level trigger system selects the
most interesting proton-proton collision events for use in physics analysis. A more detailed
description of the CMS detector can be found elsewhere [6].

3 Event simulation
The analysis makes use of simulated samples of tt events as well as other processes that result
in τs in the final state. These samples are used to design the event selection, to calculate the
acceptance to tt events, and to estimate some of the backgrounds in the analysis.

Signal tt events are simulated with the MADGRAPH event generator (v. 4.4.12) [7] with matrix
elements corresponding to up to three additional partons, for a top quark mass of 172.5 GeV/c2.
The number of expected tt events is estimated with the next-to-next-leading order (NNLO) ex-
pected standard model (SM) value of 165+4

−9(scale)+7
−7(PDF)pb [8, 9], where the first uncertainty

is due to renormalization and factorization scales, and the second is due to the parton distribu-
tion function (PDF) uncertainty. This cross section is used for illustrative purposes to normalize
the tt eτh and µτh expectations discussed in Section 4. The generated events are subsequently
processed with PYTHIA (v. 6.422) [10] to provide the showering of the partons, and to perform
the matching of the soft radiation with the contributions from direct emissions accounted for
in the matrix-element calculations. The Z2 tune [11] is used with the CTEQ6L PDFs [12]. The τ
decays are simulated with TAUOLA (v. 27.121.5) [13] which correctly accounts for the τ lepton
polarization in describing the decay kinematics. The CMS detector response is simulated with
GEANT4 (v. 9.3 Rev01) [14].

The background samples used in the measurement of the cross section are simulated with
MADGRAPH and PYTHIA. The W+jet samples include only the leptonic decays of the W bo-
son, and are normalized to the inclusive next-to-next-leading-order (NNLO) cross section of
31.3 ± 1.6 nb, calculated with the FEWZ (Fully Exclusive W and Z boson) production pro-
gram [15]. Drell–Yan (DY) pair production of charged leptons in the final state is generated
with MADGRAPH for dilepton invariant masses above 50 GeV/c2, and is normalized to a cross
section of 3.04± 0.13 nb, computed with FEWZ. The DY events with masses between 10 and
50 GeV/c2 are generated with MADGRAPH with a cross section (with a k-factor to correct for
NLO) of 12.4 nb.

The electroweak production of single top quarks is considered as a background process, and
is simulated with POWHEG [16]. The t-channel single top quark NLO cross section is σt−ch. =
64.6+3.4

−3.2 pb from MCFM [17–20]. The single top quark associated production (tW) cross section
amounts to σtW = 15.7 ± 1.2 pb [21]. The s-channel single top quark next-to-next-leading-
log (NNLL) cross section is determined as σs−ch. = 4.6± 0.06 pb [22]. Finally, the production
of WW, WZ, and ZZ pairs, with inclusive cross sections of 43.0 ± 1.5 pb, 18.8 ± 0.7 pb, and
7.4± 0.2 pb, respectively (all calculated at the NLO with MCFM), are simulated with PYTHIA.

4 Event selection
The signal topology is defined by the presence of two b jets from the top quark decays, one
W boson decaying leptonically into eν or µν, and a second W boson decaying into τν. In the
event, all objects are reconstructed with a particle-flow (PF) algorithm [23]. The PF algorithm
combines the information from all sub-detectors to identify and reconstruct all types of par-
ticles produced in the collision, namely charged hadrons, photons, neutral hadrons, muons,
and electrons. The resulting list of particles is used to construct a variety of higher-level objects
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and observables such as jets, missing transverse energy (Emiss
T ), leptons (including τs), photons,

b-tagging discriminators, and isolation variables. The missing transverse energy Emiss
T is com-

puted as the absolute value of the vectorial sum of the transverse momenta of all reconstructed
particles in the event.

Electron or muon candidates are required to be isolated relative to other activity in the event.
The relative isolation is based on PF objects and defined as Irel = (Ech + Enh + Eph)/pT · c,
where Ech is the transverse energy deposited by charged hadrons in a cone of radius ∆R = 0.3
around the electron or muon track, and Enh and Eph are the respective transverse energies of the
neutral hadrons and photons. The electron (muon) candidate is considered to be non-isolated
and is rejected if Irel > 0.1 (> 0.2). Jets are reconstructed with the anti-kT [24, 25] jet algorithm
with a distance parameter R = 0.5.

Hadronic τ decays are reconstructed with the Hadron Plus Strips (HPS) algorithm [26]. The
identification process starts with the clustering of all PF particles into jets with the anti-kT al-
gorithm with a distance parameter R = 0.5. For each jet, a charged hadron is combined with
other nearby charged hadrons or photons to identify the decay modes. The identification of π0

mesons is enhanced by clustering electrons and photons in “strips” along the bending plane to
take into account possible broadening of calorimeter signatures by early showering photons.
Then, strips and charged hadrons are combined to reconstruct the following combinations:
single hadron, hadron plus a strip, hadron plus two strips and three hadrons. To reduce the
contamination from quark and gluon jets, the τh candidate isolation is calculated in a cone of
∆R = 0.5 around the reconstructed τ-momentum direction. It is required that there be no
charged hadrons with pT > 1.0 GeV/c and no photons with ET > 1.5 GeV in the isolation cone,
other than the τ decay particles. Additional requirements are applied to discriminate genuine
τ leptons from prompt electrons and muons. The τ charge is taken as the sum of the charge
of the charged hadrons (prongs) in the signal cone. The τ reconstruction efficiency of this al-
gorithm is estimated to be approximately 37% (i.e. “medium” working point in Ref. [26]) for
pτh

T > 20 GeV/c, and it is measured in a sample enriched in Z → ττ → µτh events with a
“tag-and-probe” technique [27]. The “medium” working point corresponds to a probability of
approximately 0.5% for generic hadronic jets to be misidentified as τh.

For the eτh final state, events are triggered by the combined electron plus two jets plus Hmiss
T

trigger (e + dijet + Hmiss
T ), where Hmiss

T is the absolute value of the vectorial sum of all jet mo-
menta in the plane transverse to the beams. The thresholds for the electron and for Hmiss

T
are respectively pT >17–27 GeV/c and Hmiss

T >15–20 GeV depending on the data-taking pe-
riod, and the pT thresholds for the two jets are 30 GeV/c and 25 GeV/c. The trigger efficiency
is estimated from a suite of triggers with lower thresholds assuming the factorization εtrig =
εe × εjets × εMHT, where εe is the electron efficiency, εjets is the efficiency for selecting two jets,
and εMHT is the efficiency for Hmiss

T . The data-to-simulation scale factor for the electron trigger
efficiency is 0.99± 0.01. The efficiencies εMHT = 1.00+0.00

−0.01 and εjets, which is parameterized as
a function of jet pT, are estimated from data. In the µτh final state, data are collected with a
trigger requiring at least one isolated muon with threshold of pT > 17(24)GeV/c, for the earlier
(later) part of the data sample; the data-to-simulation scale factor for the trigger efficiency is
0.99± 0.01.

Events are selected by requiring one isolated electron (muon) with transverse momentum pT >
35(30)GeV/c and |η| < 2.5(2.1), at least two jets with pT > 35(30)GeV/c and |η| < 2.4, missing
transverse energy Emiss

T > 45(40)GeV and one hadronically decaying τ lepton (τ jet) with pT >
20 GeV/c and |η| < 2.4. Electrons or muons are required to be separated from any jet in the
(η, ϕ) plane by a distance ∆R > 0.3. Events with any additional loosely isolated (Irel < 0.2)



4 4 Event selection

electron (muon) of pT > 15 (10)GeV/c are rejected.

The τ jet and the lepton are required to have electric charges of opposite sign (OS). At least one
of the jets is required to be identified as originating from b quark hadronization (b tagged). The
b-tagging algorithm used (“TCHEL” in Ref. [28]) is based on sorting tracks according to their
impact parameter significance (SIP); the SIP value of the second track is used as the discrim-
inator. The b-tagging efficiency of this algorithm is 76± 1%, measured in a sample of events
enriched with jets from semileptonic b-hadron decays. The misidentification rate of light-flavor
jets is obtained from inclusive jet studies and is measured to be 13± 3% for jets in the pT range
relevant to this analysis. After the final event selection, a fraction of approximately 12% of
the generated tt tau dilepton events within the geometric and kinematic fiducial region are
selected.

The b-tagged jet multiplicity for the eτh and µτh final states is shown in Fig. 1 for the events
in the pre-selected sample, i.e. one isolated electron (muon), missing transverse energy above
45 (40) GeV, and at least three jets, two jets with pT > 35(30)GeV/c and one jet with pT >
20 GeV/c. The observed numbers of events are consistent with the expected numbers of signal
and background events obtained from the simulation. The distributions of the Emiss
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Figure 1: The b-tagged jet multiplicity for pre-selected events with one electron (left) or muon
(right). Distributions obtained from data (points) are compared with simulation. The simulated
contributions are normalized to the SM predicted values. The hatched area shows the total
systematic uncertainty.

the transverse momentum of the τ lepton after the final event selection are shown in Fig. 2
and in Fig. 3, respectively, for both the eτh and µτh final states. The distributions show good
agreement between the observed numbers of events and the expected numbers of signal and
background events obtained from the simulation.

The top quark mass is reconstructed with the KINb [29] algorithm (Fig. 4), treating the ad-
ditional neutrino in the τ decay as a contribution to the Emiss

T . Numerical solutions for the
kinematic reconstruction of tt decays with two charged leptons in the final state are found for
each event. The jet transverse momentum, the Emiss

T direction, and the longitudinal momen-
tum of the tt system are varied independently within their measured resolutions to scan the
kinematic phase space compatible with the tt system. Solutions with the lowest invariant mass
of the tt system are accepted if the difference between the two top quark masses is less than
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Figure 2: Emiss
T distribution after the full event selection for the eτh (left) and µτh (right) final

states. Distributions obtained from data (points) are compared with simulation. The last bin
includes the overflow. The simulated contributions are normalized to the SM predicted values.
The hatched area shows the total systematic uncertainty.
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Figure 3: The τ pT distribution after the full event selection for the eτh (left) and µτh (right) final
states. Distributions obtained from data (points) are compared with simulation. The simulated
contributions are normalized to the SM predicted values. The hatched area shows the total
systematic uncertainty.
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3 GeV/c2. The reconstructed top quark mass in Fig. 4 shows that the kinematic properties of
the selected events are statistically compatible with predictions based on a top quark mass of
172.5 GeV/c2, indicating the consistency of the selected sample in data with the sum of top
quark pair production plus the background.
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Figure 4: Reconstructed top quark mass mtop distribution for the τ dilepton candidate events
after the full event selection, in the eτh (left) and µτh (right) final states. Distributions obtained
from data (points) are compared with simulation. The hatched area shows the total systematic
uncertainty.

5 Background estimate
The background comes from two categories of events, the “misreconstructed τ” background
(Nmisid) which is estimated from data, and the “other” background (Nother) which is estimated
from simulation.

The main background (misreconstructed τ) comes from events with one lepton (electron or
muon), Emiss

T requirement and three or more jets, where one jet is misidentified as a τ jet. The
dominant contribution to this background is from events where one W boson is produced in
association with jets, and from tt → W+bW−b → `νb qq′b events. In order to estimate this
background from data, the probability that a jet is misidentified as a τ jet w(jet → τh) as a
function of the jet pT, η, and jet width (Rjet) is determined, then applied to every jet in the pre-

selected sample with one b-tagged jet. The quantity Rjet is defined as
√

σ2
ηη + σ2

φφ, where σηη

(σφφ) expresses the extent in η (φ) of the jet cluster. Thus the expected number of background
is obtained as:

Nmisid =
N

∑
i

n

∑
j

wj
i(jet→ τ)− Nother, (1)

where j is the jet index of the event i. The quantity Nother is the small ('18%) contamination
of other contributions to the misidentified τ background, which is estimated from simulation.
This is mostly due to the presence of genuine τ jets in the W+ ≥ 3 jet sample. In order to
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estimate this contribution, the same procedure described above is applied to simulated events
of Z/γ∗ → ττ, single top quark production, diboson production, and the part of the SM tt
background not included in the misidentified τ background estimate.

In order to estimate the misidentification probability, the hadronic multijet events are selected
from a sample triggered by at least one jet with pT > 30 GeV/c, by requiring events to have
at least two jets with pT > 20 GeV/c and |η| < 2.4. The triggering jet is removed from the
misidentification rate calculation in order to avoid a trigger bias. The W+ ≥ 1 jet events are
selected by requiring only one isolated muon with pT > 20 GeV/c and |η| < 2.1, and at least
one jet with pT > 20 GeV/c and |η| < 2.4. The probability w(jet→ τh) is evaluated from all jets
in a sample enriched in QCD multijet events (wQCD), and all jets in another sample enriched in
W+ ≥ 1 jet events (wW+jets). The probability that a jet is misidentified as a τ jet as a function
of jet pT, η and Rjet is compared between simulated events (Z2 tune [11]) and data, and a good
agreement is found.

Jets in QCD multijet events are mainly gluon jets (' 75% obtained from simulation), while
the jets in W+ ≥ 1 jet events are predominantly quark jets ('64% obtained from simulation),
where wQCD < wW+jets. Since the quark and gluon jet composition in `+ Emiss

T + ≥ 3 jet events
lies between two categories of events, QCD multijet and W+ ≥ 1 jet events, the Nmisid value
is under- (over-) estimated by applying the wQCD (wW+jets) probability. Thus, the Nmisid and its
systematic uncertainty are estimated as in the following:

Nmisid =
∑N

i ∑n
j wj

W+jets, i + ∑N
i ∑n

j wj
QCD, i

2
(2)

∆Nmisid =
∑N

i ∑n
j wj

W+jets, i − ∑N
i ∑n

j wj
QCD, i

2
(3)

The contribution of Nother described earlier is subtracted from Eq.(2). Finally, the efficiency εOS
of the OS requirement obtained from simulated events is applied to obtain the misidentified τ
background Nmisid

OS = εOS × Nmisid. The estimated efficiencies for the eτh and µτh final states
are εOS = 0.72± 0.09(stat.)± 0.02(syst.) and εOS = 0.69± 0.07(stat.)± 0.03(syst.), respectively,
where the statistical uncertainty comes from the limited number of simulated events, and the
systematic uncertainty is taken as half of the difference of the efficiency estimated from W+jets
and lepton+jet tt simulated events.

Other backgrounds in this analysis are Z/γ∗ → ττ, single top quark production, diboson pro-
duction, and the part of the SM tt background not included in the misidentified τ background,
and are estimated from simulation. Events from Z → ee, µµ are also taken into account be-
cause they contain misidentified τ jets, where the misidentified τ lepton can originate from an
electron or muon misidentified as a τ jet. The statistical uncertainties are due to the limited
number of simulated events.

6 Systematic uncertainties
Different sources of systematic uncertainties on the measurement of the cross section due to
signal selection efficiencies and backgrounds are considered, as shown in Table 1. The main
sources of systematic uncertainties are due to τ identification, b-tagging and mistagging effi-
ciencies, jet energy scale (JES), jet energy resolution (JER), Emiss

T scale, and to the estimate of the
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misreconstructed τ background (from data). The systematic uncertainties for the determination
of the misidentified τ background are discussed in detail in Section 5.

The uncertainty on the τ jet identification includes contributions from τ identification efficiency
and ` → τh (` = e, µ) misidentification. The uncertainty on τ identification efficiency is
estimated to be 6% (from an updated measurement with respect to [26]), and it includes the
uncertainty on charge determination which is estimated to be smaller than 1%. The uncertainty
on the ` → τh misidentification rate is estimated as the difference of τ misidentification rate
measured in data and in simulated events, and is taken to be 15% [26]. These uncertainties are
applied to the simulated Z→ ee, µµ, and tt dilepton background events.

The uncertainties related to b-tagging and mistagging efficiencies are estimated from a variety
of control samples enriched in b quarks, and the data-to-simulation scale factors amount to
0.95± 0.06 and 1.11± 0.11, respectively [28].

The uncertainties on JES, JER, and Emiss
T scale are estimated according to the prescription de-

scribed in Ref. [30]. These uncertainties also take into account the uncertainty due to the JES
dependence on the parton flavor. The uncertainty on JES is evaluated as a function of jet pT
and jet η. The JES and JER uncertainties are propagated in order to estimate the uncertainty
of the Emiss

T scale. An additional 10% uncertainty on the contribution to Emiss
T coming from the

energy of particles that are not clustered into jets is also taken into account.

The theoretical uncertainty on the signal acceptance is estimated to be 4% [29]. It accounts
for variations in the renormalization and factorization scales (2%), τ lepton and hadron decay
modelling (2%), top quark mass (1.6%), leptonic branching fractions of the W boson (1.7%), and
jet and Emiss

T modelling (1%). Uncertainties on the PDFs are found to be negligible.

The uncertainty on the integrated luminosity is estimated to be 2.2% [31]. The number of inter-
actions per bunch crossing in the data (pile-up) is estimated from the measured luminosity in
each bunch crossing times an average total inelastic cross section (with an uncertainty of 6.5%).
The estimated number of interactions has a total uncertainty of approximately 8%, which cor-
responds to an overall uncertainty of the pile-up distribution. The mean of pile-up in the data
sample is about 5–6 interactions, with the uncertainty estimated conservatively by shifting the
overall mean up or down by 0.6 interactions.

The lepton trigger, identification, and isolation efficiencies are measured with the “tag-and-
probe” method in events containing a lepton pair of invariant mass between 76 and 106 GeV/c2.
Within the precision of the present measurement, the scale factors between efficiencies mea-
sured in data and in simulation are estimated to be equal to one. The combined uncertainty on
the electron (muon) trigger, identification and isolation efficiencies is 3% (2%).

Theoretical uncertainties on the cross sections of single top quark, diboson, and DY processes
are estimated as in Ref. [32]. The uncertainties include the scale and PDF uncertainties on
theoretical cross sections.

7 Cross section measurement
The number of events expected from the backgrounds, the number of signal events from tt, and
the number of observed events after all selection cuts are summarized in Table 2. The statistical
and systematic uncertainties are also shown.

The tt production cross section measured from tau dilepton events is:
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Table 1: List of systematic uncertainties (in %) on the cross section measurement. The Best
Linear Unbiased Estimation method [33] is used to combine the cross section measurements in
the eτh and µτh channels, with the corresponding weights. Systematic uncertainties common
to the two channels are assumed to be 100% correlated.

Source Uncertainty [%] Combination [%]
eτh µτh

τ misidentification background 12.6 9.8 10.8
τ jet identification 6.4 6.3 6.3

b-jet tagging, misidentification 5.3 5.3 5.3
jet energy scale, jet energy resolution, Emiss

T 5.1 6.2 5.8
theoretical uncertainty on signal efficiency 4.0 4.0 4.0

pile-up modelling 2.3 2.3 2.3
electron selection 3.1 0 1.1
muon selection 0 2.0 1.3

cross section of MC backgrounds 1.6 1.4 1.5
luminosity 2.2 2.2 2.2

weight 0.38 0.62 χ2/Ndof = 2.381/1
(p-value = 0.198)

Table 2: Number of expected events for signal and backgrounds. The background from
“misidentified τ” is estimated from data, while the other backgrounds are estimated from sim-
ulation. Statistical and systematic uncertainties are shown.

Source Nevents (± stat. ± syst.)
eτh µτh

tt→WbWb→ `νb τνb 99.9 ± 3.0 ± 10.1 162.0 ± 4.0 ± 16.7
misidentified τ 54.3 ± 6.4 ± 8.1 88.5 ± 8.9 ± 10.8

Z/γ∗ → ττ 16.6 ± 3.3 ± 2.9 25.8 ± 4.3 ± 6.1
tt→WbWb→ `νb `νb 9.0 ± 0.9 ± 1.7 13.3 ± 1.2 ± 2.5

Z/γ∗ → ee, µµ 4.8 ± 1.8 ± 1.3 0.7 ± 0.7 ± 0.7
Single top 7.9 ± 0.4 ± 1.1 13.5 ± 0.5 ± 1.9

VV 1.3 ± 0.1 ± 0.2 2.0 ± 0.2 ± 0.3
Total expected 193.9 ± 4.9 ± 18.0 306.1 ± 6.1 ± 27.9

Data 176 288
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σtt =
N − B
L · Atot

, (4)

where N is the number of observed candidate events, B is the estimate of the background, L
is the integrated luminosity. The total acceptance Atot is the product of all branching fractions,
geometrical and kinematical acceptance, efficiencies for trigger, lepton identification and the
overall reconstruction efficiency, and it is evaluated with respect to the inclusive tt sample.
After the OS requirement:

Atot(eτh) = [0.0304± 0.0009(stat.)± 0.0031(syst.)]%; (5)
Atot(µτh) = [0.0443± 0.0011(stat.)± 0.0047(syst.)]%. (6)

The statistical uncertainties are due to the limited number of simulated events and the system-
atic uncertainties are estimated by varying all sources of systematics in Table 1 affecting the
signal (i.e., all uncertainties except for the luminosity and for the background). All system-
atic and statistical uncertainties in Table 2 are propagated from Eq.(4) to the final cross section
measurement. The measured tt cross section is:

σtt(eτh) = 136± 23(stat.)± 23(syst.)± 3(lumi.)pb; (7)
σtt(µτh) = 147± 18(stat.)± 22(syst.)± 3(lumi.)pb. (8)

The Best Linear Unbiased Estimation method [33] is used to combine the cross section mea-
surements in the eτh and µτh channels with the associated uncertainties and correlation factors.
Systematic uncertainties common to the two channels are assumed to be 100% correlated. The
combined result is

σtt = 143± 14(stat.)± 22(syst.)± 3(lumi.)pb, (9)

in agreement with the measured values in the dilepton [29] and lepton+jet [32, 34] final states,
and with the SM expectations in the approximate NNLO calculation of 163+7

−5(scale)± 9(PDF)pb [35].

8 Summary
We present the first measurement of the tt production cross section in the tau dilepton channel
tt → (`ν`)(τhντ)bb, (` = e, µ) with data samples corresponding to an integrated luminosity
of 2.0–2.2 fb−1 collected in proton-proton collisions at

√
s = 7 TeV. Events are selected by re-

quiring the presence of one electron or muon, two or more jets (at least one jet is b tagged),
missing transverse energy, and one hadronically decaying τ lepton. The largest background
contributions come from events where one W boson is produced in association with jets, and
from tt → W+bW−b → `νb qq′b events, where one jet is misidentified as the τ, and from
Z → ττ events. The measured cross section is σtt = 143± 14(stat.)± 22(syst.)± 3(lumi.)pb,
in agreement with SM expectations.
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