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Abstract: Robustness of the Luttinger theorem for fermionic liquids is examined

in holography. The statement of the Luttinger theorem, the equality between the

fermion charge density and the volume enclosed by the Fermi surface, can be mapped

to a Gauss’s law in the gravity dual, a la Sachdev. We show that various deforma-

tions in the gravity dual, such as inclusion of magnetic fields, a parity-violating

θ-term, dilatonic deformations, and higher-derivative corrections, do not violate the

holographic derivation of the Luttinger theorem, as long as the theory is in a con-

fining phase. Therefore a robustness of the theorem is found for strongly correlated

fermions coupled with strongly coupled sectors which admit gravity duals. On the

other hand, in the deconfined phase, we also show that the deficit appearing in the

Luttinger theorem is again universal. It measures a total deficit which measures the

charge of the deconfined (“fractionalized”) fermions, independent of the deformation

parameters.ar
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1. Luttinger theorem and holography

The Luttinger theorem [1, 2] is one of the key fundamental relations in condensed

matter physics and it states that the volume enclosed by the Fermi-surface is equal to

the charge density. This theorem, which is originally derived by Luttinger and Ward

for Landau’s Fermi liquids, is non-trivial in the sense that this theorem is about the

volume enclosed by the Fermi-surface. Remember that in the Landau’s Fermi-liquid

picture, we have a quasi-particle description for the spectrum near the Fermi-surface,

but generically the quasi-particle description is not valid for the spectrum far away

from the Fermi-surface, therefore the spectrum deep inside the Fermi-surface does

not always allow the quasi-particle description generically. The non-trivial point of

the Luttinger theorem is that it relates the spectrum not only near the Fermi-surface

(where quasi-particle picture holds) but also deep inside the Fermi-surface (where

quasi-particle picture does not hold), to the charge density.

It is widely known that the theorem holds for Fermi liquids having a Fermi

surface, and there is a general non-perturbative proof of the Luttinger theorem for

Fermi liquids [3] (the original proof by Luttinger and Ward was with perturbation

of Fermi liquids). The proof of [3] is based on a U(1) gauge symmetry, Fermi-liquids

description near the Fermi-surface and a mild assumption for dynamical degrees of
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freedom, namely, all the momentum and charge carrying degrees of freedom are quasi-

particles near the Fermi-surfaces. See also [4, 5] for further developments concerning

the proof of the Luttinger theorem.

On the other hand, in nature there are quite interestingly materials, such as

high Tc superconductors or heavy fermions, where its normal phase shows non-Fermi

liquid behavior, and in addition, the standard quasi-particle description breaks down.

In such situations whether the theorem holds or not is to be better understood.

Recent progress in applications of string theory, the holographic principle [6, 7,

8], to condensed matter systems brought an insight about the Luttinger theorem

in strongly correlated fermion systems. In [9, 10, 11], it was pointed out that a

holographic system with a charged bulk fermion, which is called “electron star” in

the literature, exhibits the Luttinger theorem of the boundary fermion theory. This

is based on the observation that the bulk fermions obey a bulk Luttinger theorem

at each radius for the electron star. Then, Hartnoll pointed out [12] that the flux

emanating from the black hole horizon will equal the deviation from the Luttinger

relation. Furthermore, Sachdev clarified [13] that in a simple holographic set-up

for fermions with fermion-number chemical potential, the Luttinger relation follows

simply from the Gauss’s law in the bulk and that it holds in confined phase (thermal

gas phase) but breaks down in deconfined phase (black hole phase). However it

is also true that their argument uses a specific holographic setup like neglecting

higher derivative corrections. Therefore it is natural to ask how universal the non-

perturbative Luttinger theorem is for fermions.

The holographic principle has been widely applied to various gravity setups,

and robust correspondence has been thoroughly studied. Among many variations

of the holographic models, some of the most popular and meaningful ones are: (i)

higher-derivative corrections in the bulk gravity + Maxwell theory, (ii) inclusion of θ

term and magnetic field, (iii) inclusion of a dilaton to have dilatonic gravity models.1

Each corresponds, in terms of condensed matter theory language, to: (i) Sub-leading

terms concerning the strong coupling expansion, (ii) Parity-violating terms inducing

quantum Hall effects under magnetic fields, and (iii) Drastically different infra-red

behavior, for example having a Lifshitz-like scaling near quantum critical points, and

more realistic systems with vanishing entropy at zero temperature.

We would like to study whether the holographic derivation of the Luttinger

theorem a la Sachdev can survive against the deformations, to find a universality

of the holographic Luttinger theorem. In this paper, we examine these popular

deformations and show the Luttinger theorem to hold for all of these deformations,

in the case of confining phases.2

1For the inclusion of the dilaton, see also [14, 15, 16].
2The Luttinger theorem for various string-motivated field theories was studied in [17].
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2. Holographic derivation of the Luttinger theorem

We follow the beautiful argument of Sachdev’s holographic derivation of the Luttinger

relation [13], to show the robustness of the holographic Luttinger theorem. We

generalize Sachidev’s derivation [13], in particular concerning the following points:

(i) In the gravity side we allow for a generic action for the bulk gauge fields including

higher-derivative corrections. (ii) We allow an axion coupling (responsible for a θ-

term) in the action and we include a magnetic field in the background. (iii) The

gravity action is coupled to a dilaton with a generic form of its couplings to the

gravity and the bulk gauge fields, resulting in generic background geometry which is

different from the cut-off AdS4 used in [13]. Specifically, we consider the following

action

S =

∫
d4x
√
g
[
R− 2(∇φ)2 − g(φ)V0 − (∇a)2 − f(φ)L[FMN ]

+ iψ̄(ΓMDM +m)ψ − h(φ) a εKLMNFKLFMN

]
. (2.1)

Here, the spacetime dimension is 4 which is dual to a condensed matter system

in 2+1 dimensions. The 2 + 1 dimensions are spanned by x, y and t, while the z

direction is the emergent space coming out of the holographic principle. The sub-

spacetime z = 0 is the boundary of the bulk geometry. The geometry typically is an

asymptotic AdS4 geometry, but in this paper we do not rely on any specific metric.3

D is the Dirac operator in which the U(1) charge of the fermion is included as q in

the covariant derivative. The Maxwell field in the bulk can have a generic nonlinear

electrodynamics Lagrangian L[F ]. For example, the standard Maxwell Lagrangian is

L[F ] = (1/4)FMNF
MN , while the famous Dirac-Born-Infeld action which is natural

in string theory is

L(F ) =

√
det

(
gMN +

1

λ
FMN

)
, (2.2)

and includes higher derivative terms as a form of F 4 and higher multiples. In hologra-

phy, higher-derivative corrections may be related directly to a physical consequence;

for example, the famous calculation on the shear viscosity of the quark-gluon plasma

[18, 19] can be corrected by higher-derivative terms to have lower values, but a physi-

cal constraint on the form of the higher-derivative terms coming from a bulk causality

may forbid the value of the viscosity (divided by the entropy density) to go lower

[20, 21]. In generic holographic setting, even if we take large N limit, these higher

derivative corrections are non-negligible.

The system couples to the bulk scalar field φ which is a dilaton in string theory.

Explicit solutions (such as the ones with horizons studied in, for examples, [22] - [34]

3The Luttinger theorem is in principle a low energy phenomena, so the UV behavior is expected

not to be relevant for the discussion.
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) are not necessary in the following. In the second line of the action (2.1), we have

the parity-violating θ-term (the axion coupling), which is relevant for a quantum

Hall effect under the magnetic field, see for examples, [35, 36, 37, 29, 38].

The essence of the Sachdev’s derivation is to consider a bulk fermion one-loop

path-integration in the total free energy as a semi-classical approximation. This

affects the scalar potential of the bulk gauge field, to minimize the free energy (which

is nothing but the on-shell effective action in the gravity side). A radial integral of

the bulk Gauss’s law turns out to be nothing but the Luttinger relation. Once one

puts φ = a = 0 and L = (1/4)F 2, and takes a cut-off AdS space in the derivation

below, everything reduces to the Sachdev’s original derivation.

The bulk free energy per a unit volume in our case is

F =

∫
dz
√
g
(
−f(φ)L[F ]− h(φ)aF F̃

)
− T

V
Tr Log [D · Γ +m] . (2.3)

We have integrated out the bulk fermion ψ, to have the last term.4 We ignore the

back reaction of the fermions to the bulk geometry and the dilaton and the axion; we

only consider a back reaction to the gauge field (a possible justification is presented

in the next section).

As for the gauge field configuration, we assume the homogeneity and the isotropy

in the (x, y) directions. Then non-vanishing components of the static gauge field

strengths are only Ftz and Fxy. Using the Jacobi identity in the (x, y, z) space, we

obtain ∂zFxy = 0 which means that B ≡ Fxy is constant. So, in the Az = 0 gauge,

we are left with the gauge configuration

A0 = A0(z), Ax = −B
2
y, Ay =

B

2
x, Az = 0. (2.4)

The charge density of the boundary theory is given by

〈Q〉 ≡ −∂F
∂µ

= −Dz(z = 0) where Dz ≡ f(φ)
∂L[F ]

∂F0z

+ h(φ)aFxy. (2.5)

Here we have defined the chemical potential as µ = Φ(z = 0) where we denote the

temporal component of the gauge field as A0 ≡ iΦ. Note that the Φ dependence in

the fermion loop in (2.3) does not contribute to the definition of the charge (2.5),

because the bulk fermion wave functions vanish at the boundary z = 0 where the

chemical potential is defined, due to the normalizability.

To explicitly perform the fermion one-loop integral to evaluate (2.3), one just

needs a formal expression characterizing the discrete energy eigen modes of the bulk

fermions, which looks

Dn χl,n(z) = El,n χl,n(z). (2.6)
4If we do not include this fermion path integral to account for the back-reaction to the gauge

potential, we would not obtain the Luttinger relation (see for example a discussion in [39]). The

effects of the bulk fermions should be communicated with the gauge potential, as the Luttinger

theorem is a relation between the Fermi surface and the charge density.
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The operator Dn is nothing but a spatial part of the covariant Dirac operator in

the curved geometry. χl,n and El,n are the eigenfunctions and eigenvalues of the

operator Dn, respectively.5 Here the integer l labels the Kaluza-Klein modes of the

bulk fermion in the curved space, and n labels the Landau levels of the fermion wave

function in the x-y space as the magnetic field is present. Below, we shall use only

the two facts: First, the operator Dn includes a trivial term qΦ coming from the

minimal coupling in the Dirac operator, and second, the normalization is given as∫
dz

√
gzz
−gtt

χ†l,n(z)χl,n(z) = 1 , (2.7)

where no summation for l and n is imposed.6 See Appendix A for the explicit

evaluation of the states with the operator D.

Using this energy eigenvalue, generically the trace log term in the free energy

can be evaluated as

T

V
Tr Log [D · Γ +m] =

qB

2π

∑
l

∑
n

El,nθ(−El,n). (2.8)

The step function is necessary to count only the residues appearing in the shift of the

poles in the path integral in the off-shell k0 space. See Appendix B for the detailed

calculations. The factor qB/2π is the unit volume of the discretized momentum

space (kx, ky) due to the magnetic field.

Now, to find a saddle point of the free energy with respect to the bulk field Φ,

we consider the bulk on-shell equation

0 =
δF
δΦ

. (2.9)

To calculate this with the fermion loop term, we use (2.7) and (2.6) to rewrite the

fermion free energy (2.8) as

El,nθ(−El,n) =

∫
dz

√
gzz
−gtt

χ†l,n(z)χl,n(z)El,nθ(−El,n)

=

∫
dz

√
gzz
−gtt

χ†l,n(z)Dχl,n(z)θ(−El,n) . (2.10)

With the fact that Φ dependence of the operator D is just linear in qΦ as it is a

Dirac operator (see Appendix A for the details), the minimization of the free energy

5For deconfined geometry l can be a continuous parameter, but here we formally write the generic

label as l. In addition to that, in the deconfined geometry, the energy eigenvalues are generically

complex, thus the amplitude of the wave function damps in time exponentially, as in the case of

quasi-normal modes. Here formally we regard our calculation performed in a time scale shorter

than the decay time scale.
6We consider the cases where bulk metric takes the form as ds2 = gtt(z)dt

2 +
∑2
i=1 gii(z)dx

2
i +

gzz(z)dz
2.
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(2.9) is7

−∂z
(
f(φ)

∂L[F ]

∂F0z

+ h(φ)aFxy

)
− q qB

2π

√
gzz
−gtt

∑
l,n

θ(−El,n)χ†l,n(z)χl,n(z) = 0 . (2.11)

Then we make an integration over the z space, which leads us to the Luttinger

relation, as follows. For that, we need one more information for the geometry at

the IR. Let us first consider a generic confining geometry, for which the geometry

consistently ends at z = zIR. The Gauss’s law at the IR end z = zIR shows that the

electric flux Dz vanishes there. Then, from the z integration of (2.11), we obtain

〈Q〉/q =
qB

2π

∑
l,n

θ(−El,n) . (2.12)

This is the Luttinger relation, since the right hand side is the volume enclosed by

the Fermi surface. Note that since we turn on the magnetic field, the Landau levels

appear and the x-y momentum space is discretized, and resultantly the unit volume

of the x-y momentum space qB/2π appears.

For deconfined geometries, the IR boundary condition differs, and in particular

the electric flux does not vanish there. There appears a deficit in the Luttinger

relation. We discuss the situation in the next section.

One should have noticed that the derivation here is almost identical with what

Sachdev gave in [13]. However, we find it intriguing that the derivation by Sachdev

is so robust that the theorem is valid against various deformations of the system.

In particular, the inclusion of the higher derivative corrections corresponds to the

direction toward a weak coupling where it is plausible that the Luttinger theorem is

valid. Furthermore, the inclusion of the background magnetic field is interesting, as it

not only introduces a nice regularization of the momentum space but also is involved

with quantum Hall effects. The dilatonic corrections are related with existence of

different scaling at the IR, and even in those systems our generalized derivation shows

that the Luttinger theorem holds.

Although in this paper we worked in four spacetime dimensions in the grav-

ity theory (which corresponds to three spacetime dimensions for the liquid system),

we can generalize the derivation to higher dimensions, in a straightforward man-

ner. A possible obstacle would be the F ∧ F term in the bulk, which should be

generalized to a Chern-Simons term in higher dimensions, then one cannot impose

the isotropy which we have employed in the derivation above. Another concern

may be on the fermion integral, since generically in higher dimensions the theory

becomes non-renormalizable. However, the leading quantum loop which we consid-

ered in this paper is just an effect of the chemical potential of the one-loop diagram

7When taking a variation of E θ(−E) with respect to Φ, one may be worried about the Φ-

dependence in E inside the step function. However, as the variation of θ(E) is a delta function

while there is an overall E in front of it, the worring contribution disappears.
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of fermions, which can be defined without any problem. Therefore we claim that

higher-dimensional generalization of the derivation can be done accordingly.

3. Discussions

The essential statement which we would like to make in this paper is just the robust-

ness of the holographic Luttinger theorem, which was already shown in the previous

section. We end this short paper with two important observations: First, the validity

of our calculation in view of quantum corrections in string theory and AdS/CFT,

and second, the emergent dependence on deformation parameters only in the decon-

finement phase.

3.1 Quantum corrections in string theory

In the derivation of the holographic Luttinger theorem, Sachdev and we computed

the fermion one-loop diagram and considered its back-reaction to the gauge potential.

However, in general in string theory, other loops involving gravity and other fields

may contribute, so the effect on the gauge potential may not be only from the fermion

one-loop. Here we shall point out that a proper large N scaling in AdS/CFT can

avoid this mixing problem8.

We assume that the bulk fermion is from a space-filling D-brane. This fermion

is often called “mesino” since it may be a fermion counterpart of mesons, when the

D-brane is identified with the flavor D-branes in the AdS/CFT correspondence [40].

The gauge potential Aµ also comes from a space-filling D-brane. This means that the

effective gauge coupling q is of order O(1/
√
N), because in the AdS/CFT correspon-

dence, the string coupling constant gs scales as ∼ 1/N , and the coupling on the D-

brane is the open string coupling
√
gs while the coupling in the bulk geometry (gravity

and the dilaton φ and the axion a) is gs. Denoting the graviton/dilaton/axion fluc-

tuation as δg, and the gauge fluctuation as δAµ, and the fermion fluctuation as ψ,

then the generic dependence in N in general AdS/CFT is written as

S = (∂δg)2 +
1

N
(δg)3 +

1

N2
(δg)4

+ (∂δAM)2 + ψ̄ΓMDMψ +
1√
N

(δAM)ψ̄ψ +
1

N
δg(δAM)2 +

1

N
δgψ̄ψ + · · · .(3.1)

Looking back our derivation of the holographic Luttinger theorem, we have performed

the ψ integral in this action. From the generic action written above, we observe that

this one-loop integral involves the term 1√
N

(δAµ)ψ̄ψ, so it shifts the action by a

term of order O(1/
√
N). This is a leading order effect, compared to the quantum

8See also [13] for the argument to include quantum fluctuations beyond the fermion one-loop.
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corrections involving the graviton, the dilaton and the axion,9 since in the action

above those corrections come with a coupling of O(1/N).

Therefore, we conclude that, assuming that the origin of the fermions and the

gauge fields is D-branes in the bulk, the fermion one-loop integral is the leading order

in 1/N expansion in AdS/CFT, so we can consistently ignore the other quantum

corrections.

3.2 Deconfined phase

As first pointed out by Hartnoll [12] and also studied in detail by Iqbal and Liu

recently [15], the presence of the black hole horizon significantly alters the result; in

the final line of the derivation of the Luttinger theorem (2.12), we have used the fact

that the electric displacement Dz at the IR endpoint vanishes due to the confining

geometry. However in the presence of the black hole the IR boundary condition is

different and there exists in general an electric flux emanating from the black hole

horizon, for charged black holes.

〈Q〉+Dz

∣∣
z=zIR

= q
∑
l,n

θ(−El,n) , (3.2)

with

Dz

∣∣
z=zIR
≡
(
f(φ)

L[F ]

∂F0z

+ h(φ)aFxy

)∣∣
z=zIR

. (3.3)

So, there exists a Luttinger deficit for the deconfined phase [12, 15]. Here Dz is the

electric displacement in the bulk at the IR of the geometry, which is the electric flux

penetrating the horizon of the black hole. This comes from the first term of (2.11).

In the presence of the deformations which we consider, for the deconfined phase,

there appears a dependence on the magnetic field and the axion field at the horizon.

The axion field corresponds to the parity-violating θ term, so in general, the Luttinger

theorem in the deconfinement phase is violated with a deficit dependent on the θ term

and the magnetic field in addition to the deficit [15] of the electric charge carried

by the “fractionalized” fermions [41, 42, 17] (which are deconfined quarks in the

standard holographic QCD terminology).

The electric displacement includes a contribution from the parity-violating term,

the second term of the (3.3),[
Dz

∣∣
z=zIR

]
parity−odd

= θeffB. (3.4)

9Here, as a classical background geometry, we have assumed that the back-reaction of the flavor

brane itself (with ψ = 0) is already included in the geometry. In this paper we need not to specify

the geometry for the derivation of the Luttinger theorem, so whatever the back-reacted classical

geometry is, there is no problem in the derivation.

– 8 –



This term directly responds to the magnetic field present in the system, and the

effective value of the coefficient, θeff , in the Luttinger theorem is given by

θeff ≡ [h(φ)a]z=zIR . (3.5)

It is intriguing that the parameter θeff is not given by the UV geometry but the IR

geometry. The IR geometry is not directly related to the parameters of the fermion

liquid system defined at UV, and it is rather determined by the gravitational dynam-

ics corresponding to strongly coupled sectors, which these fractionalized fermions

couple. This dependence on IR geometry reflects the fact that the Luttinger relation

is a phenomena at low energy. Note that even with no electric field F0z, once the

parity-violating term and the magnetic field Fxy is turned on, the Luttinger deficit

appears.

The deficit appearing in the Luttinger relation (3.2) appears to depend explicitly

on the deformation parameters we introduced in the gravity dual. The parameters

are in the nonlinear electrodynamics L[F ] and the dilaton-axion couplings to the

gauge fields in the gravity side. However, in (3.2), the deficit depend only on the

electric displacement Dz at the black hole horizon. The effect of the parity-odd

term (θeffB) is also included in the electric displacement. So, we conclude that the

effect of the deconfinement phase to the deviation from Luttinger theorem can be

summarized into electric displacement Dz, which is determined by the total charge

of the “fractionalized” fermions, even in the presence of the deformations considered

in this paper. Note that we have not assumed the existence of the quasi-particle

picture in our derivation.
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A. Bulk fermion eigen-states

In this appendix we shall explicitly calculate (2.6) with the background gauge field.

We work in the Lorentzian signature, while the Euclidean signature (which we em-

ployed in the derivation) can be easily obtained by an analytic continuation. First,

we derive the Dirac operator. The fermion action in the bulk is

Sfermion =

∫
d3+1x

√
−g i

[
ψ̄ΓMDMψ −mψ̄ψ

]
. (A.1)
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Here the Dirac operator is DM = ∂M + 1
4
wabMΓab − iqAM . The definition of the

Gamma matrices in the local Lorentz frame are

Γz ≡
(

12 02

02 −12

)
, Γµ ≡

(
02 γ

µ

γµ 02

)
(A.2)

with γ0 ≡ iσ3, γ1 ≡ σ1, and γ2 ≡ −σ2, where σ1, σ2, σ3 are the Pauli matrices. We

follow the notation of [43] and [32] except for the assignment of γµ (this difference

is necessary to see the diagonalization as for fermion components, see below). The

notation for the indices are: M = 0, 1, 2, z, and µ = 0, 1, 2.

Writing the 4-component fermion as

ψ ≡
(
ψ+

ψ−

)
, ψ± ≡ (−ggzz)−1/4φ±, (A.3)

where φ± is a two-spinor, the Dirac equation is√
gii
gzz

(∂z ∓m
√
gzz)φ± = ∓iKµγ

µφ∓, (A.4)

with K0 ≡ −i
√

gii
−gtt (∂0 − iqA0) and Ki ≡ −i(∂i − iqAi) with i = 1, 2.

In the Dirac equation, the four spinor components are coupled, while we would

like to group them into 2-spinors to derive (2.6). In our convention, among the

gamma matrices, γ0 is a diagonal matrix while γi is not, so if we can bring the Kiγ
i

to a diagonal form, the decomposition to the 2-spinors is complete. This is nothing

but solving the following eigen equation in the x-y space,

i(K1γ
1 +K2γ

2)φ̃± =

(
α 0

0 β

)
φ̃±, (A.5)

where α and β are complex constants, and φ̃±(x, y) are 2-spinor wave functions rep-

resenting Landau levels of fermions in magnetic fields. The gauge field configuration

(2.4) satisfies [K1, K2] = iqB, so using a creation and an annihilation operator

1√
2qB

(K1 + iK2) ≡ a,
1√
2qB

(K1 − iK2) ≡ a†, (A.6)

we have the harmonic osccillator [a, a†] = 1. The eigen equation (A.5) becomes

i
√

2qB

(
0 a

a† 0

)
φ̃± =

(
α 0

0 β

)
φ̃±. (A.7)

A solution can be easily found as

φ̃± ∝
(

(i
√

2qBn/α)(a†)n−1|0〉
(a†)n|0〉

)
, n = 0, 1, 2, · · · . (A.8)
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We need β = −2qBn/α to have this solution. With this wave function for (x, y), we

choose

φ±,n = f±,n(z)e−iw±t

(
(i
√

2qBn/α±)(a†)n−1|0〉
(a†)n|0〉

)
, (A.9)

then the Dirac equation (A.4) is written as√
−gtt
gzz

(∂z ∓m
√
gzz)φ±,n

= ∓
(

(i∂t + qA0)σ3 +

√
−gtt
gii

(
α∓ 0

0 −2qBn/α∓

))
φ∓,n . (A.10)

From the phase matching in (A.10), we have w+ = w− ≡ En. The upper spinor

component of the equation (A.10) yields√
−gtt
gzz

(∂z −m
√
gzz)

f+,n(z)

α+

= −
(
En + qA0 +

√
−gtt
gii

α−

)
f−,n(z)

α−
, (A.11)√

−gtt
gzz

(∂z +m
√
gzz)

f−,n(z)

α−
=

(
En + qA0 +

√
−gtt
gii

α+

)
f+,n(z)

α+

. (A.12)

The lower spinor component of the equation (A.10) yields√
−gtt
gzz

(∂z −m
√
gzz) f+,n(z) = −

(
−(En + qA0) +

√
−gtt
gii

(−2qBn/α−)

)
f−,n(z) ,

(A.13)√
−gtt
gzz

(∂z +m
√
gzz) f−,n(z) =

(
−(En + qA0) +

√
−gtt
gii

(−2qBn/α+)

)
f+,n(z) .

(A.14)

For (A.13) and (A.14) to be consistent with (A.11) and (A.12), we need

α+ = −α−, α− = 2qBn/α−, α+ = 2qBn/α+. (A.15)

This can be solved as

α± = ±
√

2qBn or α± = ∓
√

2qBn . (A.16)

Then (A.13) and (A.14) become the same as (A.11) and (A.12), and we obtain two

independent solutions as (A.16).

The resultant equations (A.13) and (A.14) can be re-written as

D(i=1)
n χn(z) = En χn(z) , (A.17)

D(i=1)
n ≡

√
−gtt
gzz

(−iσ2∂z − σ1m
√
gzz)− qA0 − σ3

√
−gtt
gii

√
2qBn , (A.18)
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with χ ≡ (f+, f−)T. This is for the choice α± = ±
√

2qBn. For the other choice

α± = ∓
√

2qBn,

D(i=2)
n ≡

√
−gtt
gzz

(−iσ2∂z − σ1m
√
gzz)− qA0 + σ3

√
−gtt
gii

√
2qBn . (A.19)

The operator Dn of (2.6) appears here as D(i)
n . See also [13, 14]. Note that due

to the interaction term between spins and magnetic fields, there are two Dn’s labeled

by i. Generically this eigen-equation allows only a discrete spectrum10 for En, so the

energy En is also labeled by l (the Kaluza-Klein modes in z space) in addition to n

(the Landau levels) and i (spins) as

Din χn,l,i(z) = En,l,i χn,l,i(z) . (A.20)

For simplicity of the notation, we will omit the index i in this paper.

The normalizability condition should single out a certain linear combination of

the two solutions. The reason why we got two solutions generically can be easily un-

derstood by the following argument. The Dirac equation (A.4) is a coupled equation

of φ+ and φ−, but one can eliminate one of them. Bringing (A.4) into the following

form formally,

(−iKµγ
µ)−1

√
gii
gzz

(∂z −m
√
gzz)φ+ = φ−, (A.21)

(iKµγ
µ)−1

√
gii
gzz

(∂z +m
√
gzz)φ− = φ+, (A.22)

we can combine these to eliminate φ−, to have[
(iKµγ

µ)−1

√
gii
gzz

(∂z +m
√
gzz)(−iKµγ

µ)−1

√
gii
gzz

(∂z −m
√
gzz)

]
φ+ = φ+.(A.23)

This is a 2nd order differential equation for a two-spinor φ−, so we generically have

four independent solutions. Without magnetic field, given E, four states are de-

generate and they correspond to spin {up and down}, and {normalizable and non-

normalizable} modes. In the presence of magnetic fields, this degeneracy splits up

by spins, so given spin and energy eigenvalue E, there is a set of a normalizable and

a non-normalizable mode.

B. Evaluation of the fermion free energy

In this appendix, we demonstrate the calculation of the fermion one-loop free energy

(2.8).

10For given index n and i, the corresponding parts of Dirac equation be coupled 1st order dif-

ferential equations for two spinor components, so it allows two independent solutions. Taking the

appropriate ration between these two, we can eliminate non-normalizable mode in the bulk UV and

regular mode in bulk IR in Euclidian signature. Then it allows only discrete modes labeled by l.
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B.1 Reduction to 1 + 0 dimension

In the previous appendix, we demonstrate that given l (the Kaluza-Klein modes in

z space), n (the Landau levels) and i (spins), the Dirac equation reduces to a single

equation (A.20) which determines El,n. Therefore the action for the fermion should

read as

S =
∑
l,n

∫
dt iΨ̄l,n(t) (i∂t − El,n) Ψl,n(t). (B.1)

Here Ψl,n(t) is a single component fermion, since the dependence on the Landau level

n is already included with the specific Landau level wave function in the x-y space.

The fermion field Ψl,n(t) is properly normalized to have the action above. Note also

that there are two El,n’s, depending on the choice of the Dirac operator Dn in (A.18)

and (A.19) labeled by i. In the following, we omit the index i for simplicity of the

notation.

Let us proceed to calculate the free energy. We bring the Tr Log into the following

expression,

Ffermion ≡
∑
n

qB

2π

∑
l

Tr Log (i∂t − El,n) =
qB

2π

∑
l,n

∫ ∞
El,n

ds Tr
1

(i∂t − s)

=
qB

2π

∑
l,n

∫ ∞
El,n

ds

∫
dw

2π

1

w − s
. (B.2)

Here, we have used the fact that the momentum integration in the kx-ky space is

now replaced by the Landau level summation, as∫
dkxdky
(2π)2

=

∫
2πkdk

(2π)2
=

∫
πd(k2)

(2π)2
=
∑
n

2πqB

(2π)2
=
∑
n

qB

2π
. (B.3)

We have used the momentum relation k2 = 2qBn which we obtained in the last

appendix.

Now we perform the off-shell w integration. The standard path in the complex

w-plane for the integration of w rounds the upper half plane plus the real axis. In the

iε prescription, the pole contributing in the path integral is the one on the negative

real axis of w. This appears only for the negative s so the integral is non-zero only

when El,n < 0, and we obtain

Ffermion =
qB

2π

∑
l,n

∫ 0

El,n

ds
1

2π
2πiθ(−El,n) = −iqB

2π

∑
l,n

El,nθ(−El,n). (B.4)

This expression is (2.8) in the Euclidean notation.
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B.2 Another viewpoint: Reduction to 1 + 2 dimension

We shall present another viewpoint here, to evaluate the fermion free energy, which

is a natural dimensional reduction along z.

First, we shall decompose the bulk fermion into Kaluza-Klein modes along z

labeled by l. The effective action for the l-th mode has a kinetic operator Dµγ
µ−ml

where ml is the mass for the l-th mode of the decomposed fermion. Then, we compute

Tr Log(Dµγ
µ −ml) for each state l and make a summation over l.

Let us work out the Kaluza-Klein decomposition explicitly. The bulk fermion

action is

Sfermion =

∫
d3+1x

√
−g i

[
ψ̄ΓMDMψ −mψ̄ψ

]
. (B.5)

Using the notation in the previous appendix, this action Sfermion can be explicitly

written as∫
d3+1x

√
gzz
−gtt

i
(
φ†+γ

0, φ†−γ
0
) iK̄µγ

µ −
√
−gtt
gzz

Dz −m
√
−gtt√

−gtt
gzz

Dz −m
√
−gtt iK̄µγ

µ

(φ+

φ−

)
.

(B.6)

Here

K̄µ ≡
√
−gtt
gii

Kµ = (−i(∂0 − iqA0) ,−i
√
−gtt
gii

(∂i − iqAi))) , (B.7)

and Dz ≡ ∂z − iqAz. In view of this, we consider the following matrix equation so

that the above matrix is diagonalized, 0 −
√
−gtt
gzz

Dz −m
√
−gtt√

−gtt
gzz

Dz −m
√
−gtt 0

(φ+

φ−

)
= −ml

(
φ+

φ−

)
(B.8)

where ml is some eigenvalue. We write11(
φ+

φ−

)
≡
∑
l

(
g

(l)
+ (z)Ψ(l)(t, x, y)

g
(l)
− (z)Ψ(l)(t, x, y)

)
(B.9)

where Ψ is a two-spinor which is a function of (t, x, y), and g±(z) are scalar functions.

These g±(z) are required to satisfy 0 −
√
−gtt
gzz

Dz −
√
−gttm√

−gtt
gzz

Dz −
√
−gttm 0

( g(l)
+ (z)

g
(l)
− (z)

)
= −ml

(
g

(l)
+ (z)

g
(l)
− (z)

)
. (B.10)

11The reason why we took a common factor g±(z) for the 2-spinor φ± is that this z-dependent

factor go through the γ matrices in K̄µγ
µ such that the z integration can be done independently

as (B.11), (B.12).
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With explicit eigen wave functions, we can reduce the action to a 3-dimensional

action. Substituting (B.9) to the action, we obtain

Sfermion =
∑
l,m

∫
d3xdz

√
gzz
−gtt

i Ψ̄(l)(iK̄µγ
µ −mm)Ψ(m)

(
g

(l) ∗
+ (z)g

(m)
+ (z) + g

(l) ∗
− (z)g

(m)
− (z)

)
.

(B.11)

The z integration gives a normalization for the fermion which we require as∫
dz

√
gzz
−gtt

(
g

(l) ∗
+ (z)g

(m)
+ (z) + g

(l) ∗
− (z)g

(m)
− (z)

)
= δlm. (B.12)

Furthermore, we calculate the chemical potential for each mode as

µlm ≡
∫
dz

√
gzz
−gtt

A0(z)
(
g

(l) ∗
+ (z)g

(m)
+ (z) + g

(l) ∗
− (z)g

(m)
− (z)

)
. (B.13)

Here we assume that this chemical potential is diagonal

µlm = µlδlm , (B.14)

and also consider only the case below where gii(z) = −gtt(z) such that dimensional

reduction along z ensures the Lorentz invariance in the t-x-y spacetime12. Then we

finally obtain the decomposition

Sfermion =
∑
l

∫
d3x i Ψ̄(l)(Dµγ

µ −ml)Ψ
(l), (B.15)

where Di ≡ ∂i − iqAi and D0 ≡ ∂0 − iqµl.
The on-shell condition for the l-th fermion is El + qµl =

√
m2
l + k2 where k is

the magnitude of the momentum in the (x, y) space.13 The derivative in the Dirac

operator has eigenvalues ∂µ = (−i(w+qµl), ik1, ik2). In the presence of the magnetic

field, the momentum k is replaced by the Landau levels.

Let us proceed to calculate the free energy. We bring the Tr Log into the following

expression,

Ffermion ≡
∑
l

Tr Log(Dµγ
µ −ml) =

∑
l

Tr

∫ ∞
ml

dt Tr
1

Dµγµ − t

=
∑
l

∫ ∞
ml

dt

∫
dwd2k

(2π)3

2t

(w + qµl)2 − k2 − t2

≡
∑
l

F lfermion . (B.16)

12In general such diagonalization makes the diagonal matrix ml off-diagonal. So choosing the

basis such that both µlm and ml diagonal is impossible for a generic A0(z). Similarly choosing

gtt(z) = −gii(z) is impossible for a generic metric gµν such as the Lifshitz form. The argument in

the previous subsection using the 1 + 0-dimensional picture does not refer to these assumptions.
13This El coincides with El,n given in (A.20), because both E’s, which is the eigenvalue of i∂t,

are obtained from the equations of motion of same action; One is from 4-dimensional viewpoint

(B.5), and the other is from dimensionally reduced 3-dimensional viewpoint (B.15).
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As you can easily check, this integral is divergent. Therefore, we need to subtract the

vacuum contribution (the free energy with µl = 0) which corresponds to the Dirac

fermi sea. Then

F (reno) l
fermion ≡ F

l
fermion(µl)−F lfermion(µl = 0) . (B.17)

Now we perform the off-shell w integration. The standard path in the complex w-

plane for the integration of w, which rounds the upper half plane, concerns two poles

at w = −qµl ±
√
k2 + t2. In the iε prescription, the only relevant pole in the path

integral is the one on the negative real axis of w. However, note that now we have

a contribution from the chemical potential, thus there is the case when the both of

the two poles are on the negative real axis.

F lfermion(µl) =

∫ ∞
ml

dt

∫
dwd2k

(2π)3

2t

(w + qµl −
√
k2 + t2)(w + qµl +

√
k2 + t2)

=

∫ ∞
ml

dt

∫
d2k

(2π)3

[
2πi 2t

−2
√
k2 + t2

θ(qµl +
√
k2 + t2)

+
2πi 2t

2
√
k2 + t2

θ(qµl −
√
k2 + t2)

]
. (B.18)

Note that the θ function in the first term is always equal to the unity. So, the first

term is independent of µl. The second term vanishes when µl = 0. Therefore, we

find that F reno
fermion =

∑
l F

(reno) l
fermion coincides with the sum of the second term in (B.18),

F reno
fermion =

∑
l

tr

∫
d2k

(2π)3

∫ ∞
ml

dt 2πi
2t

2
√
k2 + t2

θ(qµl −
√
k2 + t2). (B.19)

The θ function represents the Fermi surface, since one satisfies the momentum con-

straint relevant to the chemical potential, qµl >
√
k2 + t2 (roughly speaking, t is the

mass of the l-th mode of the fermion). In fact, this is a widely known technique [44].

Denoting the value of t satisfying qµl −
√
k2 + t2 = 0 as t∗l, (B.19) is integrated to

F reno
fermion =

∑
l

tr

∫
d2k

(2π)3

∫ t∗l

ml

dt 2πi
2t

2
√
k2 + t2

θ(t∗l −ml)

=
∑
l

i

∫
d2k

(2π)2

(√
k2 + t2∗l −

√
k2 +m2

l

)
θ(t∗l −ml)

=
∑
l

i

∫
d2k

(2π)2

(
qµl −

√
k2 +m2

l

)
θ(t∗l −ml)

= −i
∑
l

∫
d2k

(2π)2
El(k)θ(−El(k)). (B.20)

In the last equality, we have used the fact that t∗l > ml is equivalent to
√
k2 +m2

l −
qµl < 0.
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In the presence of the magnetic field, the momentum k2 is replaced by the Landau

levels 2qBn with a non-negative integer n. The momentum integral is accordingly

normalized as dk1dk2 = 2πkdk = πd(k2) = 2πqBdn, so

F (reno)
fermion = −i

∑
l

qB

2π

∑
n

El,nθ(−El,n). (B.21)

This expression is (2.8) in the Euclidean notation.
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