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raphy. The statement of the Luttinger theorem, the equality between the fermion charge

density and the volume enclosed by the Fermi surface, can be mapped to a Gauss’s law

in the gravity dual, a la Sachdev. We show that various deformations in the gravity dual,

such as inclusion of magnetic fields, a parity-violating θ-term, dilatonic deformations, and

higher-derivative corrections, do not violate the holographic derivation of the Luttinger

theorem, as long as the theory is in a confining phase. Therefore a robustness of the theo-

rem is found for strongly correlated fermions coupled with strongly coupled sectors which

admit gravity duals. On the other hand, in the deconfined phase, we also show that the

deficit appearing in the Luttinger theorem is again universal. It measures a total deficit

which measures the charge of the deconfined (“fractionalized”) fermions, independent of

the deformation parameters.
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1 Luttinger theorem and holography

The Luttinger theorem [1, 2] is one of the key fundamental relations in condensed matter

physics and it states that the volume enclosed by the Fermi-surface is equal to the charge

density. This theorem, which is originally derived by Luttinger and Ward for Landau’s

Fermi liquids, is non-trivial in the sense that this theorem is about the volume enclosed

by the Fermi-surface. Remember that in the Landau’s Fermi-liquid picture, we have a

quasi-particle description for the spectrum near the Fermi-surface, but generically the

quasi-particle description is not valid for the spectrum far away from the Fermi-surface,

therefore the spectrum deep inside the Fermi-surface does not always allow the quasi-

particle description generically. The non-trivial point of the Luttinger theorem is that it

relates the spectrum not only near the Fermi-surface (where quasi-particle picture holds)

but also deep inside the Fermi-surface (where quasi-particle picture does not hold), to the

charge density.

It is widely known that the theorem holds for Fermi liquids having a Fermi surface,

and there is a general non-perturbative proof of the Luttinger theorem for Fermi liquids [3]

(the original proof by Luttinger and Ward was with perturbation of Fermi liquids). The

proof of [3] is based on a U(1) gauge symmetry, Fermi-liquids description near the Fermi-

surface and a mild assumption for dynamical degrees of freedom, namely, all the momentum

and charge carrying degrees of freedom are quasi-particles near the Fermi-surfaces. See

also [4, 5] for further developments concerning the proof of the Luttinger theorem.

On the other hand, in nature there are quite interestingly materials, such as high

Tc superconductors or heavy fermions, where its normal phase shows non-Fermi liquid

behavior, and in addition, the standard quasi-particle description breaks down. In such

situations whether the theorem holds or not is to be better understood.
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Recent progress in applications of string theory, the holographic principle [6–8], to

condensed matter systems brought an insight about the Luttinger theorem in strongly cor-

related fermion systems. In [9–11], it was pointed out that a holographic system with a

charged bulk fermion, which is called “electron star” in the literature, exhibits the Lut-

tinger theorem of the boundary fermion theory. This is based on the observation that the

bulk fermions obey a bulk Luttinger theorem at each radius for the electron star. Then,

Hartnoll pointed out [12] that the flux emanating from the black hole horizon will equal the

deviation from the Luttinger relation. Furthermore, Sachdev clarified [13] that in a simple

holographic set-up for fermions with fermion-number chemical potential, the Luttinger re-

lation follows simply from the Gauss’s law in the bulk and that it holds in confined phase

(thermal gas phase) but breaks down in deconfined phase (black hole phase). However

it is also true that their argument uses a specific holographic setup like neglecting higher

derivative corrections. Therefore it is natural to ask how universal the non-perturbative

Luttinger theorem is for fermions.

The holographic principle has been widely applied to various gravity setups, and ro-

bust correspondence has been thoroughly studied. Among many variations of the holo-

graphic models, some of the most popular and meaningful ones are: (i) higher-derivative

corrections in the bulk gravity + Maxwell theory, (ii) inclusion of θ term and magnetic

field, (iii) inclusion of a dilaton to have dilatonic gravity models.1 Each corresponds,

in terms of condensed matter theory language, to: (i) Sub-leading terms concerning the

strong coupling expansion, (ii) Parity-violating terms inducing quantum Hall effects un-

der magnetic fields, and (iii) Drastically different infra-red behavior, for example hav-

ing a Lifshitz-like scaling near quantum critical points, and more realistic systems with

vanishing entropy at zero temperature.

We would like to study whether the holographic derivation of the Luttinger theorem a

la Sachdev can survive against the deformations, to find a universality of the holographic

Luttinger theorem. In this paper, we examine these popular deformations and show the

Luttinger theorem to hold for all of these deformations, in the case of confining phases.2

2 Holographic derivation of the Luttinger theorem

We follow the beautiful argument of Sachdev’s holographic derivation of the Luttinger

relation [13], to show the robustness of the holographic Luttinger theorem. We generalize

Sachidev’s derivation [13], in particular concerning the following points: (i) In the gravity

side we allow for a generic action for the bulk gauge fields including higher-derivative

corrections. (ii) We allow an axion coupling (responsible for a θ-term) in the action and

we include a magnetic field in the background. (iii) The gravity action is coupled to

a dilaton with a generic form of its couplings to the gravity and the bulk gauge fields,

resulting in generic background geometry which is different from the cut-off AdS4 used

in [13]. Specifically, we consider the following action

S =

∫
d4x
√
g
[
R− 2(∇φ)2 − g(φ)V0 − (∇a)2 − f(φ)L[FMN ]

+ iψ̄(ΓMDM +m)ψ − h(φ) a εKLMNFKLFMN

]
. (2.1)

1For the inclusion of the dilaton, see also [14–16].
2The Luttinger theorem for various string-motivated field theories was studied in [17].
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Here, the spacetime dimension is 4 which is dual to a condensed matter system in 2+1

dimensions. The 2 + 1 dimensions are spanned by x, y and t, while the z direction is the

emergent space coming out of the holographic principle. The sub-spacetime z = 0 is the

boundary of the bulk geometry. The geometry typically is an asymptotic AdS4 geometry,

but in this paper we do not rely on any specific metric.3 D is the Dirac operator in which

the U(1) charge of the fermion is included as q in the covariant derivative. The Maxwell field

in the bulk can have a generic nonlinear electrodynamics Lagrangian L[F ]. For example,

the standard Maxwell Lagrangian is L[F ] = (1/4)FMNF
MN , while the famous Dirac-Born-

Infeld action which is natural in string theory is

L(F ) =

√
det

(
gMN +

1

λ
FMN

)
, (2.2)

and includes higher derivative terms as a form of F 4 and higher multiples. In holography,

higher-derivative corrections may be related directly to a physical consequence; for example,

the famous calculation on the shear viscosity of the quark-gluon plasma [18, 19] can be

corrected by higher-derivative terms to have lower values, but a physical constraint on the

form of the higher-derivative terms coming from a bulk causality may forbid the value of

the viscosity (divided by the entropy density) to go lower [20, 21]. In generic holographic

setting, even if we take large N limit, these higher derivative corrections are non-negligible.

The system couples to the bulk scalar field φ which is a dilaton in string theory.

Explicit solutions (such as the ones with horizons studied in, for examples, [22] - [34] )

are not necessary in the following. In the second line of the action (2.1), we have the

parity-violating θ-term (the axion coupling), which is relevant for a quantum Hall effect

under the magnetic field, see for examples, [29, 35–38].

The essence of the Sachdev’s derivation is to consider a bulk fermion one-loop path-

integration in the total free energy as a semi-classical approximation. This affects the scalar

potential of the bulk gauge field, to minimize the free energy (which is nothing but the

on-shell effective action in the gravity side). A radial integral of the bulk Gauss’s law turns

out to be nothing but the Luttinger relation. Once one puts φ = a = 0 and L = (1/4)F 2,

and takes a cut-off AdS space in the derivation below, everything reduces to the Sachdev’s

original derivation.

The bulk free energy per a unit volume in our case is

F =

∫
dz
√
g
(
−f(φ)L[F ]− h(φ)aF F̃

)
− T

V
Tr Log [D · Γ +m] . (2.3)

We have integrated out the bulk fermion ψ, to have the last term.4 We ignore the back re-

action of the fermions to the bulk geometry and the dilaton and the axion; we only consider

a back reaction to the gauge field (a possible justification is presented in the next section).

3The Luttinger theorem is in principle a low energy phenomena, so the UV behavior is expected not to

be relevant for the discussion.
4If we do not include this fermion path integral to account for the back-reaction to the gauge potential,

we would not obtain the Luttinger relation (see for example a discussion in [39]). The effects of the bulk

fermions should be communicated with the gauge potential, as the Luttinger theorem is a relation between

the Fermi surface and the charge density.
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As for the gauge field configuration, we assume the homogeneity and the isotropy in

the (x, y) directions. Then non-vanishing components of the static gauge field strengths

are only Ftz and Fxy. Using the Jacobi identity in the (x, y, z) space, we obtain ∂zFxy = 0

which means that B ≡ Fxy is constant. So, in the Az = 0 gauge, we are left with the gauge

configuration

A0 = A0(z), Ax = −B
2
y, Ay =

B

2
x, Az = 0. (2.4)

The charge density of the boundary theory is given by

〈Q〉 ≡ −∂F
∂µ

= −Dz(z = 0) where Dz ≡ f(φ)
∂L[F ]

∂F0z
+ h(φ)aFxy. (2.5)

Here we have defined the chemical potential as µ = Φ(z = 0) where we denote the temporal

component of the gauge field as A0 ≡ iΦ. Note that the Φ dependence in the fermion loop

in (2.3) does not contribute to the definition of the charge (2.5), because the bulk fermion

wave functions vanish at the boundary z = 0 where the chemical potential is defined, due

to the normalizability.

To explicitly perform the fermion one-loop integral to evaluate (2.3), one just needs

a formal expression characterizing the discrete energy eigen modes of the bulk fermions,

which looks

Dn χl,n(z) = El,n χl,n(z). (2.6)

The operator Dn is nothing but a spatial part of the covariant Dirac operator in the

curved geometry. χl,n and El,n are the eigenfunctions and eigenvalues of the operator Dn,

respectively.5 Here the integer l labels the Kaluza-Klein modes of the bulk fermion in the

curved space, and n labels the Landau levels of the fermion wave function in the x-y space

as the magnetic field is present. Below, we shall use only the two facts: First, the operator

Dn includes a trivial term qΦ coming from the minimal coupling in the Dirac operator,

and second, the normalization is given as∫
dz

√
gzz
−gtt

χ†l,n(z)χl,n(z) = 1 , (2.7)

where no summation for l and n is imposed.6 See appendix A for the explicit evaluation

of the states with the operator D.

Using this energy eigenvalue, generically the trace log term in the free energy can be

evaluated as

T

V
Tr Log [D · Γ +m] =

qB

2π

∑
l

∑
n

El,nθ(−El,n). (2.8)

5For deconfined geometry l can be a continuous parameter, but here we formally write the generic label

as l. In addition to that, in the deconfined geometry, the energy eigenvalues are generically complex, thus

the amplitude of the wave function damps in time exponentially, as in the case of quasi-normal modes.

Here formally we regard our calculation performed in a time scale shorter than the decay time scale.
6We consider the cases where bulk metric takes the form as ds2 = gtt(z)dt

2 +
∑2
i=1 gii(z)dx

2
i +gzz(z)dz

2.
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The step function is necessary to count only the residues appearing in the shift of the poles

in the path integral in the off-shell k0 space. See appendix B for the detailed calculations.

The factor qB/2π is the unit volume of the discretized momentum space (kx, ky) due to

the magnetic field.

Now, to find a saddle point of the free energy with respect to the bulk field Φ, we

consider the bulk on-shell equation

0 =
δF
δΦ

. (2.9)

To calculate this with the fermion loop term, we use (2.7) and (2.6) to rewrite the fermion

free energy (2.8) as

El,nθ(−El,n) =

∫
dz

√
gzz
−gtt

χ†l,n(z)χl,n(z)El,nθ(−El,n)

=

∫
dz

√
gzz
−gtt

χ†l,n(z)Dχl,n(z)θ(−El,n) . (2.10)

With the fact that Φ dependence of the operator D is just linear in qΦ as it is a Dirac

operator (see appendix A for the details), the minimization of the free energy (2.9) is7

− ∂z
(
f(φ)

∂L[F ]

∂F0z
+ h(φ)aFxy

)
− q qB

2π

√
gzz
−gtt

∑
l,n

θ(−El,n)χ†l,n(z)χl,n(z) = 0 . (2.11)

Then we make an integration over the z space, which leads us to the Luttinger relation,

as follows. For that, we need one more information for the geometry at the IR. Let us

first consider a generic confining geometry, for which the geometry consistently ends at

z = zIR. The Gauss’s law at the IR end z = zIR shows that the electric flux Dz vanishes

there. Then, from the z integration of (2.11), we obtain

〈Q〉/q =
qB

2π

∑
l,n

θ(−El,n) . (2.12)

This is the Luttinger relation, since the right hand side is the volume enclosed by the Fermi

surface. Note that since we turn on the magnetic field, the Landau levels appear and the

x-y momentum space is discretized, and resultantly the unit volume of the x-y momentum

space qB/2π appears.

For deconfined geometries, the IR boundary condition differs, and in particular the

electric flux does not vanish there. There appears a deficit in the Luttinger relation. We

discuss the situation in the next section.

One should have noticed that the derivation here is almost identical with what Sachdev

gave in [13]. However, we find it intriguing that the derivation by Sachdev is so robust that

the theorem is valid against various deformations of the system. In particular, the inclusion

of the higher derivative corrections corresponds to the direction toward a weak coupling

7When taking a variation of E θ(−E) with respect to Φ, one may be worried about the Φ-dependence

in E inside the step function. However, as the variation of θ(E) is a delta function while there is an overall

E in front of it, the worring contribution disappears.
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where it is plausible that the Luttinger theorem is valid. Furthermore, the inclusion of

the background magnetic field is interesting, as it not only introduces a nice regularization

of the momentum space but also is involved with quantum Hall effects. The dilatonic

corrections are related with existence of different scaling at the IR, and even in those

systems our generalized derivation shows that the Luttinger theorem holds.

Although in this paper we worked in four spacetime dimensions in the gravity theory

(which corresponds to three spacetime dimensions for the liquid system), we can generalize

the derivation to higher dimensions, in a straightforward manner. A possible obstacle

would be the F ∧F term in the bulk, which should be generalized to a Chern-Simons term

in higher dimensions, then one cannot impose the isotropy which we have employed in the

derivation above. Another concern may be on the fermion integral, since generically in

higher dimensions the theory becomes non-renormalizable. However, the leading quantum

loop which we considered in this paper is just an effect of the chemical potential of the

one-loop diagram of fermions, which can be defined without any problem. Therefore we

claim that higher-dimensional generalization of the derivation can be done accordingly.

3 Discussions

The essential statement which we would like to make in this paper is just the robustness of

the holographic Luttinger theorem, which was already shown in the previous section. We

end this short paper with two important observations: First, the validity of our calculation

in view of quantum corrections in string theory and AdS/CFT, and second, the emergent

dependence on deformation parameters only in the deconfinement phase.

3.1 Quantum corrections in string theory

In the derivation of the holographic Luttinger theorem, Sachdev and we computed the

fermion one-loop diagram and considered its back-reaction to the gauge potential. However,

in general in string theory, other loops involving gravity and other fields may contribute,

so the effect on the gauge potential may not be only from the fermion one-loop. Here we

shall point out that a proper large N scaling in AdS/CFT can avoid this mixing problem.8

We assume that the bulk fermion is from a space-filling D-brane. This fermion is

often called “mesino” since it may be a fermion counterpart of mesons, when the D-brane

is identified with the flavor D-branes in the AdS/CFT correspondence [40]. The gauge

potential Aµ also comes from a space-filling D-brane. This means that the effective gauge

coupling q is of order O(1/
√
N), because in the AdS/CFT correspondence, the string

coupling constant gs scales as ∼ 1/N , and the coupling on the D-brane is the open string

coupling
√
gs while the coupling in the bulk geometry (gravity and the dilaton φ and

the axion a) is gs. Denoting the graviton/dilaton/axion fluctuation as δg, and the gauge

fluctuation as δAµ, and the fermion fluctuation as ψ, then the generic dependence in N in

general AdS/CFT is written as

S = (∂δg)2 +
1

N
(δg)3 +

1

N2
(δg)4

+(∂δAM )2 + ψ̄ΓMDMψ +
1√
N

(δAM )ψ̄ψ +
1

N
δg(δAM )2 +

1

N
δgψ̄ψ + · · · . (3.1)

8See also [13] for the argument to include quantum fluctuations beyond the fermion one-loop.
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Looking back our derivation of the holographic Luttinger theorem, we have performed the

ψ integral in this action. From the generic action written above, we observe that this

one-loop integral involves the term 1√
N

(δAµ)ψ̄ψ, so it shifts the action by a term of order

O(1/
√
N). This is a leading order effect, compared to the quantum corrections involving

the graviton, the dilaton and the axion,9 since in the action above those corrections come

with a coupling of O(1/N).

Therefore, we conclude that, assuming that the origin of the fermions and the gauge

fields is D-branes in the bulk, the fermion one-loop integral is the leading order in 1/N

expansion in AdS/CFT, so we can consistently ignore the other quantum corrections.

3.2 Deconfined phase

As first pointed out by Hartnoll [12] and also studied in detail by Iqbal and Liu recently [15],

the presence of the black hole horizon significantly alters the result; in the final line of

the derivation of the Luttinger theorem (2.12), we have used the fact that the electric

displacement Dz at the IR endpoint vanishes due to the confining geometry. However in

the presence of the black hole the IR boundary condition is different and there exists in

general an electric flux emanating from the black hole horizon, for charged black holes.

〈Q〉+Dz

∣∣
z=zIR

= q
∑
l,n

θ(−El,n) , (3.2)

with

Dz

∣∣
z=zIR

≡
(
f(φ)

L[F ]

∂F0z
+ h(φ)aFxy

)∣∣
z=zIR

. (3.3)

So, there exists a Luttinger deficit for the deconfined phase [12, 15]. Here Dz is the electric

displacement in the bulk at the IR of the geometry, which is the electric flux penetrating

the horizon of the black hole. This comes from the first term of (2.11).

In the presence of the deformations which we consider, for the deconfined phase, there

appears a dependence on the magnetic field and the axion field at the horizon. The ax-

ion field corresponds to the parity-violating θ term, so in general, the Luttinger theorem

in the deconfinement phase is violated with a deficit dependent on the θ term and the

magnetic field in addition to the deficit [15] of the electric charge carried by the “frac-

tionalized” fermions [17, 41, 42] (which are deconfined quarks in the standard holographic

QCD terminology).

The electric displacement includes a contribution from the parity-violating term, the

second term of the (3.3), [
Dz

∣∣
z=zIR

]
parity−odd

= θeffB. (3.4)

9Here, as a classical background geometry, we have assumed that the back-reaction of the flavor brane

itself (with ψ = 0) is already included in the geometry. In this paper we need not to specify the geometry

for the derivation of the Luttinger theorem, so whatever the back-reacted classical geometry is, there is no

problem in the derivation.
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This term directly responds to the magnetic field present in the system, and the effective

value of the coefficient, θeff , in the Luttinger theorem is given by

θeff ≡ [h(φ)a]z=zIR . (3.5)

It is intriguing that the parameter θeff is not given by the UV geometry but the IR geometry.

The IR geometry is not directly related to the parameters of the fermion liquid system

defined at UV, and it is rather determined by the gravitational dynamics corresponding

to strongly coupled sectors, which these fractionalized fermions couple. This dependence

on IR geometry reflects the fact that the Luttinger relation is a phenomena at low energy.

Note that even with no electric field F0z, once the parity-violating term and the magnetic

field Fxy is turned on, the Luttinger deficit appears.

The deficit appearing in the Luttinger relation (3.2) appears to depend explicitly on

the deformation parameters we introduced in the gravity dual. The parameters are in the

nonlinear electrodynamics L[F ] and the dilaton-axion couplings to the gauge fields in the

gravity side. However, in (3.2), the deficit depend only on the electric displacement Dz at

the black hole horizon. The effect of the parity-odd term (θeffB) is also included in the

electric displacement. So, we conclude that the effect of the deconfinement phase to the

deviation from Luttinger theorem can be summarized into electric displacement Dz, which

is determined by the total charge of the “fractionalized” fermions, even in the presence of

the deformations considered in this paper. Note that we have not assumed the existence

of the quasi-particle picture in our derivation.
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A Bulk fermion eigen-states

In this appendix we shall explicitly calculate (2.6) with the background gauge field. We

work in the Lorentzian signature, while the Euclidean signature (which we employed in the

derivation) can be easily obtained by an analytic continuation. First, we derive the Dirac

operator. The fermion action in the bulk is

Sfermion =

∫
d3+1x

√
−g i

[
ψ̄ΓMDMψ −mψ̄ψ

]
. (A.1)

Here the Dirac operator is DM = ∂M + 1
4wabMΓab − iqAM . The definition of the Gamma

matrices in the local Lorentz frame are

Γz ≡

(
12 02

02 −12

)
, Γµ ≡

(
02 γ

µ

γµ 02

)
(A.2)
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with γ0 ≡ iσ3, γ1 ≡ σ1, and γ2 ≡ −σ2, where σ1, σ2, σ3 are the Pauli matrices. We follow

the notation of [43] and [32] except for the assignment of γµ (this difference is necessary to

see the diagonalization as for fermion components, see below). The notation for the indices

are: M = 0, 1, 2, z, and µ = 0, 1, 2.

Writing the 4-component fermion as

ψ ≡

(
ψ+

ψ−

)
, ψ± ≡ (−ggzz)−1/4φ±, (A.3)

where φ± is a two-spinor, the Dirac equation is√
gii
gzz

(∂z ∓m
√
gzz)φ± = ∓iKµγ

µφ∓, (A.4)

with K0 ≡ −i
√

gii
−gtt (∂0 − iqA0) and Ki ≡ −i(∂i − iqAi) with i = 1, 2.

In the Dirac equation, the four spinor components are coupled, while we would like to

group them into 2-spinors to derive (2.6). In our convention, among the gamma matrices,

γ0 is a diagonal matrix while γi is not, so if we can bring the Kiγ
i to a diagonal form, the

decomposition to the 2-spinors is complete. This is nothing but solving the following eigen

equation in the x-y space,

i(K1γ
1 +K2γ

2)φ̃± =

(
α 0

0 β

)
φ̃±, (A.5)

where α and β are complex constants, and φ̃±(x, y) are 2-spinor wave functions representing

Landau levels of fermions in magnetic fields. The gauge field configuration (2.4) satisfies

[K1,K2] = iqB, so using a creation and an annihilation operator

1√
2qB

(K1 + iK2) ≡ a, 1√
2qB

(K1 − iK2) ≡ a†, (A.6)

we have the harmonic osccillator [a, a†] = 1. The eigen equation (A.5) becomes

i
√

2qB

(
0 a

a† 0

)
φ̃± =

(
α 0

0 β

)
φ̃±. (A.7)

A solution can be easily found as

φ̃± ∝

(
(i
√

2qBn/α)(a†)n−1|0〉
(a†)n|0〉

)
, n = 0, 1, 2, · · · . (A.8)

We need β = −2qBn/α to have this solution. With this wave function for (x, y), we choose

φ±,n = f±,n(z)e−iw±t

(
(i
√

2qBn/α±)(a†)n−1|0〉
(a†)n|0〉

)
, (A.9)

– 9 –
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then the Dirac equation (A.4) is written as√
−gtt
gzz

(∂z ∓m
√
gzz)φ±,n

= ∓

(
(i∂t + qA0)σ3 +

√
−gtt
gii

(
α∓ 0

0 −2qBn/α∓

))
φ∓,n . (A.10)

From the phase matching in (A.10), we have w+ = w− ≡ En. The upper spinor

component of the equation (A.10) yields√
−gtt
gzz

(∂z −m
√
gzz)

f+,n(z)

α+
= −

(
En + qA0 +

√
−gtt
gii

α−

)
f−,n(z)

α−
, (A.11)√

−gtt
gzz

(∂z +m
√
gzz)

f−,n(z)

α−
=

(
En + qA0 +

√
−gtt
gii

α+

)
f+,n(z)

α+
. (A.12)

The lower spinor component of the equation (A.10) yields√
−gtt
gzz

(∂z−m
√
gzz) f+,n(z) =−

(
−(En+qA0)+

√
−gtt
gii

(−2qBn/α−)

)
f−,n(z), (A.13)√

−gtt
gzz

(∂z+m
√
gzz) f−,n(z) =

(
−(En+qA0)+

√
−gtt
gii

(−2qBn/α+)

)
f+,n(z). (A.14)

For (A.13) and (A.14) to be consistent with (A.11) and (A.12), we need

α+ = −α−, α− = 2qBn/α−, α+ = 2qBn/α+. (A.15)

This can be solved as

α± = ±
√

2qBn or α± = ∓
√

2qBn . (A.16)

Then (A.13) and (A.14) become the same as (A.11) and (A.12), and we obtain two inde-

pendent solutions as (A.16).

The resultant equations (A.13) and (A.14) can be re-written as

D(i=1)
n χn(z) = En χn(z) , (A.17)

D(i=1)
n ≡

√
−gtt
gzz

(−iσ2∂z − σ1m
√
gzz)− qA0 − σ3

√
−gtt
gii

√
2qBn , (A.18)

with χ ≡ (f+, f−)T. This is for the choice α± = ±
√

2qBn. For the other choice α± =

∓
√

2qBn,

D(i=2)
n ≡

√
−gtt
gzz

(−iσ2∂z − σ1m
√
gzz)− qA0 + σ3

√
−gtt
gii

√
2qBn . (A.19)

The operator Dn of (2.6) appears here as D(i)
n . See also [13, 14]. Note that due to

the interaction term between spins and magnetic fields, there are two Dn’s labeled by i.
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Generically this eigen-equation allows only a discrete spectrum10 for En, so the energy En
is also labeled by l (the Kaluza-Klein modes in z space) in addition to n (the Landau levels)

and i (spins) as

Din χn,l,i(z) = En,l,i χn,l,i(z) . (A.20)

For simplicity of the notation, we will omit the index i in this paper.

The normalizability condition should single out a certain linear combination of the two

solutions. The reason why we got two solutions generically can be easily understood by

the following argument. The Dirac equation (A.4) is a coupled equation of φ+ and φ−, but

one can eliminate one of them. Bringing (A.4) into the following form formally,

(−iKµγ
µ)−1

√
gii
gzz

(∂z −m
√
gzz)φ+ = φ−, (A.21)

(iKµγ
µ)−1

√
gii
gzz

(∂z +m
√
gzz)φ− = φ+, (A.22)

we can combine these to eliminate φ−, to have[
(iKµγ

µ)−1

√
gii
gzz

(∂z +m
√
gzz)(−iKµγ

µ)−1

√
gii
gzz

(∂z −m
√
gzz)

]
φ+ = φ+. (A.23)

This is a 2nd order differential equation for a two-spinor φ−, so we generically have four

independent solutions. Without magnetic field, given E, four states are degenerate and

they correspond to spin {up and down}, and {normalizable and non-normalizable} modes.

In the presence of magnetic fields, this degeneracy splits up by spins, so given spin and

energy eigenvalue E, there is a set of a normalizable and a non-normalizable mode.

B Evaluation of the fermion free energy

In this appendix, we demonstrate the calculation of the fermion one-loop free energy (2.8).

B.1 Reduction to 1 + 0 dimension

In the previous appendix, we demonstrate that given l (the Kaluza-Klein modes in z space),

n (the Landau levels) and i (spins), the Dirac equation reduces to a single equation (A.20)

which determines El,n. Therefore the action for the fermion should read as

S =
∑
l,n

∫
dt iΨ̄l,n(t) (i∂t − El,n) Ψl,n(t). (B.1)

Here Ψl,n(t) is a single component fermion, since the dependence on the Landau level n

is already included with the specific Landau level wave function in the x-y space. The

10For given index n and i, the corresponding parts of Dirac equation be coupled 1st order differential

equations for two spinor components, so it allows two independent solutions. Taking the appropriate ration

between these two, we can eliminate non-normalizable mode in the bulk UV and regular mode in bulk IR

in Euclidian signature. Then it allows only discrete modes labeled by l.

– 11 –
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fermion field Ψl,n(t) is properly normalized to have the action above. Note also that there

are two El,n’s, depending on the choice of the Dirac operator Dn in (A.18) and (A.19)

labeled by i. In the following, we omit the index i for simplicity of the notation.

Let us proceed to calculate the free energy. We bring the Tr Log into the following

expression,

Ffermion ≡
∑
n

qB

2π

∑
l

Tr Log (i∂t − El,n) =
qB

2π

∑
l,n

∫ ∞
El,n

ds Tr
1

(i∂t − s)

=
qB

2π

∑
l,n

∫ ∞
El,n

ds

∫
dw

2π

1

w − s
. (B.2)

Here, we have used the fact that the momentum integration in the kx-ky space is now

replaced by the Landau level summation, as∫
dkxdky
(2π)2

=

∫
2πkdk

(2π)2
=

∫
πd(k2)

(2π)2
=
∑
n

2πqB

(2π)2
=
∑
n

qB

2π
. (B.3)

We have used the momentum relation k2 = 2qBn which we obtained in the last appendix.

Now we perform the off-shell w integration. The standard path in the complex w-

plane for the integration of w rounds the upper half plane plus the real axis. In the iε

prescription, the pole contributing in the path integral is the one on the negative real axis

of w. This appears only for the negative s so the integral is non-zero only when El,n < 0,

and we obtain

Ffermion =
qB

2π

∑
l,n

∫ 0

El,n

ds
1

2π
2πiθ(−El,n) = −iqB

2π

∑
l,n

El,nθ(−El,n). (B.4)

This expression is (2.8) in the Euclidean notation.

B.2 Another viewpoint: reduction to 1 + 2 dimension

We shall present another viewpoint here, to evaluate the fermion free energy, which is a

natural dimensional reduction along z.

First, we shall decompose the bulk fermion into Kaluza-Klein modes along z labeled by

l. The effective action for the l-th mode has a kinetic operator Dµγ
µ−ml where ml is the

mass for the l-th mode of the decomposed fermion. Then, we compute Tr Log(Dµγ
µ−ml)

for each state l and make a summation over l.

Let us work out the Kaluza-Klein decomposition explicitly. The bulk fermion action is

Sfermion =

∫
d3+1x

√
−g i

[
ψ̄ΓMDMψ −mψ̄ψ

]
. (B.5)

Using the notation in the previous appendix, this action Sfermion can be explicitly written as

∫
d3+1x

√
gzz
−gtt

i
(
φ†+γ

0, φ†−γ
0
) iK̄µγ

µ −
√
−gtt
gzz

Dz−m
√
−gtt√

−gtt
gzz

Dz−m
√
−gtt iK̄µγ

µ

( φ+

φ−

)
.

(B.6)
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Here

K̄µ ≡
√
−gtt
gii

Kµ = (−i(∂0 − iqA0) ,−i
√
−gtt
gii

(∂i − iqAi))) , (B.7)

and Dz ≡ ∂z − iqAz. In view of this, we consider the following matrix equation so that the

above matrix is diagonalized, 0 −
√
−gtt
gzz

Dz −m
√
−gtt√

−gtt
gzz

Dz −m
√
−gtt 0

( φ+

φ−

)
= −ml

(
φ+

φ−

)
(B.8)

where ml is some eigenvalue. We write11(
φ+

φ−

)
≡
∑
l

(
g

(l)
+ (z)Ψ(l)(t, x, y)

g
(l)
− (z)Ψ(l)(t, x, y)

)
(B.9)

where Ψ is a two-spinor which is a function of (t, x, y), and g±(z) are scalar functions.

These g±(z) are required to satisfy 0 −
√
−gtt
gzz

Dz −
√
−gttm√

−gtt
gzz

Dz −
√
−gttm 0

( g(l)
+ (z)

g
(l)
− (z)

)
= −ml

(
g

(l)
+ (z)

g
(l)
− (z)

)
. (B.10)

With explicit eigen wave functions, we can reduce the action to a 3-dimensional action.

Substituting (B.9) to the action, we obtain

Sfermion =
∑
l,m

∫
d3xdz

√
gzz
−gtt

i Ψ̄(l)(iK̄µγ
µ−mm)Ψ(m)

(
g

(l) ∗
+ (z)g

(m)
+ (z)+g

(l) ∗
− (z)g

(m)
− (z)

)
.

(B.11)

The z integration gives a normalization for the fermion which we require as∫
dz

√
gzz
−gtt

(
g

(l) ∗
+ (z)g

(m)
+ (z) + g

(l) ∗
− (z)g

(m)
− (z)

)
= δlm. (B.12)

Furthermore, we calculate the chemical potential for each mode as

µlm ≡
∫
dz

√
gzz
−gtt

A0(z)
(
g

(l) ∗
+ (z)g

(m)
+ (z) + g

(l) ∗
− (z)g

(m)
− (z)

)
. (B.13)

Here we assume that this chemical potential is diagonal

µlm = µlδlm , (B.14)

and also consider only the case below where gii(z) = −gtt(z) such that dimensional re-

duction along z ensures the Lorentz invariance in the t-x-y spacetime.12 Then we finally

obtain the decomposition

Sfermion =
∑
l

∫
d3x i Ψ̄(l)(Dµγ

µ −ml)Ψ
(l), (B.15)

11The reason why we took a common factor g±(z) for the 2-spinor φ± is that this z-dependent factor go

through the γ matrices in K̄µγ
µ such that the z integration can be done independently as (B.11), (B.12).

12In general such diagonalization makes the diagonal matrix ml off-diagonal. So choosing the basis such

that both µlm and ml diagonal is impossible for a generic A0(z). Similarly choosing gtt(z) = −gii(z) is

impossible for a generic metric gµν such as the Lifshitz form. The argument in the previous subsection

using the 1 + 0-dimensional picture does not refer to these assumptions.
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where Di ≡ ∂i − iqAi and D0 ≡ ∂0 − iqµl.
The on-shell condition for the l-th fermion is El + qµl =

√
m2
l + k2 where k is the

magnitude of the momentum in the (x, y) space.13 The derivative in the Dirac operator

has eigenvalues ∂µ = (−i(w + qµl), ik1, ik2). In the presence of the magnetic field, the

momentum k is replaced by the Landau levels.

Let us proceed to calculate the free energy. We bring the Tr Log into the following

expression,

Ffermion ≡
∑
l

Tr Log(Dµγ
µ −ml) =

∑
l

Tr

∫ ∞
ml

dt Tr
1

Dµγµ − t

=
∑
l

∫ ∞
ml

dt

∫
dwd2k

(2π)3

2t

(w + qµl)2 − k2 − t2

≡
∑
l

F lfermion . (B.16)

As you can easily check, this integral is divergent. Therefore, we need to subtract the

vacuum contribution (the free energy with µl = 0) which corresponds to the Dirac fermi

sea. Then

F (reno) l
fermion ≡ F

l
fermion(µl)−F lfermion(µl = 0) . (B.17)

Now we perform the off-shell w integration. The standard path in the complex w-plane

for the integration of w, which rounds the upper half plane, concerns two poles at w =

−qµl ±
√
k2 + t2. In the iε prescription, the only relevant pole in the path integral is the

one on the negative real axis of w. However, note that now we have a contribution from

the chemical potential, thus there is the case when the both of the two poles are on the

negative real axis.

F lfermion(µl) =

∫ ∞
ml

dt

∫
dwd2k

(2π)3

2t

(w + qµl −
√
k2 + t2)(w + qµl +

√
k2 + t2)

=

∫ ∞
ml

dt

∫
d2k

(2π)3

[
2πi 2t

−2
√
k2 + t2

θ(qµl +
√
k2 + t2)

+
2πi 2t

2
√
k2 + t2

θ(qµl −
√
k2 + t2)

]
. (B.18)

Note that the θ function in the first term is always equal to the unity. So, the first term

is independent of µl. The second term vanishes when µl = 0. Therefore, we find that

F reno
fermion =

∑
l F

(reno) l
fermion coincides with the sum of the second term in (B.18),

F reno
fermion =

∑
l

tr

∫
d2k

(2π)3

∫ ∞
ml

dt 2πi
2t

2
√
k2 + t2

θ(qµl −
√
k2 + t2). (B.19)

13This El coincides with El,n given in (A.20), because both E’s, which is the eigenvalue of i∂t, are

obtained from the equations of motion of same action; One is from 4-dimensional viewpoint (B.5), and the

other is from dimensionally reduced 3-dimensional viewpoint (B.15).
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The θ function represents the Fermi surface, since one satisfies the momentum constraint

relevant to the chemical potential, qµl >
√
k2 + t2 (roughly speaking, t is the mass of the

l-th mode of the fermion). In fact, this is a widely known technique [44]. Denoting the

value of t satisfying qµl −
√
k2 + t2 = 0 as t∗l, (B.19) is integrated to

F reno
fermion =

∑
l

tr

∫
d2k

(2π)3

∫ t∗l

ml

dt 2πi
2t

2
√
k2 + t2

θ(t∗l −ml)

=
∑
l

i

∫
d2k

(2π)2

(√
k2 + t2∗l −

√
k2 +m2

l

)
θ(t∗l −ml)

=
∑
l

i

∫
d2k

(2π)2

(
qµl −

√
k2 +m2

l

)
θ(t∗l −ml)

= −i
∑
l

∫
d2k

(2π)2
El(k)θ(−El(k)). (B.20)

In the last equality, we have used the fact that t∗l > ml is equivalent to
√
k2 +m2

l −qµl < 0.

In the presence of the magnetic field, the momentum k2 is replaced by the Landau levels

2qBn with a non-negative integer n. The momentum integral is accordingly normalized as

dk1dk2 = 2πkdk = πd(k2) = 2πqBdn, so

F (reno)
fermion = −i

∑
l

qB

2π

∑
n

El,nθ(−El,n). (B.21)

This expression is (2.8) in the Euclidean notation.
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